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In the present paper we study multiply selfdecomposable probability measures
(SDPM) and processes and prove their integral representations. Similarly, the mul-
tiple s-selfdecomposability case is treated. Our results extend some of known results
due to Urbanik K.,Jurek., Rosinski J.and Rajput B.S. As an application we construct
a Damped-mixed stable price process in option pricing.

1 Introduction, notation and preliminaries

The main aim of this paper is to prove that each multiply self-decomposable pro-
cess (MSDP) on an Euclidean space admits a stochastic integral w.r.t.a MSD ran-
dom measure (RM). Moreover, we will consider similar problems for multiply s-self-
decomposable processes(MsSDP). Through the paper we shall denote by X a fixed
d-dimensional (d=1,2,...) Euclidean space with the usual inner product <,> and
norm ‖.‖.

Let P(X ) denote the class of all probability measures (PM) on the σ-field B(X )
of Borel subsets of X equipped with the weak convergence. Given a positive number
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c we define on X the following two families of mappings Tc and Ur as follows:
{

Trx = rx,

Ur = max(0, ‖x‖ − r) x
‖x‖ , Ur(0) = 0.

(1)

Further, for a PM µ ∈ P(X ) and a mapping T on X let Tµ denote the image of µ
under T.

Recall (cf.Loéve [12] and Sato [25]) that a PM µ ∈ P(X is called SD if for each
0 < c < 1 there exists a PM µc such that

µ = Tcµ ∗ µc (2)

where ∗ denotes the ordinary convolution of PM’s.

The concept of shrinking SDPM (shortly, s-SDPM) was introduced by Medgyessy
[14]and studied by Jurek [3], [4], [6]. Namely, a PM µ is called s-SD if it is ID and
for each 0 < c < 1 there exists a PM µc such that

µ = Ucµ
c ∗ µc (3)

where the power is taken in the convolution sense.
It is known [3], [4], [6], [29], [17]that if µ is SD (resp., s-SD) then µ, µc are both

ID. Let us denote by ID(X ) the class of all IDPM’s on the space. The class of all
SDPM’s (resp., s-SDPM’s) on X is denoted by L(X ) (resp., U(X )).

Let Ln(X ), n = 1, 2, ...(resp., Un(X ), n = 1, 2, ...) denote the class of all n-times
SDPM’s (resp., n-times s-SDPM’s) which were first introduced by Urbanik1 [29]
(resp.,Jurek[4] and then studied further by many other authors (cf., for example
[4], [17], [25]...).

They are defined recursively as follows: A p.m. µ ∈ Ln(X ), n = 2, 3, ... if and only
if µ ∈ L1(X ) and for each c ∈ (0, 1) the component µc in (2) belongs to Ln−1(X ).

It has been proved by Nguyen ([18], Proposition 1.1) that a p.m. µ ∈ Ln(X ), n =
1, 2, ..., if and only if, for every c ∈ (0, 1) there exists a p.m. ν := µc,n ∈ ID(X ) such
that the following equality holds:

µ = ∗∞k=0(Tckν)∗rk,n (4)

where the power is taken in the convolution sense and, for n=1,2, ... ; k=0,1,2,... we
put

rk,n =

(
n + k − 1

k

)
. (5)

1It should be noted, that our notation Ln(X ) used here and in references [17], [18] is other than
that in Urbanik and other Authors [4], [25]. In particular, in our notation, L1(X ) denotes the set of
all SDPM’s on X while in [4], [25] this class was denoted by L0(X ).
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The formulas (3) and (4) lead to the following interpolation of classes Ln(X ) (cf.
Nguyen [17]): For each α > 0 we put

(
α

k

)
=

{
1 k = 0,

α(α− 1)...(α− k + 1)/k! k = 1, 2, ...
(6)

and introduce the class α-times SDPM’s, shortly, α− SDPM ′s as the following:

Definition 1.1 (cf. Nguyen [19]) A p.m. µ ∈ Lα(X ), α > 0, if and only if, for
every c ∈ (0, 1) there exists a p.m. ν := µc,α ∈ ID(X ) such that the following equality
holds:

µ = ∗∞k=0(Tckν)rk,α (7)

where, the power is taken in the convolution sense and, for α > 0, k = 0, 1, 2, ... we
put

rk,α =

(
α + k − 1

k

)
(8)

It should be noted [17] that the infinite convolution (8) is weakly convergent if and
only if ∫

X
logα(1 + ‖x‖)ν(dx) < ∞ (9)

In the sequel, we shall denote by IDlogα(X ) the subclass of ID(X ) of all distributions
for which the condition (9) is satisfied.

