Spectral Representation of Multiply Self-decomposable Stochastic Processes and Applications*

Nguyen Van Thu ${ }^{\dagger}$
To Anh Dung, Duong Ton Dam \ddagger Nguyen Huu Thai ${ }^{\S}$

October 20, 2006

In the present paper we study multiply selfdecomposable probability measures (SDPM) and processes and prove their integral representations. Similarly, the multiple s-selfdecomposability case is treated. Our results extend some of known results due to Urbanik K.,Jurek., Rosinski J.and Rajput B.S. As an application we construct a Damped-mixed stable price process in option pricing.

1 Introduction, notation and preliminaries

The main aim of this paper is to prove that each multiply self-decomposable process (MSDP) on an Euclidean space admits a stochastic integral w.r.t.a MSD random measure (RM). Moreover, we will consider similar problems for multiply s-selfdecomposable processes(MsSDP). Through the paper we shall denote by \mathcal{X} a fixed d-dimensional ($\mathrm{d}=1,2, \ldots$) Euclidean space with the usual inner product $<,>$ and norm \|.\|.

Let $\mathcal{P}(\mathcal{X})$ denote the class of all probability measures (PM) on the σ-field $\mathcal{B}(\mathcal{X})$ of Borel subsets of \mathcal{X} equipped with the weak convergence. Given a positive number

[^0]c we define on \mathcal{X} the following two families of mappings T_{c} and U_{r} as follows:
\[

\left\{$$
\begin{array}{l}
T_{r} x=r x \tag{1}\\
U_{r}=\max (0,\|x\|-r) \frac{x}{\|x\|}, U_{r}(0)=0 .
\end{array}
$$\right.
\]

Further, for a PM $\mu \in \mathcal{P}(\mathcal{X})$ and a mapping T on \mathcal{X} let $T \mu$ denote the image of μ under T.

Recall (cf.Loéve [12] and Sato [25]) that a PM $\mu \in \mathcal{P}(\mathcal{X}$ is called SD if for each $0<c<1$ there exists a PM μ_{c} such that

$$
\begin{equation*}
\mu=T_{c} \mu * \mu_{c} \tag{2}
\end{equation*}
$$

where $*$ denotes the ordinary convolution of PM's.
The concept of shrinking SDPM (shortly, s-SDPM) was introduced by Medgyessy [14]and studied by Jurek [3], [4], [6]. Namely, a PM μ is called s-SD if it is ID and for each $0<c<1$ there exists a PM μ_{c} such that

$$
\begin{equation*}
\mu=U_{c} \mu^{c} * \mu_{c} \tag{3}
\end{equation*}
$$

where the power is taken in the convolution sense.
It is known [3], [4], [6], [29], [17]that if μ is SD (resp., s-SD) then μ, μ_{c} are both ID. Let us denote by $\operatorname{ID}(\mathcal{X})$ the class of all IDPM's on the space. The class of all SDPM's (resp., s-SDPM's) on \mathcal{X} is denoted by $\mathcal{L}(\mathcal{X})$ (resp., $\mathcal{U}(\mathcal{X})$).

Let $\mathcal{L}_{n}(\mathcal{X}), n=1,2, \ldots$ (resp., $\left.\mathcal{U}_{n}(\mathcal{X}), n=1,2, \ldots\right)$ denote the class of all n-times SDPM's (resp., n-times s-SDPM's) which were first introduced by Urbanik ${ }^{1}$ [29] (resp.,Jurek[4] and then studied further by many other authors (cf., for example [4], [17], [25]...).

They are defined recursively as follows: A p.m. $\mu \in \mathcal{L}_{n}(\mathcal{X}), n=2,3, \ldots$ if and only if $\mu \in \mathcal{L}_{1}(\mathcal{X})$ and for each $c \in(0,1)$ the component μ_{c} in (2) belongs to $\mathcal{L}_{n-1}(\mathcal{X})$.

It has been proved by Nguyen ([18], Proposition 1.1) that a p.m. $\mu \in \mathcal{L}_{n}(\mathcal{X}), n=$ $1,2, \ldots$, if and only if, for every $c \in(0,1)$ there exists a p.m. $\nu:=\mu_{c, n} \in I D(\mathcal{X})$ such that the following equality holds:

$$
\begin{equation*}
\mu=*_{k=0}^{\infty}\left(T_{c^{k}} \nu\right)^{* r_{k, n}} \tag{4}
\end{equation*}
$$

where the power is taken in the convolution sense and, for $n=1,2, \ldots ; k=0,1,2, \ldots$ we put

$$
\begin{equation*}
r_{k, n}=\binom{n+k-1}{k} \tag{5}
\end{equation*}
$$

[^1]The formulas (3) and (4) lead to the following interpolation of classes $\mathcal{L}_{n}(\mathcal{X})$ (cf. Nguyen [17]): For each $\alpha>0$ we put

$$
\binom{\alpha}{k}=\left\{\begin{array}{l}
1 \quad k=0 \tag{6}\\
\alpha(\alpha-1) \ldots(\alpha-k+1) / k!\quad k=1,2, \ldots
\end{array}\right.
$$

and introduce the class α-times SDPM's, shortly, $\alpha-S D P M^{\prime} s$ as the following:
Definition 1.1 (cf. Nguyen [19]) A p.m. $\mu \in \mathcal{L}_{\alpha}(\mathcal{X}), \alpha>0$, if and only if, for every $c \in(0,1)$ there exists a p.m. $\nu:=\mu_{c, \alpha} \in I D(\mathcal{X})$ such that the following equality holds:

$$
\begin{equation*}
\mu=*_{k=0}^{\infty}\left(T_{c^{k}} \nu\right)^{r_{k, \alpha}} \tag{7}
\end{equation*}
$$

where, the power is taken in the convolution sense and, for $\alpha>0, k=0,1,2, \ldots$ we put

$$
\begin{equation*}
r_{k, \alpha}=\binom{\alpha+k-1}{k} \tag{8}
\end{equation*}
$$

