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Abstract We present a bundle method for solving nonsmooth convex equi-

librium problems based on the auxiliary problem principle. First, we consider

a general algorithm that we prove to be convergent. Then we explain how to

make this algorithm implementable. The strategy is to approximate the non-

smooth convex functions by piecewise linear convex functions in such a way

that the subproblems are easy to solve and the convergence is preserved. In

particular, we introduce a stopping criterion which is satisfied after finitely

many iterations and which gives rise to ∆−stationary points. Finally, we

apply our implementable algorithm for solving the particular case of single-

valued and multivalued variational inequalities and we find again the results

obtained recently by Salmon et al. [18].
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1 Introduction

Let C be a nonempty closed convex subset of IRn and let f : C ×C → IR be

a continuous function satisfying f(x, x) = 0 for all x ∈ C and f(x, ·) convex

on C for all x ∈ C. The equilibrium problem (for short, EP) consists of

(EP ) finding x∗ ∈ C such that f(x∗, y) ≥ 0 for all y ∈ C.

This problem is very general in the sense that it includes, as particular cases,

the optimization problem, the variational inequality problem, the Nash equi-

librium problem in noncooperative games, the fixed point problem, the non-

linear complementarity problem and the vector optimization problem (see,

for instance, [3], [10] and the references quoted therein). The interest of this

problem is that it unifies all these particular problems in a convenient way.

Moreover, many methods devoted to solving one of these problems can be ex-

tended, with suitable modifications, to solving the general equilibrium prob-

lem.

In this paper we suppose that there exists at least one solution to problem

(EP). In particular, it is true when C is compact. Other existence results for

this problem can be found, for instance, in [3], [9].

Most of the methods for solving equilibrium problems are derived from

fixed-point formulations of (EP). Since f(x, x) = 0 for all x ∈ C, obviously

x∗ ∈ C is a solution of problem (EP) if and only if x∗ is a solution of problem

min
x∈C

f(x∗, x). Then, given x0 ∈ C, the corresponding algorithm generates a

sequence {xk} defined, for all k ∈ IN , by

xk+1 = arg min
x∈C

f(xk, x). (1)

However it is more convenient to use, as for variational inequality problems

(see Cohen [4]), the auxiliary problem principle which is based on the follow-

ing fixed point property: x∗ ∈ C is a solution of problem (EP) if and only if

it is a solution of

min
y∈C

{ε f(x∗, y) + h(y) − h(x∗) − 〈∇h(x∗), y〉}, (2)

where ε > 0 and h : C → IR is a strongly convex differentiable function. A

typical example of function h is the squared norm. Then the corresponding
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fixed point iteration is: Given xk ∈ C, find xk+1 ∈ C the solution of

(Pk) min
y∈C

{ε f(xk, y) + h(y) − h(xk) − 〈∇h(xk), y〉}.

Observe that this problem has a unique solution since h is strongly convex.

This algorithm has been introduced by Mastroeni who proved its convergence

in [16], Theorem 3.1 under the assumptions that f is strongly monotone on

C × C, in the sense that there exists γ > 0 such that

f(x, y) + f(y, x) ≤ −γ‖y − x‖2, ∀x, y ∈ C, (3)

and that f satisfies the property: there exist c, d > 0 such that

∀x, y, z ∈ C f(x, y) + f(y, z) ≥ f(x, z) − c ‖y − x‖2 − d ‖z − y‖2. (4)

When

f(x, y) = 〈F (x), y − x〉 + ϕ(y) − ϕ(x), ∀x, y ∈ C (5)

with F : C → IRn a continuous mapping and ϕ : C → IR a continuous convex

function, problem (EP) is reduced to the generalized variational inequality

problem (GVIP):

Find x∗ ∈ C such that, for all y ∈ C, 〈F (x∗), y − x∗〉 + ϕ(y) − ϕ(x∗) ≥ 0.

In that case, the auxiliary equilibrium problem principle algorithm becomes:

Given xk ∈ C, find xk+1 ∈ C the solution of the problem

min
y∈C

ε [ϕ(y) + 〈F (xk), y − xk〉] + h(y) − h(xk) − 〈∇h(xk), y − xk〉. (6)

It is easy to see that (3) and (4) are satisfied when F is strongly monotone

and Lipschitz continuous, respectively.

However these assumptions are too strong in that case. Indeed, Zhu and

Marcotte ([19], Theorem 3.2) proved that the sequence {xk} generated by

the auxiliary problem principle converges to a solution of problem (GVIP)

when F is co-coercive on C in the sense that

∃ γ > 0 ∀x, y ∈ C 〈F (y) − F (x), y − x〉 ≥ γ ‖F (y) − F (x)‖2. (7)

It is obvious that F co-coercive on C does not imply, in general, that the

corresponding function f defined by (5) is strongly monotone on C ×C (for

instance, take F = 0 and observe that f(x, y) + f(y, x) = 0). So one of the

aims of this paper is to obtain the convergence of Mastroeni’s algorithm under

assumptions weaker than (3) and (4) in such a way that Zhu and Marcotte’s

result can be derived as a particular case.
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Concerning the implementation of the previous algorithm, the subprob-

lems (Pk) can be difficult to solve when the convex function f(xk, ·) is nonlin-

ear. It is the case when f is given by (5) with ϕ a nonsmooth convex function.