Now, let us quote the following important integral representation for SDPM’s due
to Vervaat-Jurek [5]:

Theorem 1.1 (Jurek-Vervaat) A p.m. µ ∈ L1(X ) if and only if there exists a
X -valued Lévy process {X(.)} of the class IDlog such that

µ
d
=

∫ ∞

0

exp(−t)X(dt) (10)

The integrator {X(.)} is called the background driving Lévy process (shortly, BDLP)
of µ (cf.Jurek [5, 6])and the r.v. X(1) is called BD r.v.. Further, Nguyen N.H.[16],
obtained the following pretty generalization of Theorem 1.1 to the case of α−SDPM’s
for each α > 0.

Theorem 1.2 (Nguyen N.H [16]) A p.m. µ ∈ Lα(X ) if and only if there exists a
X -valued Lévy process {Xα(t)} of the class IDlogα(X ) such that

µ
d
=

∫ ∞

0

exp(−t
1
α )Xα(dt) (11)
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In the sequel we shall need the following representation of ch.f.’s of ID and MSDPM’s
on X :

Theorem 1.3 (cf[20], [24]) A p.m. µ is ID if and only if its ch.f. µ̂(y), y ∈ X is
of the unique form:

{
−logµ̂(y) = i < z, y > + < Σy, y >

− ∫
X (ei<y,x> − 1− iτ(x))M(dx)

where z ∈ X is fixed; Σ is a quadratic form on X and M is a Lévy measure on X
characterized by the property that M(0) = 0 , M is finite ouside of very neighberhood
of the origin and ∫

U1

‖x‖2

1 + ‖x‖2
M(dx) < ∞;

the function τ(x) is defined by

τ(x) =

{
‖x‖ x ∈ U1;

1 ‖x‖ > 1,

U1 being the closed unit Ball in X .
In what follows, if µ is ID with the ch.f. given by (11) then we will identify it with
the triple [z, Σ,M ]. Thus,we have

Theorem 1.4 (Nguyen [19],Theorem 2.4) A p.m. µ ∈ Lα(X ), α > 0 if and only
if µ = [z, Σ,M ], where z, Σ are the same as in Theorem (1.2) and the Lévy’s measure
M is given by

M(A) =

{∫
X vα(x)

(
∫∞
0

χA(e−ux)uα−1du)m(dx)
(12)

where m is a finite measure on X vanishing at the origin; A is a Borel subset of the
real line separated from 0; the weight function vα(x) is defined by

v−1
α (x) =

∫ ∞

0

e−2tx2

1 + e−2tx2
tα−1dt (13)

Theorem 1.5 (Nguyen[17],[19]) A p.m. µ is mixed-stable i.e. µ ∈ L∞(X ) if and
only if µ = [z, Σ,M ], where z, Σ are the same as in Theorem (1.4) and the Lévy’s
measure M of µ is given by

M(A) =

∫

V1

∫ ∞

0

χA(tx)
dt

t2|x|+ 1
h(x)ν(dx) (14)

where ν is a PM on the open unit ball V1 := {x ∈ X : ‖x‖ < 1} and h(x) is a
nonnegative continuous weight function on V1.
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2 Mappings {T (α)
c } and classes {Lα(X )}

In this section we introduce families of mappings {T (α)
c },where 0 < c < 1; α > 0

acting on the whole class ID(X ) and show that they play the same role as mappings Tc

in the definition of α-SDPM’s. To begin with let us consider the following particular
cases:

2.1 α = n = 1, 2, ...