It should be noted [17] that the infinite convolution (8) is weakly convergent if and only if

$$
\begin{equation*}
\int_{\mathcal{X}} \log ^{\alpha}(1+\|x\|) \nu(d x)<\infty \tag{9}
\end{equation*}
$$

In the sequel, we shall denote by $I D_{\log ^{\alpha}}(\mathcal{X})$ the subclass of $I D(\mathcal{X})$ of all distributions for which the condition (9) is satisfied.

Now, let us quote the following important integral representation for SDPM's due to Vervaat-Jurek [5]:

Theorem 1.1 (Jurek-Vervaat) A p.m. $\mu \in \mathcal{L}_{1}(\mathcal{X})$ if and only if there exists a \mathcal{X}-valued Lévy process $\{X()$.$\} of the class I D_{\text {log }}$ such that

$$
\begin{equation*}
\mu \stackrel{d}{=} \int_{0}^{\infty} \exp (-t) X(d t) \tag{10}
\end{equation*}
$$

The integrator $\{X()$.$\} is called the background driving Lévy process (shortly, BDLP)$ of μ (cf.Jurek [5, 6]) and the r.v. X(1) is called BD r.v.. Further, Nguyen N.H.[16], obtained the following pretty generalization of Theorem 1.1 to the case of α-SDPM's for each $\alpha>0$.

Theorem 1.2 (Nguyen N.H [16]) A p.m. $\mu \in \mathcal{L}_{\alpha}(\mathcal{X})$ if and only if there exists a \mathcal{X}-valued Lévy process $\left\{X_{\alpha}(t)\right\}$ of the class $I D_{\log ^{\alpha}}(\mathcal{X})$ such that

$$
\begin{equation*}
\mu \stackrel{d}{=} \int_{0}^{\infty} \exp \left(-t^{\frac{1}{\alpha}}\right) X_{\alpha}(d t) \tag{11}
\end{equation*}
$$

In the sequel we shall need the following representation of ch.f.'s of ID and MSDPM's on \mathcal{X} :

Theorem $1.3(\mathbf{c f}[\mathbf{2 0}],[24])$ A p.m. μ is ID if and only if its ch.f. $\hat{\mu}(y), y \in \mathcal{X}$ is of the unique form:

$$
\left\{\begin{array}{l}
-\log \hat{\mu}(y)=i<z, y>+<\Sigma y, y> \\
-\int_{\mathcal{X}}\left(e^{i<y, x>}-1-i \tau(x)\right) M(d x)
\end{array}\right.
$$

where $z \in \mathcal{X}$ is fixed; Σ is a quadratic form on \mathcal{X} and M is a Lévy measure on \mathcal{X} characterized by the property that $M(0)=0, \mathrm{M}$ is finite ouside of very neighberhood of the origin and

$$
\int_{U_{1}} \frac{\|x\|^{2}}{1+\|x\|^{2}} M(d x)<\infty
$$

the function $\tau(x)$ is defined by

$$
\tau(x)=\left\{\begin{array}{l}
\|x\| \quad x \in U_{1} \\
1 \quad\|x\|>1
\end{array}\right.
$$

U_{1} being the closed unit Ball in \mathcal{X}.
In what follows, if μ is ID with the ch.f. given by (11) then we will identify it with the triple $[z, \Sigma, M]$. Thus, we have

Theorem 1.4 (Nguyen [19], Theorem 2.4) A p.m. $\mu \in \mathcal{L}_{\alpha}(\mathcal{X}), \alpha>0$ if and only if $\mu=[z, \Sigma, M]$, where z, Σ are the same as in Theorem (1.2) and the Lévy's measure M is given by

$$
M(A)=\left\{\begin{array}{l}
\int_{\mathcal{X}} v_{\alpha}(x) \tag{12}\\
\left(\int_{0}^{\infty} \chi_{A}\left(e^{-u} x\right) u^{\alpha-1} d u\right) m(d x)
\end{array}\right.
$$

where m is a finite measure on \mathcal{X} vanishing at the origin; A is a Borel subset of the real line separated from 0 ; the weight function $v_{\alpha}(x)$ is defined by

$$
\begin{equation*}
v_{\alpha}^{-1}(x)=\int_{0}^{\infty} \frac{e^{-2 t} x^{2}}{1+e^{-2 t} x^{2}} t^{\alpha-1} d t \tag{13}
\end{equation*}
$$

Theorem 1.5 (Nguyen[17],[19]) A p.m. μ is mixed-stable i.e. $\mu \in \mathcal{L}_{\infty}(\mathcal{X})$ if and only if $\mu=[z, \Sigma, M]$, where z, Σ are the same as in Theorem (1.4) and the Lévy's measure M of μ is given by

$$
\begin{equation*}
M(A)=\int_{V_{1}} \int_{0}^{\infty} \chi_{A}(t x) \frac{d t}{t^{2}|x|+1} h(x) \nu(d x) \tag{14}
\end{equation*}
$$

where ν is a PM on the open unit ball $V_{1}:=\{x \in \mathcal{X}:\|x\|<1\}$ and $h(x)$ is a nonnegative continuous weight function on V_{1}.