In that case, our strategy is to approximate the function f(xk, ·) by another

convex function so that the subproblems (Pk) become easy to solve and the

convergence is preserved under the same assumptions as in the exact case.

The approximation will be done by using an extension of the bundle method

developed in [18] for problem (GVIP).

Let us mention that this strategy has been used by Konnov [13] at the

lower level of a combined relaxation method for finding equilibrium points.

More precisely, given xk ∈ C, Konnov considers successive linearizations of

the function f(xk, ·) in order to construct a convex piecewise linear approx-

imation f̄k of f(xk, ·) such that the solution yk of subproblem (Pk) with

f(xk, ·) replaced by f̄k satisfies the property:

f(xk, yk) ≤ µf̄k(yk) (0 < µ < 1). (8)

Then this solution yk is used to compute a direction gk in the subdifferential

of the function −f(·, yk) at xk, and a steplength σk = f(xk, yk)/‖gk‖2 (if

gk 6=0). Finally the next iterate xk+1 is defined as the projection over C of

the vector xk − γkσkg
k where 0 < γk < 2. Observe that this step is well

defined when f(·, y) is concave on C for all y ∈ C. In this paper we do not

assume this property, so we do not consider Konnov’s projection step and

instead of this step, we set xk+1 = yk. In other terms, our method is simply

an implementable version of Mastroeni’s auxiliary problem principle.

To summarize our approach, first we study the convergence of the algo-

rithm when f(xk, ·) is approximated from below by any function f̄k which

satisfies the inequality (8) and then we present an implementable method to

construct a broad class of convex piecewise linear functions f̄k approximating

f(xk, ·). An advantage of our approach is that it allows to limit the size of

the bundle used to obtain f̄k.

Another way for solving problem (EP) is to transform it into a variational

inequality problem (see [12], Thm 2.1.2) and to use a bundle type method for

solving this equivalent problem. This method is interesting when C is com-

pact because in that case there exist efficient variants of the bundle method

allowing to obtain a complexity analysis. In these methods the level sets of

the piecewise linear models are used to construct the successive iterates (see

[14] and [11] for more details). This approach has been used by Gol’shtein [7]

for solving problem (EP) when C is compact and f(x, ·) satisfies a Lipschitz

condition with a constant L independent on x. These conditions can be taken

into account by our convergence theory.
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Finally to show the interest of our general algorithm, first we apply it

to problem (GV IP ) with the purpose to find again the convergence theo-

rem obtained in [18]. Then we consider the following multivalued variational

inequality problem (MVIP):

Find x∗ ∈ C and r∗ ∈ F (x∗) such that, for all y ∈ C, 〈r∗, y − x∗〉 ≥ 0,

where C is a nonempty closed convex subset of IRn and F : C → 2IRn

is a co-

coercive continuous multivalued mapping with compact values. This problem

is a particular instance of problem (EP) when the function f is defined, for

all x, y ∈ C, by

f(x, y) = sup
ξ∈F (x)

〈ξ, y − x〉.

For this problem, we use a very simple approximating function and we derive

a convergence result from our general theory.

The paper is organized as follows. In section 2, we consider a general

algorithm for solving problem (EP ) where the convex function f(xk, ·) is

approximated, and we prove that it is convergent to a solution of problem

(EP ). In section 3, we present an implementable version of this general al-

gorithm by using a bundle strategy. In particular, we introduce a stopping

criterion and we study the convergence properties of the resulting algorithm.

Finally, in section 4, first we find again the convergence results obtained in

[18] for problem (GV IP ) and then we present a realization of the general

algorithm for solving problem (MVIP).

2 A General Algorithm

From now on, we impose that the gradient ∇h is Lipschitz continuous on C

with constant Λ > 0. We also denote by β > 0 the modulus of the strongly

convex function h. In this section, we consider the general equilibrium prob-

lem (EP) and the algorithm introduced by Mastroeni for solving it where the

parameter ε = εk > 0 is allowed to vary at each iteration. This algorithm can

be expressed as follows: Given xk ∈ C, find xk+1 ∈ C the solution of problem

(Pk).

As explained before in Section 1, the function f(xk, ·), denoted fk in the

sequel, is replaced in problem (Pk) by another convex function f̄k in such a

way that the new problem

(P̄k) min
y∈C

{ εkf̄k(y) + h(y) − h(xk) − 〈∇h(xk), y〉}

is easier to solve and that the corresponding algorithm:
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Given xk ∈ C, find xk+1 ∈ C solution of problem (P̄k)

generates a sequence {xk} converging to some solution of problem (EP ).

To obtain the convergence of this algorithm, we introduce some conditions

on the approximating function f̄k.

Definition 1 Let µ ∈ (0, 1] and xk ∈ C. A convex function f̄k : C → IR is a

µ−approximation of fk at xk if f̄k ≤ fk on C and if

fk(yk) ≤ µf̄k(yk), (9)

where yk is the unique solution of problem (P̄k).

Since fk(xk) = 0, and f̄k(xk) ