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Abstract. We consider the Riemann problem for non-genuinely nonlinear conservation laws
where the flux function admit two inflection points. This is a simplification of van der Waals fluid
pressure, which can be seen as a function of the specific volume for a specific entropy at which
the system lacks the non-genuine nonlinearity. Two kinetic relations can be used to construct a
nonclassical Riemann solution.
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1. Introduction. The theory of nonclassical solutions of hyperbolic sys-
tems of conservation laws has been introduced by LeFloch and has been devel-
oped for many years. For material on this subject, see the text book [13]. See
also [12, 4, 5, 13, 8, 9, 10, 11] and the references therein for the history and
details of developments. Briefly, nonclassical shock waves violate the standard
the Oleinik criterion [16] in the scalar case and the Lax shock inequalities
[7] and the Liu entropy conditions [14] for the case of hyperbolic systems of
conservation laws. To select nonclassical shock waves, by a standard way, one
follows the strategy proposed by Abeyaratne-Knowles [1, 2], and by Hayes
and LeFloch [4, 5, 13] to describe the whole family of nonclassical Riemann
solutions and then to use a kinetic relation to determine the relevant physical
solution. Related works can be found in [6, 19, 20, 17, 21, 22, 18].

Moreover, the dynamics of a fluid is governed by the following system of
differential equations in Lagrange coordinates as, see [3],

∂tv − ∂xu = 0 (conservation of mass),

∂tu+ ∂xp = 0 (conservation of momentum),

∂tE + ∂x(p u) = 0 (conservation of energy),

(1.1)

where the unknowns are u = u(x, t), v = v(x, t), and E = E(x, t). Here, u
denotes the particle velocity, v the specific volume, E = ε + u2/2 the total
energy, ε the specific internal energy, and p the pressure. The system (1.1)
must be supplemented by a constitutive relation (or equation of state), which
characterize the properties of the material under consideration. For example,
an equation of state for fluids of van der Waals may have the form

p(v, S) =
8e3S/8α

(3v − 1)1+1/α
−

3

v2
, v > 1/3, (1.2)

for some positive constant α = 1/(γ−1) where γ ∈ (1, 2) is called the adiabatic
exponent. See [15] for a review. The system (1.1)-(1.2) fails to be globally
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genuinely nonlinear (in the sense of Lax [7]) or even to be globally hyperbolic,
and there is a certain region in the phase space in which the system is of
elliptic type. This is due to the fact that the function p (expressed in suitable
variables) fails to be globally monotonous and admits two inflection points,
see LeFloch-Thanh [8, 11].

In the work of LeFloch-Thanh [8], the presence of two inflection points
in the flux function was studied. The nonclassical Riemann solver was con-
structed by restricting only on the first kinetic function, though we may have
more than one kinetic functions on a Hugoniot curve. More clearly, following
the strategy proposed by Abeyaratne-Knowles [1, 2], and by Hayes-LeFloch
[4, 5, 13], the authors define the entropy dissipation to describe the whole
set of nonclassical waves. It appears that the entropy dissipation may vanish
three times. And this would lead to the definition of two kinetic functions.
The domain as well as the range of each of these two kinetic function contains
one inflection point and its values are symmetric to the variable values with
respect to the inflection point. The difficulty to use the second kinetic func-
tion is that the shock speed involving the second kinetic function may be less
than that of the shock speed using the first kinetic function. Consequently,
the Riemann solution may not be well-defined when two kinetic functions are
to be involved. In LeFloch-Thanh [11], phase transitions were observed. All
nonclassical shock waves satisfying a single entropy inequality

∂tS ≥ 0 (1.3)

were also characterized.

This paper will deal with the case of two apparent kinetic functions, con-
tinuing works in [8, 11]. For simplicity, we restrict our attention to the scalar
case where we have a single conservation law. The flux function will have the
shape of the pressure of van der Waals fluids in the region where it admits two
inflection points. Accordingly, we may have two kinetic functions, and we will
consider when we can use each of them, or both. Moreover, as the entropy
dissipation selects nonclassical waves like the rule of equal areas, we will define
the kinetic functions relying on the rule of equal areas to set up their domains.
Therefore, the construction may be more visual in some sense. We note that
a similar way was constructed for classical shock waves by Oleinik [16].

Precisely, we will consider the Riemann problem for conservation laws

∂tu+ ∂xf(u) = 0,

u(x, 0) =

{

ul for x < 0,
ur for x > 0,

(1.4)

where ul and ur are constants and the flux f is a twice differentiable function
of u ∈ RI . The function f is assumed to satisfy

f ′′(u) > 0 for u ∈ (−∞, 0) ∪ (1,+∞),

f ′′(u) < 0 for u ∈ (0, 1),

lim
u→±∞

f ′(u) = +∞, lim
u→±∞

f(u) = +∞.

(1.5)
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Thus the flux f has two inflection points at u = 0 and u = 1. The specification
of these two values does not restrict the scope of consideration of this paper.
By assumption, the function f is clearly convex in each interval (−∞, 0) and
(1,+∞), and is concave in the interval (0, 1). To specify these intervals, we
denote

EI := (−∞, 0),

EII := [0, 1],

EIII := (1,+∞),

(1.6)

and call each of them a phase.

The paper is organized as follows. In Section 2 we will investigate the
properties of tangents to the graph of f , and then we review the Oleinik
construction of the entropy solution. Section 3 will be devoted to geometrically
select non-classical Riemann solutions relying on only one kinetic relation.
Kinetic functions will be presented to give the unique admissible one between
such nonclassical solutions. In Section 4 we will give a Riemann solver which
permits two kinetic relations.

2. Basic Properties and Oleinik Construction. This section is aimed
first to describe several essential properties of the flux function f . Tangents to
the graph of f will be used to select nonclassical shocks instead of an entropy
dissipation. Then we review the Oleinik construction for classical solutions of
the Problem (1.4). A classical solution of Problem (1.4), by definition, is a
weak solution satisfying the so-called Oleinik entropy condition

f(u) − f(ul)

u− ul
≥
f(ur) − f(ul)

ur − ul
, ∀u between ur and ul.