2 Mappings $\left\{T_{c}^{(\alpha)}\right\}$ and classes $\left\{\mathcal{L}_{\alpha}(\mathcal{X})\right\}$

In this section we introduce families of mappings $\left\{T_{c}^{(\alpha)}\right\}$, where $0<c<1 ; \alpha>0$ acting on the whole class $I D(\mathcal{X})$ and show that they play the same role as mappings T_{c} in the definition of α-SDPM's. To begin with let us consider the following particular cases:
$2.1 \quad \alpha=n=1,2, \ldots$
Let $\mu \in \mathcal{L}_{n}(\mathcal{X}), n=1,2, \ldots$. By Proposition 1.1 [17], for every $0<c<1$ the equation (??) holds. Putting

$$
\begin{equation*}
T_{c}^{n} \mu=*_{k=1}^{\infty}\left(T_{c^{k}} \nu\right)^{r_{k, n}} \tag{15}
\end{equation*}
$$

and taking into account (??) we have

$$
\begin{equation*}
\mu=T_{c}^{(n)} \mu * \mu_{c, n} \tag{16}
\end{equation*}
$$

Conversely, it is also true. Namely, by induction one can prove that if a PM μ satisfies equation (16) for each $0<c<1$ and for a PM $\mu_{c, n}$, then it belongs to $\mathcal{L}_{n}(\mathcal{X})$.

$2.20<\alpha<1$.

This case was treated in [17]. Namely, for such α the mapping $T_{c, \alpha}$ is defined in [17]. Then, by Theorem 2.1 [17], it follows that a PM μ belongs to $\mathcal{L}_{\alpha}(\mathcal{X})$ if and only if for every $0<c<1$ there exists a PM $\mu_{c, \alpha}$ such that

$$
\begin{equation*}
\mu=T_{c}^{\alpha} \mu * \mu_{c, \alpha} \tag{17}
\end{equation*}
$$

2.3 The general case $\alpha>0$:

It is easy to show that

$$
\begin{equation*}
1=\sum_{k=1}^{\infty}(-1)^{k-1} r_{k, \alpha}=\sum_{k=1}^{\infty}\left|r_{k, \alpha}\right| \tag{18}
\end{equation*}
$$

Consequently, the mapping $T_{c, \alpha}: I D(\mathcal{X}) \rightarrow I D(\mathcal{X})$ given by

$$
\begin{equation*}
T_{c, \alpha} \mu=*_{k=1}^{\infty} T_{c^{k}} \mu^{\left|r_{k, \alpha}\right|} \tag{19}
\end{equation*}
$$

for any $0<c<1$ and $\alpha>0$ is well-defined.
Furthermore, the following general theorem holds:

Theorem 2.1 A PM $\mu \in \mathcal{L}_{\alpha}(\mathcal{X}), \alpha>0$, if and only if for each $0<c<1$ there exists a $P M \mu_{c, \alpha}$ such that the equation (17) holds for each $\alpha>0$.

Proof. The "if" part is similar to the proof of Theorem 2.1 [17]. To prove the "only if" part one may assume that $\alpha=\beta+n$, where $0<\beta<1, n=1,2, \ldots$. But it is clear by virtue of the cases 2.1 and 2.2 and by noticing that the mappings $T_{c, n}$ and $T_{c, \beta}$ commute with each other.

Theorem 2.2 (α-differentiability of α-SDPM's on \mathcal{X}) For every $\alpha>0$ and every $P M \mu \in \mathcal{L}_{\alpha}(\mathcal{X})$ there exists a weak limit, denoted by $\mathcal{D}^{\alpha} \mu$, which belongs to $I D_{\log ^{\alpha}}(\mathcal{X})$ and satisfies the equation

$$
\begin{equation*}
\mathcal{D}^{\alpha} \mu=\lim _{t \rightarrow 0} \mu_{c, \alpha}^{t^{-\alpha}} \tag{20}
\end{equation*}
$$

where $t=-\log c, \mu_{c, \alpha}$ is as in (7) and (17).
Proof. See Nguyen (Theorem 2.4 [17]).
Definition 2.1 (cf. Nguyen [17) The limit measure $D^{\alpha} \mu$ in Theorem (2.2) is called the α-derivative of μ.

The following Theorem is obvious:
Theorem 2.3 For each $\alpha>0$ the operator D^{α} stands for an algebraic isomorphism between $\mathcal{L}_{\alpha}(\mathcal{X})$ and $I D_{\text {log }^{\alpha}}(\mathcal{X})$.