Let µ ∈ Ln(X ), n = 1, 2, .... By Proposition 1.1 [17], for every 0 < c < 1 the equation
(??) holds. Putting

T n
c µ = ∗∞k=1(Tckν)rk,n (15)

and taking into account (??) we have

µ = T (n)
c µ ∗ µc,n (16)

Conversely, it is also true. Namely, by induction one can prove that if a PM µ satisfies
equation (16) for each 0 < c < 1 and for a PM µc,n, then it belongs to Ln(X ).

2.2 0 < α < 1.

This case was treated in [17]. Namely, for such α the mapping Tc,α is defined in [17].
Then, by Theorem 2.1 [17], it follows that a PM µ belongs to Lα(X ) if and only if
for every 0 < c < 1 there exists a PM µc,α such that

µ = T α
c µ ∗ µc,α (17)

2.3 The general case α > 0 :

It is easy to show that

1 =
∞∑

k=1

(−1)k−1rk,α =
∞∑

k=1

|rk,α| (18)

Consequently, the mapping Tc,α : ID(X ) → ID(X ) given by

Tc,αµ = ∗∞k=1Tckµ|rk,α| (19)

for any 0 < c < 1 and α > 0 is well-defined.
Furthermore, the following general theorem holds:
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Theorem 2.1 A PM µ ∈ Lα(X ), α > 0, if and only if for each 0 < c < 1 there exists
a PM µc,α such that the equation (17) holds for each α > 0.

Proof. The ”if” part is similar to the proof of Theorem 2.1 [17]. To prove the ”only
if” part one may assume that α = β + n, where 0 < β < 1, n = 1, 2, .... But it is
clear by virtue of the cases 2.1 and 2.2 and by noticing that the mappings Tc,n and Tc,β

commute with each other.

Theorem 2.2 (α-differentiability of α-SDPM’s on X ) For every α > 0 and ev-
ery PM µ ∈ Lα(X ) there exists a weak limit, denoted by Dαµ, which belongs to
IDlogα(X ) and satisfies the equation

Dαµ = limt→0 µt−α

c,α (20)

where t = -log c, µc,α is as in (7) and (17).

Proof. See Nguyen (Theorem 2.4 [17]).

Definition 2.1 (cf. Nguyen [17) The limit measure Dαµ in Theorem (2.2) is called
the α-derivative of µ.

The following Theorem is obvious:

Theorem 2.3 For each α > 0 the operator Dα stands for an algebraic isomorphism
between Lα(X ) and IDlogα(X ).

3 Mappings {U (α)
c } and classes {Uα(X )}

Following verbatim the proof of cases 2.1, 2.2 and 2.3 we have the Theorem:

Theorem 3.1 For any 0 < c < 1 and α > 0 and for every PM µ ∈ ID(X ) we
put

Uc,αµ = ∗∞k=1Tckµ|(
α
k)|ck

= ∗∞k=1Uckµ|(
α
k)| (21)

Then we get a mapping Uc,α which stands for a well defined continuous isomorphism
of the convolution algebra ID(X ). Moreover, restricted to ID(X ), it stands for an
analogue of the shrinking mapping Uc in (1.1).

Definition 3.1 A PM µ ∈ ID(X ) is said to be of the class Uα(X ), α > 0, or equiv-
alently, α-s-SD, if for each 0 < c < 1 the following formula holds:

µ = Uc,αµ ∗ µc,α (22)

for some PM µc,α ∈ ID(X )
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From the above definition we have:

Theorem 3.2 A PM µ = [z, Σ,M ] ∈ Uα(X ), α > 0 if and only if the Lévy measure
M satisfies the following condition:

Σ∞
k=0|

(
α

k

)
|ckTckM ≥ 0 (23)

for each 0 < c < 1, or, equivalently,

[]Σ∞
k=0|

(
α

k

)
|UckM ≥ 0 (24)

Definition 3.2 (cf. Jurek[8]) Given α > 0 let Gα denote a Gamma r.v. with dis-
tribution τα. Let U<α> denote the class of all distributions of

∫
(0,1)

tdYρ(τα(t)), where

Yρ(.) is a Lévy process with L(Yρ(1)) = ρ.

By virtue of the above formulas (23) and (24) and Jurek [8],formula (29) we have the
following theorem

Theorem 3.3 The following equation hold:

Uα(X ) = U<α> (25)

which shows that definitions 3.1 and 3.2 are equivalent.

4 Stochastic representation of classes Uα(X )

Definition 4.1 Let T be a parameter set Z of all integers or R of all real numbers.
A stochastic process Xt, t ∈ T is said to be ID, stable, mixed-stable, α-SD, α-s-SD
if for any t1, t2, ..., tn ∈ T and λ1, λ2, ..., λn, n = 1, 2, ... the r.v. Σn

1λjXtj is ID,
stable, mixed-stable, α-SD, α-s-SD, respectively.

Definition 4.2 Let Λ = {Λ(A) : A ∈ S} be a real stochastic process defined on a
probability space (Ω,F ,P), where S stands for a σ-ring of subsets of an arbitrary non-
empty set S satisfying the following condition : There exists an increasing sequence
Sn, n = 1, 2, ... of sets in S with

⋂
n Sn = S.

We call Λ to be an independently scattered random measure(RM), if, for every sequence
{An} of disjoint sets in S, the random variables Λ(An), n = 1, 2, ... are independent,
and , if ∪nAn belongs to S, then we also have

Λ(∪nAn) = ΣnΛ(An) a.s.,
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where the series is assumed to be convergent a.s. In addition, if for every A ∈ S the
distribution of Λ(A) is ID, stable, mixed-stable, MSD, respectively, then we say that
it is an ID, stable, mixed-stable, MSD RM.
By virtue of Theorem 2 each r.v. Λ(A), A ∈ S has the ch.f.

{
−logEexp(itΛ(A) = itν0(A) + 1

2
t2ν1(A)

− ∫∞
−∞(eitx − 1− itτ(x))FA(dx),

(26)

where t ∈ R, A ∈ S and − ∞ < v0(A) < ∞, 0 ≤ v1(A) < ∞ and FA is a
Lévy measure on R. Moreover, v0 is a signed measure , v1 a measure and FA a Lévy
measure.

The above representation implies the following

Theorem 4.1 (Raiput and Rosinski [24], Proposition 2.1) The characteristic
function (19) can be written in the unique form:

Eexp(itΛ(A)) = exp(

∫

A

K(t, s)λ(ds)) (27)

where t ∈ R, A ∈ S and

{
K(t, s) = ita(s)− 1/2t2σ2(s)

+
∫

A
(eitx − 1− itτ(x))ρ(s, dx),

(28)

with

a(s) =
dv0

dλ
(s) (29)

and

σ2(s) =
dv1

dλ
(s) (30)

and ρ is given by Lemma 2.3 in [3]. Moreover, we have

|a(s)|+
∫

R
min{1, x2}ρ(s, dx) = 1 a.e.[λ] (31)

Definition 4.3 (Urbanik and Woyczynski [27]) (a) If f is a simple function on
S, f = ΣjxjχAj

, Aj ∈ S then we put, for each A ∈ σ(S)

∫

A

fdΛ = Σjλ(A ∩ Aj)
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(b) A measurable function f : (S, σ(S)) → (R,B(R) is said to be Λ−integrable if
there exists a sequence {fn} of simple functions as defined in (a) such that

(i) fn → f a.e.[λ],

(ii) For every A ∈ σ(S), the sequence {∫
A

fndΛ} converges in prob., as n →∞.

If f is Λ−integrable, then we put

{
∫

A

fdΛ = P − limn→∞

∫

A

fndΛ,

where {fn} satisfies (i) and (ii).

Now, combining Theorems 3.2, 3.3, 4.1 we get the following:

Theorem 4.2 Given α > 0, let Λ(A), A ∈ S be a α−s.d.r.m. Then, the characteristic
function of Λ(A) is of the unique form (20) where

{
K(t, s) = ita(s)− 1/2t2σ2(s)

+
∫

A
(eitx − 1− itτ(x))ρ(s, dx)

(32)

with

a(s) =
dv0

dλ
(s) (33)

and

σ2(s) =
dv1

dλ
(s) (34)

and ρ is given by Lemma 2.3 in [3]. Moreover, we have

|a(s)|+
∫

R
min{1, x2}ρ(s, dx) = 1 a.e.[λ].