This means that the graph of f is below (above) the line connecting ul to ur
when ur < ul (respectively ur > ul).

Under the hypotheses (1.5), the tangents at 1 and 0 cut the graph of the
flux function f at a point a and b, respectively, with

a < 0 < 1 < b,

(see Figure 2.1). From each u ∈ (a, b), one can draw two distinct tangents to
the graph of f . Denote these tangent points by ϕ\(u) and ψ\(u) with

ϕ\(u) < ψ\(u).

In other words, we have

f ′
(

ϕ\(u)
)

=
f(u) − f

(

ϕ\(u)
)

u− ϕ\(u)
,

f ′
(

ψ\(u)
)

=
f(u) − f

(

ψ\(u)
)

u− ψ\(u)
.

(2.1)

To the end points of the interval under consideration a, b we set

ϕ\(a) = ψ\(a) = 1 and ϕ\(b) = ψ\(b) = 0.
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Fig. 2.1. Flux function having two inflection points

There are no tangents to the graph of f from any point outside the interval
[a, b]. Besides, the values u and ψ\(u) always lie on different sides with respect
to u = 1, and the values u and ϕ\(u) always lie on different sides with respect
to u = 0, i.e.

ϕ\(u)u < 0 for u 6= 0, ϕ\(0) = 0,

(ψ\(u) − 1)(u− 1) < 0 for u 6= 1, ψ\(1) = 1.
(2.2)

There are two points c < d such that the epigraph of the function f̃ defined
by

f̃(u) =

{

f(u), if u ∈ (−∞, c] ∪ [d,+∞),
affine on [c, d],

(2.3)

coincides with the convex hull of that of the function f . Geometrically, the
tangents to the graph of f from c and d coincide. Such points c and d are
unique. More clearly,

f ′(c) =
f(d) − f(c)

d− c
= f ′(d).

It is not difficult to check that
Proposition 2.1. The function ψ\ is increasing for u ∈ [a, c] and decreas-

ing for u ∈ [c, b]. The function ϕ\ is decreasing for u ∈ [a, d] and increasing
for u ∈ [d, b]. Moreover ϕ\ maps

(

[a, b] onto [c, 1], while ψ\ maps [a, b] onto
[0, d].
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Inversely, the tangent from a point u ∈ (c, d) cuts the graph of f at exactly
two distinct points, say denoted by ϕ−\(v) and ψ−\(v) with the convention

ϕ−\(v) < ψ−\(v).

The definition can be extended to the end values c and d as

ϕ−\(c) = d, and ψ−\(d) = c.

The functions ϕ−\ and ψ−\ in the interval [c, d] are not monotone and there-
fore not one-to-one. However, they are monotone in for u ∈ [0, 1]. Restricting
consideration to the interval [0, 1], they are the inverses of the functions ϕ\

and ψ\ defined above, respectively:

ϕ\ ◦ ϕ−\ = ψ\ ◦ ψ−\ = id on the interval [0, 1]. (2.4)

Since we want to discuss the tangent functions in the whole interval [a, b],
we can assume for the global purpose

ϕ−\(u) = ψ−\(u) = +∞, u ∈ [a, c),

ϕ−\(u) = ψ−\(u) = −∞, u ∈ (d, b].
(2.5)

We were dealing with tangent points and points from which tangents can
be issued. Between two these points, there is a kind of points that will be
concerned to the dynamics of phase transition (to be considered in the coming
sections). So, it derives the definition of these points.

The following proposition can easily be verified.
Proposition 2.2. Given a point u ∈ (a, b), any line between u and

another point v ∈ (ϕ\(u), ψ\(u)) cuts the graph of f at exactly four points of
which u and v are the two. Denote such the remaining two points by ϕ](u, v)
and ψ](u, v), with convention

ϕ](u, v) < ψ](u, v).

For the limit cases, we set

ϕ](u, v = ϕ\(u)) := ϕ\(u) = v,

ψ](u, v = ψ\(u)) := ψ\(u) = v.

(See Figure 2.1.

By definition, the values ϕ](u, v) and ψ](u, v) satisfy

f(ϕ](u, v)) − f(u)

ϕ](u, v) − u
=
f(ψ](u, v)) − f(u)

ψ](u, v) − u
=
f(v)) − f(u)

v − u
. (2.6)
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Next, we turn to the Oleinik construction [16] of the entropy solution
of Problem (1.4). The following lemma characterize shock waves that are
admissible by the Oleinik criterion.

Lemma 2.3. (Classical shocks)
Given a left-hand state u0, the set of right-hand states u1 attainable by a

classical shock is given by
(i) If u0 ∈ (−∞, c) ∪ (b,+∞), then u1 ∈ (−∞, u0].
(ii) If u0 ∈ [c, 0], then u1 ∈ (−∞, u0] ∪ [ϕ−\(u0), ψ

\(u0)].
(iii) If u0 ∈ (0, 1), then u1 ∈ (−∞, ϕ−\(u0)] ∪ [u0, ψ

\(u0)].
(iv) If u0 ∈ [1, b], then u1 ∈ (−∞, ϕ−\(ψ\(u0))] ∪ [ψ\(u0), u0].

So we are at the position to construct the classical Riemann solutions.
First, for ul ∈ (−∞, c), Lemma 2.2 asserts that all the states ur ∈ (−∞, ul)
can be reached by a single shock. States ur ∈ (ul, 0] can be arrived at by a
single rarefaction wave, since the characteristic speed is increasing when we
move from ul to ur. If ur ∈ [0, d], we have ϕ\(ur) ∈ [c, 0]. So the solution is
a composite of a rarefaction wave from ul to ϕ\(ur) followed by a shock from
ϕ\(ur) to ur. If ur > d, the solution is combined from three elementary waves:
a rarefaction wave from ul to c, followed by a shock from c to d, and then
followed by a rarefaction wave from d to ur.

Second, we deal with ul ∈ [c, 0]. If ur ∈ (−∞, ul), the Riemann solution
is a single shock. A single rarefaction wave can connect ul with the states
ur ∈ (ul, 0]. If ur ∈ [0, ϕ−\(ul)], then ϕ\(ur) ∈ [ul, 0] and the Riemann solution
is composed by a rarefaction wave from ul to ϕ\(ur) followed by a shock from
ϕ\(ur) to ur. A single shock from ul can reach ur ∈ (ϕ−\(ul), ψ

\(ul]. Finally,
if ur > ψ\(ul), the solution is a composite of a shock from ul to ψ\(ul) followed
with a rarefaction wave connecting ψ\(ul) to ur.

Third, ul ∈ (0, 1). A single shock from ul can reach ur ∈ (−∞, ϕ−\(ul)] ∪
[ul, ψ

\(ul)]. A single rarefaction wave from ul can connect to ur ∈ [0, ul].
If ur ∈ (ϕ−\(ul), 0), then there exists a unique value u∗ ∈ (0, ul) such that
ϕ−\(u∗) = ur. That is u∗ = ϕ\(ur). In that case the Riemann solution is a
rarefaction wave connecting ul to u∗ followed by a shock connecting u∗ to ur.
Finally, if ur > ψ\(ul), the Riemann solution is a shock connecting ul to ψ\(ul)
followed with a rarefaction wave from ψ\(ul) to ur.

Fourth, assume that ul ∈ [1, b]. A single shock from ul can reach

ur ∈ (−∞, ϕ−\(ψ\(ul))] ∪ [ψ\(ul), ul].

A single rarefaction wave from ul can connect to ur ∈ [ul,+∞). If ur ∈
[0, ψ\(ul)), the Riemann solution is combined by a shock from ul to ψ\(ul) fol-
lowed by a rarefaction from ψ\(ul) to ur. If ur ∈ (ϕ−\(ψ\(ul)), a), the solution
contained three waves: a shock from ul to ψ\(ul), followed by a rarefaction
from ψ\(ul) to ϕ\(ur), and followed by a shock connecting ϕ\(ur) to ur.

Finally, if ul ∈ (b,+∞), then the Riemann solution is simply a shock if
ur < ul and a rarefaction wave otherwise.
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We arrive at the following conclusion.
Theorem 2.4. (Classical Riemann solver)
Under the assumption (1.5), the Riemann problem (1.4) admits a unique

classical solution in the class of piecewise smooth self-similar functions made
of rarefaction fans and shock waves satisfying the Oleinik entropy criterion.
This solution depends continuously on the Riemann data.

3. Non-classical Riemann Solvers Using One Kinetic Relation. In
this section, we will present two non-classical Riemann solvers. The first one
relying on non-classical jumps (see definition below) crossing the first inflection
point u = 0. This solver can be proved to depend continuously on Riemann
data. The second one using non-classical jumps crossing the second inflection
point u = 1. The Riemann solver, however, does not depend continuouly on
Riemann data.

3.1. Riemann solver relying on jumps crossing the inflection point
u = 0. Let a function ϕ be given.

ϕ : [a, b] → [a, b]. (3.1)

The function ϕ will be called a kinetic relation corresponding to the inflec-
tion point u = 0 if there exists a neighborhood Ω0 of u = 0 such that in Ω0

the function ϕ satisfies the following two conditions:

(i) The function ϕ is monotone decreasing in [a, b], ϕ(u) ≤ ψ\(u), ϕ(u)
lies between ϕ\(u) and ϕ−\(u), ∀u ∈ [a, b] in the sense that

ϕ−\(u) > ϕ(u) > ϕ\(u), ∀u < 0,

ϕ−\(u) < ϕ(u) < ϕ\(u), ∀u > 0,

ϕ(0) = ϕ\(0) = ϕ−\(0) = 0;

(ii) and the convex-concave condition

|ϕ ◦ ϕ(u)| > |u|, ∀u ∈ Ω0. (3.2)

It is not difficult to check that there is a unique point eT ∈ (a, c) such that

ϕ(eT ) = ψ\(eT ). (3.3)

Moreover, in the coming construction we need an additional assumption

ϕ(1) = a. (3.4)

Therefore, the largest domain Ω0 satisfying (3.2)-(3.4) is

Ω0 = [eT , 1], (3.5)

and we take it as the domain of the kinetic function. (See Figures 3.1 for u < 0
and u > 0)
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Fig. 3.1. Kinetic Function ϕ

For an arbitrary non-classical shock between a given left-hand state u0 and
a given right-hand state u1, kinetic relation is the requirement that

u1 = ϕ(u0). (3.6)

To select non-classical shock rather than classical ones, we postulate that

(C) Non-classical shocks are preferred whenever available.

We now solve the Riemann problem relying on the condition (C). The
construction in this section is similar to the non-classical one for the 1-wave
family in [8], but we want to recall it here for completeness.

Suppose first that ul ∈ (−∞, eT ). Any point ur ∈ (−∞, ul) can be achieved
by a single classical shock. Any point ur ∈ (ul, 0] is attainable by a single
rarefaction wave. If ur ∈ (0, ϕ(eT )], there exists a unique point u∗ ∈ [eT , 0)
such that ur = ϕ(u∗). The solution is then the composite of a rarefaction
wave from ul to u∗ followed by a nonclassical shock from u∗ to ur. If ur ∈
(ϕ(eT ),+∞), the solution consists of three parts: A rarefaction wave from
ul to eT followed by a nonclassical shock from eT to ϕ(eT ), followed by a
rarefaction wave from ϕ(eT ) to ur.

Second, suppose that ul ∈ [eT , 0). A point ur ∈ (−∞, ul) can be attained
by a single classical shock. A point ur ∈ (ul, 0] is attainable by a single
rarefaction wave. If ur ∈ (0, ϕ(ul)], there exists a unique point u∗ ∈ [ul, a)
such that ur = ϕ(u∗). The solution is then the composite of the rarefaction
wave from ul to u∗ followed by a nonclassical shock from u∗ to ur. If ur ∈
(ϕ(ul), ϕ(eT )], there exists a unique point u∗ ∈ [eT , ul) such that ur = ϕ(u∗).
For this construction to make sense, one must here check whether the classical
shock from ul to u∗ is slower than the nonclassical shock from u∗ to ur. So,
consider the function

f̃(v) :=

{

f(v), if v ∈ (−∞, ul],
f(ul) + f ′(ul)(v − ul), if v ∈ (ul,+∞).

(3.7)
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If ur ∈ (ϕ(ul), p), where

p := min{ϕ(eT ), ϕ−\(ul)},

the function p̃ is convex on (−∞,+∞) and the points u∗ and ur belong to its
epigraph. Therefore, the straightline connecting u∗ and ur should lie above
the graph of f̃ in the interval (u∗, ur) 3 ul. That is to say

f̃(ul) − f̃(u∗)

ul − u∗
<
f(ur) − f(u∗)

ur − u∗
,

i.e.,

s(ul, u
∗) < s(u∗, ur). (3.8)

The latter inequality means precisely that the classical shock from ul to u∗

can be followed by the nonclassical shock from u∗ to ur.

In the latter construction, if ul ∈ [eT , ϕ
\(ϕ(eT )), then

p = ϕ(eT ),

and we have completed the argument when ur ∈ (ϕ(ul), ϕ(eT )). For ur ∈
(ϕ(eT ),
+ ∞), the Riemann solution consists of three parts: A classical shock from
ul to eT followed by a nonclassical shock from eT to ϕ(eT ), followed by a
rarefaction wave from ϕ(eT ) to ur.

Suppose next that ul ∈ [ϕ\(ϕ(eT )), 0), then

p = ϕ−\(ul).

If ur ∈ [ϕ−\(ul), ϕ(eT )], the solution can be a classical shock connecting ul to
u∗ followed by a nonclassical shock from u∗ to ur provided (3.8) holds, or else
a single classical shock. For ur ∈ (ϕ(eT ),+∞), if

s(ul, eT ) < s(eT , ϕ(eT )), (3.9)

then the solution consists of a classical shock from ul to eT , followed by a
nonclassical shock from eT to ϕ(eT ), then followed by a rarefaction wave. If
else, (3.9) fails, then the solution is either a classical shock from ul to ur if
ur ≤ ψ\(ul) or a classical shock from ul to ψ\(ul) followed by a rarefaction
wave from ψ\(ul) to ur if else.

Third, suppose that ul ∈ [0, 1). The points ur ∈ [0,+∞) are reached by
the classical construction described in Section 2. If ur ∈ [ϕ(ul), 0], there exists
a unique point u∗ ∈ [0, ul] such that ur = ϕ(u∗). The solution then consists of
a rarefaction wave connecting ul to u∗ followed by a nonclassical shock from
u∗ to ur. If ur ∈ [ϕ−\(ul), ϕ(ul)), then there exists a unique point u∗ ∈ [ul, 1)
such that ur = ϕ(u∗). Since both ul and u∗ belong to [0, 1] and the function
f is concave in this interval, we have

f(ul) − f(u∗)

ul − u∗
<
f(ϕ(ul)) − f(u∗)

ϕ(ul) − u∗
<
f(ur) − f(u∗)

ur − u∗
.
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This means the shock speed s(ul, u∗) is less than the shock speed s(u∗, ur).
Therefore the Riemann solution can be a classical shock from ul to u∗ followed
by a nonclassical shock from u∗ to ur. If ur ∈ (a, ϕ−\(ul)], there exists a
unique point u∗ ∈ [ul, 1) such that ur = ϕ(u∗). The solution then consists of
a classical shock from ul to u∗ followed by a nonclassical shock from u∗ to ur
provided

s(ul, u
∗) < s(u∗, ur),

or else a single classical shock. The states ur ∈ (−∞, a] are reached by single
classical shocks.

Finally, when ul ∈ [1,+∞), we also use the classical construction described
in Section 2.

Denote by ϕ−1 : [a, ϕ(eT )] → [eT , 1], the inverse of the kinetic function ϕ,
which is also a monotone decreasing mapping.

The arguments presented above are summarized as follows:
Theorem 3.1. (Construction of the Riemann solver) Given left-hand and

right-hand states ul, ur. Under the hypotheses (1.5) and the assumption (3.4),
we have the following description of the Riemann solver that can be involved
in a combination of rarefaction fans and shock waves, satisfying the kinetic
relation (3.6) (for nonclassical shocks), and the condition (C):

Case 1: ul ∈ (−∞, eT ).
• If ur ∈ (−∞, ul), the solution is a single classical shock.
• If ur ∈ (ul, 0], the solution is a single rarefaction wave.
• If ur ∈ (0, ϕ(eT )], the solution is the composite of a rarefaction wave

connecting ul to u∗ := ϕ−1(ur) followed by a nonclassical shock from
u∗ to ur.

• If ur ∈ (ϕ(eT ),+∞), the solution consists of three parts: A rarefaction
wave from ul to e followed by a nonclassical shock from e to ϕ(eT ),
followed by a rarefaction wave from ϕ(eT ) to ur.

Case 2: ul ∈ [eT , 0).
• If ur ∈ (−∞, ul), the solution is a single classical shock.
• If ur ∈ (ul, 0], the solution is a single rarefaction wave.
• If ur ∈ (0, ϕ(ul)], the solution is the composite of a rarefaction wave

from ul to u∗ := ϕ−1(ur) followed by a nonclassical shock from u∗ to
ur.

• If ul ∈ [eT , ϕ
\(ϕ(eT ))) and ur ∈ (ϕ(ul), ϕ(eT )), then the solution con-

sists of a classical shock from ul to u∗ := ϕ−1(ur) followed by a non-
classical shock from u∗ to ur.

• If ul ∈ [eT , ϕ
\(ϕ(eT ))) and ur ∈ (ϕ(eT ),+∞), the solution consists of

three waves: A classical shock from ul to e followed by a nonclassical
shock from e to ϕ(eT ), followed by a rarefaction wave from ϕ(eT ) to
ur.

• If ul ∈ [ϕ\(ϕ(eT )), 0) and ur ∈ (ϕ(ul), ϕ
−\(ul)), the solution consists of

the classical shock from ul to u∗ := ϕ−1(ur) followed by a nonclassical
shock from u∗ to ur.

10



• If ul ∈ [ϕ\(ϕ(eT )), 0) and ur ∈ [ϕ−\(ul), ψ
\(ul)], the solution is a clas-

sical shock from ul to u∗ followed by a nonclassical shock from u∗ to
ur if (3.5) holds, or else a single classical shock.

• If ul ∈ [ϕ\(ϕ(eT )), 0) and ur ∈ (ψ\(ul),+∞), the solution consists of
a classical shock from ul to ψ\(ul) followed by a rarefaction wave from
ψ\(ul) to ur.

Case 3: ul ∈ [0, 1).
• If ur ∈ [0,+∞), the solution is classical (Section 2).
• If ur ∈ [ϕ(ul), 0], the solution consists of the rarefaction wave from ul

to u∗ := ϕ−1(ur) followed by a nonclassical shock from u∗ to ur.
• If ur ∈ [ϕ−\(ul), ϕ(ul)), the solution consists of a classical shock from
ul to u∗ := ϕ−1(ur) followed by a nonclassical shock from u∗ to ur.

• If ur ∈ [ϕ−\(ul), a), the solution consists of the classical shock wave
from ul to u∗ := ϕ(ur) followed by a nonclassical shock from u∗ to ur
provided (4.3) holds, or else a single classical shock.

• The states ur ∈ (−∞, a] are reached by a single classical shock.

Case 4: ul ∈ [1,+∞).
The construction is classical (Section 2).

3.2. Riemann solver relying on jumps crossing the inflection point
u = 1. In this subsection, we will provide a Riemann solver using only non-
classical shocks crossing through the inflection point u = 1. As the behavior of
the graph of f changes across this point from concavity to convexity, another
condition will be placed instead of the convex-concave condition (3.2).

Let a function ψ be given

ψ : [a, b] → [a, b]. (3.10)

The function ψ will be called a kinetic function corresponding to the inflection
point u = 1 if there exists a neighborhood Ω1 of u = 1 such that in Ω1, the
function ψ fulfils the following requirements

(iii) The function ψ is monotone decreasing in [a, b], ψ(u) ≥ ϕ\(u), ψ(u)
lies between ψ\(u) and ψ−\(u), ∀u ∈ [a, b] in the sense that

ψ−\(u) > ψ(u) > ψ\(u), ∀u < 1,

ψ−\(u) < ψ(u) < ψ\(u), ∀u > 1,

ψ(1) = ψ\(1) = ψ−\(1) = 1;

iv) and the concave-convex condition

|ψ ◦ ψ(u) − 1| < |u− 1|, ∀u ∈ Ω1. (3.11)

Similarly, there is a unique point eT ∈ (1, b) such that

ψ(eT ) = ϕ\(eT ). (3.12)
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Fig. 3.2. Kinetic Function ψ

Assume there exists a point θ ∈ (c, 0) such that

ϕ\(ψ(θ)) = θ. (3.13)

From now on, we set definitively for the domain of the kinetic function

Ω1 = [θ, eT ]. (3.14)

For any non-classical shock between a given left-hand state u0 and a given
right-hand state u1, kinetic relation for the coming construction is the require-
ment that

u1 = ψ(u0). (3.15)

So, we begin to construct the Riemann solver, postulating the condition
(C) in the previous subsection.

Assume first that ul ∈ (−∞, θ). A single classical shock can jump to any
ur ∈ (−∞, ul). A single rarefaction wave can connect ul from the left to any
ur ∈ [ul, 0] from the right. If ur ∈ (0, ϕ−\(θ)], then ϕ\(ur) ∈ [θ, 0), the solution
thus is a rarefaction wave from ul to ϕ\(ur) followed by a classical shock from
ϕ\(ur to ur. If now ur ∈ (ϕ−\(θ), ψ(θ)), the solution consists of a rarefaction
wave from ul to θ, followed by a non-classical shock from θ to ψ(θ), then
followed by a classical shock from ψ(θ) to ur. If ur ∈ [ψ(θ),+∞), the solution
is a composite of a rarefaction wave from ul to θ, followed by a non-classical
shock from θ to ψ(θ), then followed by a rareffaction wave from ψ(θ) to ur.

Second, let ul ∈ [θ, 0]. A single classical shock can jump to any ur ∈
(−∞, ul). A single rarefaction wave can connect ul to any ur ∈ [ul, 0]. If ur ∈
(0, ϕ−\(ul)], then ϕ\(ur) ∈ [ul, 0), and therefore the solution is a rarefaction
wave from ul to ϕ\(ur) followed by a classical shock from ϕ\(ur) to ur. If
now ur ∈ (ϕ−\(ul), ψ

](ul, ψ(ul))], the solution is a single classical shock. If
ur ∈ (ψ](ul, ψ(ul)), ψ(ul)), then the solution is a non-classical shock from ul
to ψ(ul) followed by a classical shock from ψ(ul) to ur. If ur ∈ [ψ(ul),+∞),
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then the solution is composed from a non-classical shock from ul to ψ(ul)
followed by a rarefaction wave from ψ(ul) to ur.

Third, let ul ∈ (0, 1). A single classical shock can arrive at any ur ∈ (−∞,
ϕ−\(ul)]. If ur ∈ (ϕ−\(ul), 0], then ϕ\(ur) ∈ [0, ul). The solution is thus a
rarefaction wave from ul to ϕ\(ur) attached by a classical shock from ϕ\(ur)
to ur. If ur ∈ (0, ul], the solution is a single rarefaction wave. A single classical
shock can arrive at any ur ∈ (ul, ψ

](ul, ψ(ul))]. If ur ∈ (ψ](ul, ψ(ul)), ψ(ul)),
then the solution is a composite of a non-classical shock from ul to ψ(ul)
followed by a classical shock from ψ(ul) to ur. If ur ∈ [ψ(ul),+∞), then the
solution is combined from a non-classical shock from ul to ψ(ul) followed by
a rarefaction wave from ψ(ul) to ur.

Fourth, assume ul ∈ (1, ψ−1(0)). By the monotony, we have

ψ(ul) > 0.

If ur ∈ [ul,+∞), then the solution is a rarefaction wave. A single classical
shock can jump from ul to any ur ∈ [ψ](ul, ψ(ul)), ul). If ur ∈ (ψ(ul), ψ

](ul, ψ(ul))),
then the solution is combined from two shocks: a non-classical shock from ul
to ψ(ul) followed by a classical one from ψ(ul) to ur. If ur ∈ [0, ψ(ul)], then
the solution is a non-classical shock from ul to ψ(ul) followed by a rarefaction
wave from ψ(ul) to ur. If now ur ∈ (ϕ−\(ψ(ul)), 0), then ϕ\(ur) ∈ (0, ψ(ul)).
The solution is thus a non-classical shock from ul to ψ(ul) followed by a rar-
efaction wave from ψ(ul) to ϕ\(ur) attached by a classical shock from ϕ\(ur)
to ur. If ur ∈ [ψ](ul, ψ(ul)), ϕ

−\(ψ(ul))], then the solution is a non-classical
shock from ul to ψ(ul) followed by a classical shock from ψ(ul) to ur. If
ur ∈ (−∞, ψ](ul, ψ(ul))), then no non-classical shocks can be involved in the
construction. We thus use the classical construction in Section 2 in this inter-
val. The discontinuity in this regime is

ul ∈ (1, ψ−1(0)), ur = ψ](ul, ψ(ul)). (3.16)

Fifth, let ul ∈ [ψ−1(0), eT ]. The monotony of ψ yields

ψ(ul) ≤ 0.

A single rarefaction wave can connect ul to any ur ∈ [ul,+∞). A single
classical shock can jump from ul to any ur ∈ [ψ](ul, ψ(ul)), ul). If ur ∈
[ϕ−\(ψ(ul)), ψ

](ul, ψ(ul))), then the solution is combined from two shocks: a
non-classical shock from ul to ψ(ul) followed by a classical one from ψ(ul) to
ur. If ur ∈ (0, ϕ−\(ψ(ul))), then ϕ\(ur) ∈ (ψ(ul), 0). The solution is therefore
a composite of a non-classical shock from ul to ψ(ul) followed by a rarefaction
wave from ψ(ul) to ϕ\(ur), then attached by a classical shock from ϕ\(ur) to
ur. If ur ∈ [ψ(ul), 0], then the solution is a non-classical shock from ul to ψ(ul)
followed by a rarefaction wave from ψ(ul) to ur. If ur ∈ [ψ](ul, ψ(ul)), ψ(ul)),
then the solution is a non-classical shock from ul to ψ(ul) followed by a clas-
sical one from ψ(ul) to ur. If ur ∈ (−∞, ψ](ul, ψ(ul))), then there are no
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non-classical shocks and we have a situation similar to the previous one. In
this construction, we have a discontinuity sharinf the same formula for ur but
ul ∈ [ψ−1(0), eT ] instead. Combining this argument and (3.16), we obtain the
curve of discontinuity of the construction

{ul ∈ (1, eT ], ur = ψ](ul, ψ(ul))}. (3.17)

Finally, let ul ∈ (eT ,+∞). In this case we have no non-classical shocks
and we use the classical construction as well.

The above arguments can be summarized in the following theorem
Theorem 3.2. Given the initial Riemann data (ul, ur). Under the hy-

potheses (1.5) and the condition (C), the Riemann problem (1.4) admits a
unique self-similar soltion made of rarefaction waves, classical shocks and non-
classical shocks satisfying the kinetic relation (3.15). The Riemann solver is
described by

Case 1: ul ∈ (−∞, θ).
• If ur ∈ (−∞, ul), the solution is a single classical shock.
• If ur ∈ [ul, 0], the solution is a single rarefaction wave.
• If ur ∈ (0, ϕ−\(θ)], the solution is a rarefaction wave from ul to ϕ\(ur)

followed by a classical shock from ϕ\(ur to ur.
• If ur ∈ (ϕ−\(θ), ψ(θ)), the solution is a composite of a rarefaction wave

from ul to θ, followed by a non-classical shock from θ to ψ(θ), followed
by a classical shock from ψ(θ) to ur. If ur ∈ [ψ(θ),+∞), the solution
is a rarefaction wave from ul to θ, followed by a non-classical shock
from θ to ψ(θ), then followed by a rarefaction wave from ψ(θ) to ur.

Case 2: ul ∈ [θ, 0].
• If ur ∈ (−∞, ul), then the solution is a classical shock.
• If ur ∈ [ul, 0], the solution is a single rarefaction wave.
• If ur ∈ (0, ϕ−\(ul)], the solution is a rarefaction wave from ul to ϕ\(ur)

followed by a classical shock from ϕ\(ur) to ur.
• If ur ∈ (ϕ−\(ul), ψ

](ul, ψ(ul))], the solution is a single classical shock.
• If ur ∈ (ψ](ul, ψ(ul)), ψ(ul)), the solution is a non-classical shock from
ul to ψ(ul) followed by a classical shock from ψ(ul) to ur.

• If ur ∈ [ψ(ul),+∞), the solution is a composite of a non-classical shock
from ul to ψ(ul) followed by a rarefaction wave from ψ(ul) to ur.

Case 3: ul ∈ (0, 1).
If ur ∈ (−∞, ϕ−\(ul)], the solution is a classical shock.
• If ur ∈ (ϕ−\(ul), 0], the solution is a rarefaction wave from ul to ϕ\(ur)

attached by a classical shock from ϕ\(ur) to ur.
• If ur ∈ (0, ul], the solution is a single rarefaction wave.
• If ur ∈ (ul, ψ

](ul, ψ(ul))], the solution is a single classical shock.
• If ur ∈ (ψ](ul, ψ(ul)), ψ(ul)), the solution is a composite of a non-

classical shock from ul to ψ(ul) followed by a classical shock from ψ(ul)
to ur.
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• If ur ∈ [ψ(ul),+∞), then the solution is a composite of a non-classical
shock from ul to ψ(ul) followed by a rarefaction wave from ψ(ul) to ur.