3 Mappings $\left\{U_{c}^{(\alpha)}\right\}$ and classes $\left\{\mathcal{U}_{\alpha}(\mathcal{X})\right\}$

Following verbatim the proof of cases 2.1, 2.2 and 2.3 we have the Theorem:
Theorem 3.1 For any $0<c<1$ and $\alpha>0$ and for every $P M \mu \in I D(\mathcal{X})$ we put

$$
\begin{equation*}
U_{c, \alpha} \mu=*_{k=1}^{\infty} T_{c^{k}} \mu^{\left|\binom{\alpha}{k}\right| c^{k}}=*_{k=1}^{\infty} U_{c^{k}} \mu^{\left|\binom{\alpha}{k}\right|} \tag{21}
\end{equation*}
$$

Then we get a mapping $U_{c, \alpha}$ which stands for a well defined continuous isomorphism of the convolution algebra $I D(\mathcal{X})$. Moreover, restricted to $I D(\mathcal{X})$, it stands for an analogue of the shrinking mapping U_{c} in (1.1).

Definition 3.1 A PM $\mu \in I D(\mathcal{X})$ is said to be of the class $U_{\alpha}(\mathcal{X}), \alpha>0$, or equivalently, $\alpha-s-S D$, if for each $0<c<1$ the following formula holds:

$$
\begin{equation*}
\mu=U_{c, \alpha} \mu * \mu_{c, \alpha} \tag{22}
\end{equation*}
$$

for some $P M \mu_{c, \alpha} \in I D(\mathcal{X})$

From the above definition we have:
Theorem 3.2 A PM $\mu=[z, \Sigma, M] \in \mathcal{U}_{\alpha}(\mathcal{X}), \alpha>0$ if and only if the Lévy measure M satisfies the following condition:

$$
\begin{equation*}
\sum_{k=0}^{\infty}\left|\binom{\alpha}{k}\right| c^{k} T_{c^{k}} M \geq 0 \tag{23}
\end{equation*}
$$

for each $0<c<1$, or, equivalently,

$$
\begin{equation*}
[] \Sigma_{k=0}^{\infty}\left|\binom{\alpha}{k}\right| U_{c^{k}} M \geq 0 \tag{24}
\end{equation*}
$$

Definition 3.2 (cf. Jurek[8]) Given $\alpha>0$ let G_{α} denote a Gamma r.v. with distribution τ_{α}. Let $\mathcal{U}^{<\alpha\rangle}$ denote the class of all distributions of $\int_{(0,1)} t d Y_{\rho}\left(\tau_{\alpha}(t)\right)$, where $Y_{\rho}($.$) is a Lévy process with \mathcal{L}\left(Y_{\rho}(1)\right)=\rho$.

By virtue of the above formulas (23) and (24) and Jurek [8],formula (29) we have the following theorem

Theorem 3.3 The following equation hold:

$$
\begin{equation*}
\mathcal{U}_{\alpha}(\mathcal{X})=\mathcal{U}^{<\alpha>} \tag{25}
\end{equation*}
$$

which shows that definitions 3.1 and 3.2 are equivalent.

4 Stochastic representation of classes $\mathcal{U}_{\alpha}(\mathcal{X})$

Definition 4.1 Let T be a parameter set Z of all integers or R of all real numbers. A stochastic process $X_{t}, t \in T$ is said to be ID, stable, mixed-stable, $\alpha-S D$, $\alpha-s-S D$ if for any $t_{1}, t_{2}, \ldots, t_{n} \in T$ and $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}, n=1,2, \ldots$ the r.v. $\Sigma_{1}^{n} \lambda_{j} X_{t_{j}}$ is $I D$, stable, mixed-stable, $\alpha-S D, \alpha-s-S D$, respectively.

Definition 4.2 Let $\Lambda=\{\Lambda(A): A \in \mathcal{S}\}$ be a real stochastic process defined on a probability space $(\Omega, \mathcal{F}, \mathcal{P})$, where \mathcal{S} stands for a σ-ring of subsets of an arbitrary nonempty set S satisfying the following condition : There exists an increasing sequence $S_{n}, n=1,2, \ldots$ of sets in S with $\bigcap_{n} S_{n}=S$.

We call Λ to be an independently scattered random measure(RM), if, for every sequence $\left\{A_{n}\right\}$ of disjoint sets in \mathcal{S}, the random variables $\Lambda\left(A_{n}\right), n=1,2, \ldots$ are independent, and, if $\cup_{n} A_{n}$ belongs to \mathcal{S}, then we also have

$$
\Lambda\left(\cup_{n} A_{n}\right)=\Sigma_{n} \Lambda\left(A_{n}\right) \quad \text { a.s. }
$$

where the series is assumed to be convergent a.s. In addition, if for every $A \in \mathcal{S}$ the distribution of $\Lambda(A)$ is ID, stable, mixed-stable, MSD, respectively, then we say that it is an ID, stable, mixed-stable, MSD RM.
By virtue of Theorem 2 each r.v. $\Lambda(A), A \in S$ has the ch.f.

$$
\left\{\begin{array}{l}
-\log \operatorname{Eexp}\left(i t \Lambda(A)=i t \nu_{0}(A)+\frac{1}{2} t^{2} \nu_{1}(A)\right. \tag{26}\\
-\int_{-\infty}^{\infty}\left(e^{i t x}-1-i t \tau(x)\right) F_{A}(d x)
\end{array}\right.
$$

where $t \in \mathbb{R}, A \in S$ and $\quad-\infty<v_{0}(A)<\infty, 0 \leq v_{1}(A)<\infty$ and F_{A} is a Lévy measure on \mathbb{R}. Moreover, v_{0} is a signed measure, v_{1} a measure and F_{A} a Lévy measure.