Proof. By virtue of (13) it follows that for any A ∈ S and t ∈ R Λ(A) has the
representation

−logEexp(itΛ(A)) = itν0(A)+
1

2
t2ν1(A)−

∫ ∞

−∞
vα(x)(

∫ ∞

0

k(e−ux, t)uα−1du)m(A, dx)

(35)
which, by a similar argument of Proposition 2.1 in [3], implies that there exists a
unique finite measure ν on σ(S)× B(R) such that

ν(A×B) = m(A,B), for any A ∈ S, B ∈ B(R).
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Moreover, for every A ∈ σ(S) we have ν(A, {0}) = 0.

Now,we are in the position to present the following theorem whose proof is a simple
combination of Theorem 6 and the Komogorov extension theorem and Threorem 5.2
in [3].

Theorem 4.3 Given 0 < α ≤ ∞ let {Xt : t ∈ T} be an α − s.d. stochastic process
defined on a probability space (Ω

′
,P ′

). Then there exists an α−s.d.r.m., say Λ, defined
on the probability space (Ω,P) such that

(
Ω = Ω

′ × [0, 1],P = P ′ × Leb
)
,

Leb being the Lebesgue measure on [0,1] and

{Xt : t ∈ T} = {
∫

S
ft(s)dΛ(s) : t ∈ T} a.s.P ,

where {ft(s) : t ∈ T, s ∈ S} are some measurable functions on S.

5 An Application in Option Pricing

If X is Lévy - stable random variable with index 0 < α < 1, then it does not have
any integer moment, and for the case 1 < α < 2 only the first integer moment
exists. Therefore, to overcome this dificulties, following Cartea and Howinson [1], we
introduce the following Damped - Lévy - mixed - stable process which will lead to a
mathematical model for our purpose of option pricing. Suppose that Xi(t), i = 1, 2
are independent Lévy -stable processes with indexes 0 < α1 < α2 < 2, respectively
such that the logarithm of the characteristic function of Xi(1) is given by

ψj(u) =

∫ +∞

−∞
(eiux − 1− iuταj

(x))Wj(x)dx, j = 1, 2. (36)

where

Wj(x) =

{
Cq|x|−1−αj for x < 0

Cpx
−1−αj for x > 0

and

ταj
(x) =





x for αj > 1

sinx for αj = 1

0 for αj < 1.
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Here Cp, Cq > 0 are scale constants, p, q ≥ 0 and p + q = 1.
Following Cartea and Howinson [1] the exponential cut-off e−λ|x| is introduced to
obtain the Damped Lévy measures

W λ
j (x) =

{
Cq|x|−1−αe−λ|x|, for x < 0

Cpx
−1−αe−λ|x|, for x > 0

. (37)

Let W λ
j , j = 1, 2, denote the Damped Lévy measures corresponding to Lévy processes

Xλ
j (t), j = 1, 2 with

φj(u) =

∫ +∞

−∞
(eiux − 1− iuταj

(x))e−λ|x|Wj(dx) (38)

Putting, for t ≥ 0, X(t) = X1(t) + X2(t) we get a Lévy process X(t) which is also a
mixed - stable - Lévy
process with Φ(u) = Φ1(u) + Φ2(u) where Φj(u), j = 1, 2 are given by (38). Putting

W λ
j (x) =

{
Cq|x|−1−αje−λ|x|, for x < 0

Cpx
−1−αje−λ|x|, for x > 0

, j = 1, 2 (39)

and taking into account (38) we infer that the logarithm of the characteristic function,
denoted by φλ(u), for a Damped-Levy’s process {Xλ(t)} is of the form

φλ(u) = φλ
1(u) + φλ

2(u)

where

φ
(
jλ)(u) =

∫ +∞

−∞
(eiux − 1− iuταj

(x))e−λ|x|W (
j λ)(dx), j = 1, 2 (40)

which implies that the Damped Lévy process Xλ(t) := Xλ
1 (t)+Xλ

2 (t) has the following
property:
(i) {Xλ(t)} is a Lévy process.
(ii) It is not a stable process.
(iii) limλ→0X

λ(t) = X(t) (in distribution and in probability).
(iv) The process {Xλ(t)} has finite moments of all orders. Moreover, its exponential
moments exist.