Case 4: ul ∈ (1, ψ−1(0)).
• If ur ∈ [ul,+∞), the solution is a rarefaction wave.
• If ur ∈ [ψ](ul, ψ(ul)), ul), the solution is a single classical shock.
• If ur ∈ (ψ(ul), ψ

](ul, ψ(ul))), the solution is a composite of two shocks:
a non-classical shock from ul to ψ(ul) followed by a classical one from
ψ(ul) to ur.

• If ur ∈ [0, ψ(ul)], the solution is a non-classical shock from ul to ψ(ul)
followed by a rarefaction wave from ψ(ul) to ur.

• If ur ∈ (ϕ−\(ψ(ul)), 0), the solution is a composite of a non-classical
shock from ul to ψ(ul) followed by a rarefaction wave from ψ(ul) to
ϕ\(ur) attached by a classical shock from ϕ\(ur) to ur.

• If ur ∈ [ψ](ul, ψ(ul)), ϕ
−\(ψ(ul))], the solution is a non-classical shock

from ul to ψ(ul) followed by a classical shock from ψ(ul) to ur.
• If ur ∈ (−∞, ψ](ul, ψ(ul))), then the construction is classical (Section

2).

Case 5: ul ∈ [ψ−1(0), eT ].
• If ur ∈ [ul,+∞), the solution is a single rarefaction wave.
• If ur ∈ [ψ](ul, ψ(ul)), ul), the solution is a single classical shock.
• If ur ∈ [ϕ−\(ψ(ul)), ψ

](ul, ψ(ul))), the solution is a composite of two
shocks: a non-classical shock from ul to ψ(ul) followed by a classical
one from ψ(ul) to ur.

• If ur ∈ (0, ϕ−\(ψ(ul))), the solution is a composite of three elementary
waves: a non-classical shock from ul to ψ(ul) followed by a rarefaction
wave from ψ(ul) to ϕ\(ur), then attached by a classical shock from
ϕ\(ur) to ur.

• If ur ∈ [ψ(ul), 0], the solution is a non-classical shock from ul to ψ(ul)
followed by a rarefaction wave from ψ(ul) to ur.

• If ur ∈ [ψ](ul, ψ(ul)), ψ(ul)), then the solution is a non-classical shock
from ul to ψ(ul) followed by a classical one from ψ(ul) to ur.

• If ur ∈ (−∞, ψ](ul, ψ(ul))), then the construction is classical.

Case 6: ul ∈ (eT ,+∞), the construction is classical.
The curve of discontinuity is

{ul ∈ (1, eT ], ur = ψ](ul, ψ(ul))} ⊂ RI 2.

4. Non-Classical Riemann Solver Using two Kinetic Relations.
In this section, we discuss the Riemann solver to the problem (1.4) using two
kinetic relations for non-classical shock-waves between two phases. It turns
out that even under the condition (C), non-uniqueness appears. A stronger
condition is imposed to guarantee there is a unique choice of non-classical
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Fig. 4.1. A 3-shock solution: N(ul, ψ(ul)) − C(ψ(ul), ϕ
−1(ur)) −N(ϕ−1(ur), ur).

shocks. As expected, the unique Riemann solution does not depend continu-
ously globally on the Riemann data.

Let us first point out several circumstances in which there are distinct
choices of non-classical solutions adaptable to the condition (C). Firtly, assume
that ul ∈ (1, ψ−1(0)), then ψ(ul) ∈ (0, 1). Therefore,

ϕ(ψ(ul)) ∈ (ϕ−\(ψ(ul)), ϕ
\(ψ(ul))) ⊂ (ϕ−\(ψ(ul)), 0).

If we take

ur = ϕ(ψ(ul)),

then we obtain a solution contains two nonclassical shocks: one nonclassical
shock corresponding to the kinetic function φ from ul to ψ(ul), followed by
one nonclassical shock corresponding to the kinetic function ψ from ψ(ul)
to ϕ(ψ(ul)). However, as derived from the construction in the subsection 3.2
that in this case, we obtained a non-classical solution containing a non-classical
shock corresponding to the kinetic function ψ: one nonclassical shock from ul
to ψ(ul) followed by a rarefaction wave from ψ(ul) to ϕ−\(ur), attached by
a classical shock from ϕ−\(ur) to ur. This illustrates the co-existence of two
nonclassical solutions, one contains more nonclassical shocks than the other.
(See Figure 4.1).

Secondly, assume now

ul ∈ [θ, 0], and ur ∈ (ψ](ul, ψ(ul)), 1).

According to the description in Section 3, we could have two nonclassical
Riemann solutions, each of them contain one nonclassical shock. Precisely,
the solution would be
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• either a classical shock corresponding to the kinetic function ϕ from ul
to ϕ−1(ur), followed by a nonclassical shock from ϕ−1(ur) to ur;

• or a nonclassical shock corresponding to the kinetic function ψ from
ul to ψ(ul) followed by a classical shock from ψ(ul) to ur.

This is an example of the co-existence of nonclassical solutions including
the same number of nonclassical shocks.

For short, in the sequel we will name a 0 − shock (or a 1 − shock) is a
nonclasscial shock corresponding to the kinetic function ϕ (the kinetic function
ψ, resp.).

In order to select a unique solution, at least we must avoid the above
circumstances. In the following, we need a more restrictive procedure than
(C). That is the procedure

(P) – A classical solution is understood to contain zero nonclassical shock.

– Nonclassical shocks are preferred whenever available in the extended
sense that: if a solver R1(ul, ur) contains m nonclassical shocks, and a
solver R2(ul, ur) contains n nonclassical shocks with m > n, then R1

excludes R2.

– If the left-hand state belongs to the phase EI , then the 0-shocks
are preferred than the 1-shocks in the sense that: if R1(ul, ur) and
R2(ul, ur) contain the same total number of nonclassical shocks, and
R1(ul, ur) contain m 0-shocks and R2(ul, ur) contain n 0-shocks with
m > n, then R1 excludes R2. Similarly, if the left-hand state belongs
to the phase EIII , then 1-shocks are preferred than the 0-shocks.