The above representation implies the following
Theorem 4.1 (Raiput and Rosinski [24], Proposition 2.1) The characteristic function (19) can be written in the unique form:

$$
\begin{equation*}
\operatorname{Eexp}(i t \Lambda(A))=\exp \left(\int_{A} K(t, s) \lambda(d s)\right) \tag{27}
\end{equation*}
$$

where $t \in \mathbb{R}, A \in S$ and

$$
\left\{\begin{array}{l}
K(t, s)=i t a(s)-1 / 2 t^{2} \sigma^{2}(s) \tag{28}\\
+\int_{A}\left(e^{i t x}-1-i t \tau(x)\right) \rho(s, d x)
\end{array}\right.
$$

with

$$
\begin{equation*}
a(s)=\frac{d v_{0}}{d \lambda}(s) \tag{29}
\end{equation*}
$$

and

$$
\begin{equation*}
\sigma^{2}(s)=\frac{d v_{1}}{d \lambda}(s) \tag{30}
\end{equation*}
$$

and ρ is given by Lemma 2.3 in [3]. Moreover, we have

$$
\begin{equation*}
|a(s)|+\int_{\mathbb{R}} \min \left\{1, x^{2}\right\} \rho(s, d x)=1 \quad \text { a.e. }[\lambda] \tag{31}
\end{equation*}
$$

Definition 4.3 (Urbanik and Woyczynski [27]) (a) If f is a simple function on $S, f=\Sigma_{j} x_{j} \chi_{A_{j}}, A_{j} \in S$ then we put, for each $A \in \sigma(S)$

$$
\int_{A} f d \Lambda=\Sigma_{j} \lambda\left(A \cap A_{j}\right)
$$

(b) A measurable function $f:(S, \sigma(S)) \rightarrow(\mathbb{R}, \mathcal{B}(\mathbb{R})$ is said to be Λ-integrable if there exists a sequence $\left\{f_{n}\right\}$ of simple functions as defined in (a) such that
(i) $f_{n} \rightarrow f$ a.e. $[\lambda]$,
(ii) For every $A \in \sigma(S)$, the sequence $\left\{\int_{A} f_{n} d \Lambda\right\}$ converges in prob., as $n \rightarrow \infty$.

If f is Λ-integrable, then we put

$$
\left\{\int_{A} f d \Lambda=P-\lim _{n \rightarrow \infty} \int_{A} f_{n} d \Lambda\right.
$$

where $\left\{f_{n}\right\}$ satisfies (i) and (ii).
Now, combining Theorems 3.2, 3.3, 4.1 we get the following:
Theorem 4.2 Given $\alpha>0$, let $\Lambda(A), A \in \mathcal{S}$ be a $\alpha-$ s.d.r.m. Then, the characteristic function of $\Lambda(A)$ is of the unique form (20) where

$$
\left\{\begin{array}{l}
K(t, s)=i t a(s)-1 / 2 t^{2} \sigma^{2}(s) \tag{32}\\
+\int_{A}\left(e^{i t x}-1-i t \tau(x)\right) \rho(s, d x)
\end{array}\right.
$$

with

$$
\begin{equation*}
a(s)=\frac{d v_{0}}{d \lambda}(s) \tag{33}
\end{equation*}
$$

and

$$
\begin{equation*}
\sigma^{2}(s)=\frac{d v_{1}}{d \lambda}(s) \tag{34}
\end{equation*}
$$

and ρ is given by Lemma 2.3 in [3]. Moreover, we have

$$
|a(s)|+\int_{\mathbb{R}} \min \left\{1, x^{2}\right\} \rho(s, d x)=1 \quad \text { a.e. }[\lambda] .
$$

Proof. By virtue of (13) it follows that for any $A \in S$ and $t \in \mathbb{R} \quad \Lambda(A)$ has the representation
$-\log \operatorname{Eexp}(i t \Lambda(A))=i t \nu_{0}(A)+\frac{1}{2} t^{2} \nu_{1}(A)-\int_{-\infty}^{\infty} v_{\alpha}(x)\left(\int_{0}^{\infty} k\left(e^{-u} x, t\right) u^{\alpha-1} d u\right) m(A, d x)$
which, by a similar argument of Proposition 2.1 in [3], implies that there exists a unique finite measure ν on $\sigma(\mathcal{S}) \times \mathcal{B}(\mathcal{R})$ such that

$$
\nu(A \times B)=m(A, B), \quad \text { for any } \quad A \in \mathcal{S}, B \in \mathcal{B}(\mathcal{R}) .
$$

Moreover, for every $A \in \sigma(\mathcal{S})$ we have $\nu(A,\{0\})=0$.
Now, we are in the position to present the following theorem whose proof is a simple combination of Theorem 6 and the Komogorov extension theorem and Threorem 5.2 in [3].