Definition 5.1 (Power - Jump Process) For k = 2, 3, . . . we define, following
M. Corunera, D. Nualart and W.Schouten, the following Power - Jump process.

Z
(k)
t =

∑
0<s≤t

[∆Xλ(t)]k, k ≥ 2 (41)
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where
∆Xλ(t) = Xλ(t)−Xλ(t−)

and, for convenience, we put
Z

(k)
t = Xλ(t).

Each process Z
(k)
t , k ≥ 2 is called the k-th power - jump process.

We have
E[Z

(1)
t ] = E[Xλ(t)] = taλ

E[Z
(k)
t ] = E[

∑
0<s≤t

[∆Xλ(t)]k] = t

∫ +∞

−∞
xkγ(dx) = mkt

Definition 5.2 Put

Y
(k)
t = Z

(k)
t −mkt, k = 1, 2, 3, . . . .

Then, {Y (k)
t } is a normal martingale and is called Teugels martingale of order k

By taking a suitable linear combination of the {Y (k)
t } , one get pairwise strongly

orthonormal martingale, say {T (k)} , which correspond to the procedure of the or-
thonormal lization of the polynomial 1, x, x2 with respect to to measure

µ(dx) = x2γ(dx) + c2δ(dx)

The resulting process
{T (k)

t , t ≥ 0}
are called the orthonormalization k -th jump process.

Theorem 5.1 (Nualart - Schouten) Let the σ-fields (Ft) be generated by {Kt}
and L2

T (T > 0) be the space of all square integrable and (Ft) - measurable Φ =
Φt, t ∈ [0, T ] such that

‖Φ‖2 = E[

∫ T

0

|Φ2
t |dt] < ∞

Then each square integrable random variable F ∈ L2
T has the representation

F = E[F ] +
∞∑

k=1

V (k)
s

where{V (k)
s } is a predictable process in M2

T (l2), the space of predictable l2- valued
processes
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Suppose that we work under the framework of the market with the k-th power - jump
assets. Note that the value of the contingent claim at time t is given by

F (St) = exp(−r(T − t))EQ[X|Ft].

We call F (t, St) the price function. Note that we have choosen an equivalent martin-
gale measure Q under which all discounted assets price processes are martingales.

The Black - Scholes Formula under Lévy Mixed Stable Shocks
Let 0 < α1 < α2 < 2. Suppose that our stock price X(t) = X1(t) + X2(t) satisfies
the condition that Xj(t), j = 1, 2 are αk - stable Lévy processes under measure Q,
respectively.
Let

Xt+∆t = Xte
µ∆t+σΦ

where Φ is a parameter for Damped -(α1, α2) mixed - stable - Lévy process Xλ(t).
Then as ∆t → 0 the ”Damped Black - Scholes” partial differential equation (PDE)

satisfies δV̂
δt

= ψ(−σ̄ξ) + iξ[ψ(−iσ̄) + D̄t − r(1− iξ)V̂ when ψ is the logarithm of the
characteristic function of the Damped - Lévy - mixed - stable process and

V (S, t)
def
= EQ[e−r(T−t)Π(S, T )]

where Π(S, T ) stands for payoff at time t=T.
Notice that we can write

V (S, t) = e−rδtEQ[e−r(T−t−∆t)Π(S, T )] = e−rδtEQ[V (St + ∆t, t) + δt]

which is equivalent to the equation

rV (S, t)∆t = EQ[∆V (S, t)]

where
∆(S, t)

def
:= V (V + ∆S, t + ∆t)− V (S, t).

Finally, one can solve the Black -Scholes equation by a similar method as for the case
of Lévy - stable process [1].
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