For the construction, we first make it clear that a 1− shock can not follow
a 0 − shock.

Proposition 4.1. In any Riemann solution, a 1 − shock can not follow
a 0 − shock.

Proof. Let the states u0, u1, u2 be given. Denote N0(u0, u1) is the 0-shock
from u0 to u1 and N1(u1, u2) is the 1-shock from u1 to u2. That is to say

u1 = ϕ(u0), and u2 = ψ(u1).

In order to for N1 to follow N0 we must have the condition on shock speeds:

s(u1, u2) > s(u0, u1). (4.1)

By the definition of kinetic functions, the shock speed s(u1, u2) has to be
smaller than the slope of the tangent at u1, which is greater than the shock
speed s(u0, u1). This contradicts with the condition (4.1). The proposition is
proved. �

Based on the procedure (P), we proceed now to construct the Riemann
solution. First, assume that ul ∈ (−∞,min{θ, ϕ\(ϕ(eT ))]. Since ul is out of
the domain of the kinetic function ψ and, as described in the subsection 3.1,
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any ur ∈ (0,+∞) can be arrived at by a solution contain one 0-shock. By
virtue of the procedure (P), we thus use the construction in the subsection 3.1
for this interval.

Second, let ul ∈ (min{θ, ϕ\(ϕ(eT )), 0). The construction of the subsection
3.1 is valid for ur < ϕ−\(ul). If ur ∈ [ϕ−\(ul), ϕ(eT )], the solution can be a
classical shock connecting ul to u∗ followed by a nonclassical shock from u∗ to
ur provided (3.8) holds. If (3.8) fails, then the construction in the subsection
3.2 can be applied here: if ul ≤ θ we have a rarefaction wave from ul to θ
followed by a 1-shock from θ to ψ(θ), then followed by a classical shock from
ψ(θ) to ur, if ul > θ, then we have a 1-shock from ul to ψ(ul) followed by a
classical one from ψ(ul) to ur. For ur ∈ (ϕ(eT ),+∞), if (3.9) holds then we
use the construction in the subsection 3.1 to cover 0-shocks, else we use the
one in the subsection 3.2 to cover 1-shocks or classical construction.

Third, let ul ∈ [0, 1]. We know from Proposition 4.1 that 1-shocks can not
follow 0-shocks, so we need only find the possibility of a 0-shock following a
1-shock. The interval [0, 1] can be separated by two regions

A := {u ∈ [0, 1] : ψ](u, ψ(u)) < 1} relatively open in [0, 1],

AC = [0, 1] \ A.
(4.2)

The relatively open set A is thus a union of certain relatively open subintervals
of the interval [0, 1]. For any u ∈ A, there corresponds a set defined by

B := {v ∈ (a, 0) : v < ϕ(ψ](u, ψ(u))), and v > ϕ](ψ(u), ϕ−1(v))}. (4.3)

The set B is an open subset of RI . By definition, given any left-hand
state ur ∈ B, the Riemann solution for the initial datum (ul, ur) is a three-
jump wave: first a 1-shock from ul to ψ(ul), followed by a classical jump
from ψ(ul) to ϕ−1(ur), then followed by a 0-shock from ϕ−1(ur) to ur. For
ur ∈ (−∞, ul] \ B, no 1-shocks to be followed by a 0-shock, so we use the
construction in the subsection 3.1. The states ur ∈ (ul,+∞) can be reached
by the construction in the subsection 3.2, as no 0-shocks are available.

Fourth, assume ul ∈ (1, ψ−1(0)]. By the monotony, we have

ψ(ul) > 0. (4.4)

Due to (4.4) the right-hand states ur ∈ [0,+∞) should be involved with
1-shocks and the construction is the one of the subsection 3.2. If ur ∈
(ϕ(ψ(ul)), 0), then the solution is a 1-shock from ul to ψ(ul) followed by a rar-
efaction wave from ψ(ul) to ϕ−1(ur), then followed by a 0-shock from ϕ−1(ur)
to ur. If ur ∈ (ϕ](ul, ψ(ul)),
ϕ(ψ(ul))], then ϕ−1(ur) ∈ (ψ(ul), 1). The solution is a 1-shock from ul to
ψ(ul) followed by a classical shock from ψ(ul) to ϕ−1(ur), then followed by a
0-shock from ϕ−1(ur) to ur iff

s(ψ(ul), ϕ
−1(ur)) < s(ϕ−1(ur), ur). (4.5)
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If (4.5) fails, then no 0-shocks are involved in the construction and we use the
one in the subsection 3.2. If now ur ∈ (−∞, ϕ](ul, ψ(ul))], then the classical
construction is invoked.

Fifth, let ul ∈ (ψ−1(0), eT ], then

ψ(ul) < 0. (4.6)

Right-hand states ur ∈ [ψ](ul, ψ(ul)),+∞) ∪ (−∞, 0] can be arrived at
as in the construction of the subsection 3.2. If ur ∈ (0, ϕ(ψ(ul))), then the
solution is a 1-shock from ul to ψ(ul) followed by a rarefaction wave from ψ(ul)
to ϕ−1(ur) by virtue of (4.6), then followed by a 0-shock from ϕ−1(ur) to ur.
If ur ∈ [ϕ(ψ(ul)), ψ

](ul, ψ(ul))), then ϕ−1(ur) ∈ (eT , ψ(ul)). The solution is a
1-shock from ul to ψ(ul) followed by a classical shock from ψ(ul) to ϕ−1(ur),
then followed by a 0-shock from ϕ−1(ur) to ur iff

s(ψ(ul), ϕ
−1(ur)) < s(ϕ−1(ur), ur). (4.7)

If (4.7) fails, then we use the one in the subsection 3.2.

Finally, if ul ∈ (eT ,+∞), then the classical construction is valid.

Summarizing the above arguments, we arrive at the following theorem
Theorem 4.2. Given the initial Riemann data (ul, ur). Under the hy-

potheses (1.5), There exists a unique Riemann solution made of rarefaction
waves, classical shocks and non-classical shocks satisfying the kinetic relations
(3.6) and (3.15), and the selective procedure (P).
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