Theorem 4.3 Given $0<\alpha \leq \infty$ let $\left\{X_{t}: t \in T\right\}$ be an $\alpha-$ s.d. stochastic process defined on a probability space $\left(\Omega^{\prime}, \mathcal{P}^{\prime}\right)$. Then there exists an $\alpha-$ s.d.r.m., say Λ, defined on the probability space (Ω, \mathcal{P}) such that

$$
\left(\Omega=\Omega^{\prime} \times[0,1], \mathcal{P}=\mathcal{P}^{\prime} \times L e b\right)
$$

Leb being the Lebesgue measure on [0,1] and

$$
\left\{X_{t}: t \in T\right\}=\left\{\int_{\mathbb{S}} f_{t}(s) d \Lambda(s): t \in T\right\} \quad \text { a.s. } \mathcal{P}
$$

where $\left\{f_{t}(s): t \in T, s \in S\right\}$ are some measurable functions on \mathbb{S}.

5 An Application in Option Pricing

If X is Lévy - stable random variable with index $0<\alpha<1$, then it does not have any integer moment, and for the case $1<\alpha<2$ only the first integer moment exists. Therefore, to overcome this dificulties, following Cartea and Howinson [1], we introduce the following Damped - Lévy - mixed - stable process which will lead to a mathematical model for our purpose of option pricing. Suppose that $X_{i}(t), i=1,2$ are independent Lévy -stable processes with indexes $0<\alpha_{1}<\alpha_{2}<2$, respectively such that the logarithm of the characteristic function of $X_{i}(1)$ is given by

$$
\begin{equation*}
\psi_{j}(u)=\int_{-\infty}^{+\infty}\left(e^{i u x}-1-i u \tau_{\alpha_{j}}(x)\right) W_{j}(x) d x, \quad j=1,2 \tag{36}
\end{equation*}
$$

where

$$
W_{j}(x)=\left\{\begin{array}{lll}
C_{q}|x|^{-1-\alpha_{j}} & \text { for } & x<0 \\
C_{p} x^{-1-\alpha_{j}} & \text { for } & x>0
\end{array}\right.
$$

and

$$
\tau_{\alpha_{j}}(x)= \begin{cases}x & \text { for } \quad \alpha_{j}>1 \\ \sin x & \text { for } \quad \alpha_{j}=1 \\ 0 & \text { for } \quad \alpha_{j}<1\end{cases}
$$

Here $C_{p}, C_{q}>0$ are scale constants, $p, q \geq 0$ and $p+q=1$.
Following Cartea and Howinson [1] the exponential cut-off $e^{-\lambda|x|}$ is introduced to obtain the Damped Lévy measures

$$
W_{j}^{\lambda}(x)=\left\{\begin{array}{lc}
C_{q}|x|^{-1-\alpha} e^{-\lambda|x|}, & \text { for } \quad x<0 \tag{37}\\
C_{p} x^{-1-\alpha} e^{-\lambda|x|}, & \text { for } \quad x>0
\end{array} .\right.
$$

Let $W_{j}^{\lambda}, j=1,2$, denote the Damped Lévy measures corresponding to Lévy processes $X_{j}^{\lambda}(t), j=1,2$ with

$$
\begin{equation*}
\phi_{j}(u)=\int_{-\infty}^{+\infty}\left(e^{i u x}-1-i u \tau_{\alpha_{j}}(x)\right) e^{-\lambda|x|} W_{j}(d x) \tag{38}
\end{equation*}
$$

Putting, for $t \geq 0, X(t)=X_{1}(t)+X_{2}(t)$ we get a Lévy process $X(t)$ which is also a mixed - stable - Lévy
process with $\Phi(u)=\Phi_{1}(u)+\Phi_{2}(u)$ where $\Phi_{j}(u), j=1,2$ are given by (38). Putting

$$
W_{j}^{\lambda}(x)=\left\{\begin{array}{lc}
C_{q}|x|^{-1-\alpha_{j}} e^{-\lambda|x|}, & \text { for } \quad x<0 \tag{39}\\
C_{p} x x^{-1-\alpha_{j}} e^{-\lambda|x|}, & \text { for } \quad x>0
\end{array}, j=1,2\right.
$$

and taking into account (38) we infer that the logarithm of the characteristic function, denoted by $\phi^{\lambda}(u)$, for a Damped-Levy's process $\left\{X^{\lambda}(t)\right\}$ is of the form

$$
\phi^{\lambda}(u)=\phi_{1}^{\lambda}(u)+\phi_{2}^{\lambda}(u)
$$

where

$$
\begin{equation*}
\left.\left.\phi_{j}^{(} \lambda\right)(u)=\int_{-\infty}^{+\infty}\left(e^{i u x}-1-i u \tau_{\alpha_{j}}(x)\right) e^{-\lambda|x|} W_{j}^{(} \lambda\right)(d x), j=1,2 \tag{40}
\end{equation*}
$$

which implies that the Damped Lévy process $X^{\lambda}(t):=X_{1}^{\lambda}(t)+X_{2}^{\lambda}(t)$ has the following property:
(i) $\left\{X^{\lambda}(t)\right\}$ is a Lévy process.
(ii) It is not a stable process.
(iii) $\lim _{\lambda \rightarrow 0} X^{\lambda}(t)=X(t)$ (in distribution and in probability).
(iv) The process $\left\{X^{\lambda}(t)\right\}$ has finite moments of all orders. Moreover, its exponential moments exist.

Definition 5.1 (Power - Jump Process) For $k=2,3, \ldots$ we define, following M. Corunera, D. Nualart and W.Schouten, the following Power - Jump process.

$$
\begin{equation*}
Z_{t}^{(k)}=\sum_{0<s \leq t}\left[\Delta X^{\lambda}(t)\right]^{k}, k \geq 2 \tag{41}
\end{equation*}
$$

where

$$
\Delta X \lambda(t)=X^{\lambda}(t)-X^{\lambda}\left(t^{-}\right)
$$

and, for convenience, we put

$$
Z_{t}^{(k)}=X^{\lambda}(t)
$$

Each process $Z_{t}^{(k)}, k \geq 2$ is called the k-th power - jump process.
We have

$$
\begin{gathered}
E\left[Z_{t}^{(1)}\right]=E\left[X^{\lambda}(t)\right]=t a^{\lambda} \\
E\left[Z_{t}^{(k)}\right]=E\left[\sum_{0<s \leq t}\left[\Delta X^{\lambda}(t)\right]^{k}\right]=t \int_{-\infty}^{+\infty} x^{k} \gamma(d x)=m_{k} t
\end{gathered}
$$

Definition 5.2 Put

$$
Y_{t}^{(k)}=Z_{t}^{(k)}-m_{k} t, \quad k=1,2,3, \ldots
$$

Then, $\left\{Y_{t}^{(k)}\right\}$ is a normal martingale and is called Teugels martingale of order k
By taking a suitable linear combination of the $\left\{Y_{t}^{(k)}\right\}$, one get pairwise strongly orthonormal martingale, say $\left\{T^{(k)}\right\}$, which correspond to the procedure of the orthonormal lization of the polynomial $1, x, x^{2}$ with respect to to measure

$$
\mu(d x)=x^{2} \gamma(d x)+c^{2} \delta(d x)
$$

The resulting process

$$
\left\{T_{t}^{(k)}, t \geq 0\right\}
$$

are called the orthonormalization k -th jump process.
Theorem 5.1 (Nualart - Schouten) Let the σ-fields $\left(\mathcal{F}_{t}\right)$ be generated by $\left\{K_{t}\right\}$ and $L_{T}^{2}(T>0)$ be the space of all square integrable and $\left(\mathcal{F}_{t}\right)$ - measurable $\Phi=$ $\Phi_{t}, \quad t \in[0, T]$ such that

$$
\|\Phi\|^{2}=E\left[\int_{0}^{T}\left|\Phi_{t}^{2}\right| d t\right]<\infty
$$

Then each square integrable random variable $F \in L_{T}^{2}$ has the representation

$$
F=E[F]+\sum_{k=1}^{\infty} V_{s}^{(k)}
$$

where $\left\{V_{s}^{(k)}\right\}$ is a predictable process in $M_{T}^{2}\left(l^{2}\right)$, the space of predictable l^{2} - valued processes

Suppose that we work under the framework of the market with the k-th power - jump assets. Note that the value of the contingent claim at time t is given by

$$
F\left(S_{t}\right)=\exp (-r(T-t)) E_{Q}\left[X \mid \mathcal{F}_{t}\right]
$$

We call $F\left(t, S_{t}\right)$ the price function. Note that we have choosen an equivalent martingale measure Q under which all discounted assets price processes are martingales.

The Black - Scholes Formula under Lévy Mixed Stable Shocks
Let $0<\alpha_{1}<\alpha_{2}<2$. Suppose that our stock price $X(t)=X_{1}(t)+X_{2}(t)$ satisfies the condition that $X_{j}(t), j=1,2$ are α_{k} - stable Lévy processes under measure Q, respectively.
Let

$$
X_{t+\Delta t}=X_{t} e^{\mu \Delta t+\sigma \Phi}
$$

where Φ is a parameter for Damped - $\left(\alpha_{1}, \alpha_{2}\right)$ mixed - stable - Lévy process $X^{\lambda}(t)$. Then as $\Delta t \rightarrow 0$ the "Damped Black - Scholes" partial differential equation (PDE) satisfies $\frac{\delta \hat{V}}{\delta t}=\psi(-\bar{\sigma} \xi)+i \xi\left[\psi(-i \bar{\sigma})+\bar{D}_{t}-r(1-i \xi) \hat{V}\right.$ when ψ is the logarithm of the characteristic function of the Damped - Lévy - mixed - stable process and

$$
V(S, t) \stackrel{\text { def }}{=} E_{Q}\left[e^{-r(T-t)} \Pi(S, T)\right]
$$

where $\Pi(S, T)$ stands for payoff at time $\mathrm{t}=\mathrm{T}$.
Notice that we can write

$$
V(S, t)=e^{-r \delta t} E_{Q}\left[e^{-r(T-t-\Delta t)} \Pi(S, T)\right]=e^{-r \delta t} E_{Q}[V(S t+\Delta t, t)+\delta t]
$$

which is equivalent to the equation

$$
r V(S, t) \Delta t=E_{Q}[\Delta V(S, t)]
$$

where

$$
\Delta(S, t): \stackrel{\text { def }}{=} V(V+\Delta S, t+\Delta t)-V(S, t)
$$

Finally, one can solve the Black -Scholes equation by a similar method as for the case of Lévy - stable process [1].

References

[1] Cartea, Á., Howinson S., Distinguished limits of Lévy - stable process, and applications to option pricing,Oxford Financial Research Centre, Ser. OFRC working papers Ser., No. 2002 mf 04.
[2] Hardin, Jr.,C.D..On the spectral representation of symmetric stable processes, J. Multivariate Anal. 12,385-401,1982.
[3] Jurek Z.J., Limit distributions for sums of shrunken random variables, Dissertationes Mathematicae, 185, PWN Warszawa, 1981.
[4] Jurek Z.J., Limit distributions and one-parameter groups of linear operators on Banach spaces, J. Multivariate Anal. 13, 578-601, 1983.
[5] Jurek Z.J. and Vervaat W., An integral representation for selfdecomposable Banach space valued random variables, Z.Wahrsch.verw.Gebiete.62, 247-262, 1983.
[6] Jurek Z.J., Selfdecomposability perpetuity laws and stoping times, Probab. Math. Stat.19,413-419,1999.
[7] Iksanov.M.A., Jurek Z.J., Schreiber M.B.,A new factorization property of the selfdecomposable probability measures, Annals of Probability,32, No 2, 13561369, 2004.
[8] Jurek Z. J., The random integral representation hypothesis revisited: new classes of s-selfdecomposable laws. Proc. Int. Conf. Hanoi, 13-17 August 2002, World Scientific, Hongkong 2004, 495-514.
[9] Kallenberg,O., Random measures, 3rd ed. New York: Academic Press 1983.
[10] Kuelbs, J., A representation theorem for symmetric stable processes and stable measures on H. Z. Wahrscheinlichkeits, Verw. Geb. 26,259-271, 1973.
[11] Kumar, A. Schreiber, B.M., Characterization of Subclasses of Class I, Probability Distributions, Ann. Probab. 6, 279-293, 1978.
[12] Loéve M., Probability theory, New York, 1950.
[13] Maruyama, G., Infinitely divisible processes, Theor.Prob. Appl.15, 3-23, 1970.
[14] Medgyessy, P., On a new class of unimodal infinitely divisible distributions and related topics. Studia Sci. Math. Hungar. 2441-446, 1967.
[15] Musielak., Orlicz spaces and modular spaces, Lecture Notes math., vol. 1034, New York Berlin Heidelberg: Springer 1983.
[16] Nguyen N.H, On convergence of some random series and integrals, Probab. Math. Statist. 8 (1987), 151-154.
[17] Nguyen, V.T., Stable type and completely self-decomposable probability measures on Banach spaces, Bull, Ac. Pol., Sér. Sci. math.,29, No. 11-12, 1981.
[18] Nguyen, V.T.,Fractional Calculus in Probability, Probab. Math. Statst. 3 No. 2,171-189, 1984.
[19] Nguyen, V.T., An alternative approach to multiply self-decomposable probability measures on Banach spaces, Probab. Th. Rel. Fields 72, 35-54 (1986).
[20] Parasarathy, K.R., Probability measures on metric spaces, New York: Academic Press 1967.
[21] Prékopa, A., On stochastic set functions I, Acta Math. Acad. Sci.Hung. 7,215262, 1956.
[22] Prékopa, A., On stochastic set functions II,III. Acta Math. Acad. Sci.Hung. 8,337-400, 1957.
[23] Rosiński, J., Random integrals of Banach space valued functions, Studia math. 78, 15-38, 1985.
[24] Rajput, B.S., Rosiński J.,Spectral representation of infinitely divisible processes, Probab. Th. Rel. Fields 82, 451-487 (1989).
[25] Sato K.,I., Urbanik's , Class L_{m} of Probability Measures, Ann. Sci. Coll. Lib. Arts Kanazawa Uni. 15, 1-10, 1978.
[26] Sato K.I., Lévy processes and infinitely divisible distributions, Cambridge University of Press 1999.
[27] Urbanik K., Woyczynski, W. A., Random integrals and Orlicz spaces, Bull. Acad. Polon. Sci. 15, 161-169(1967).
[28] Urbanik, K., Random measures and harmonizable sequences, Studia math. 31, 61-88, 1968.
[29] Urbanik K.,Slowly varying sequences of random variables, Bull. Acad. Pol. Sci. Série des Sci. Math. Astr. et Phys. 20, 8(1972), 679-682.

[^0]: *The paper is completed during the first and second author's stay at the Department of Mathematics Ritsumeikan University
 AMS 2000 subject classification: Primary 60E07, 60B12,60G10; Secondary 60G51,60 H05,60E07.
 Keywords and phrases: infinitely divisible processes, α-SDP, random measures, stochastic integration, α-s-SDPM
 ${ }^{\dagger}$ Department of Mathematics, International University, HCM City.
 ${ }^{\ddagger}$ Department of Mathematics, University of natural sciences, HCM City.
 ${ }^{\S}$ Department of Mathematics and Statistics, University of Economics HCM City.

[^1]: ${ }^{1}$ It should be noted, that our notation $\mathcal{L}_{n}(\mathcal{X})$ used here and in references [17], [18] is other than that in Urbanik and other Authors [4], [25]. In particular, in our notation, $\mathcal{L}_{1}(\mathcal{X})$ denotes the set of all SDPM's on \mathcal{X} while in [4], [25] this class was denoted by $\mathcal{L}_{0}(\mathcal{X})$.

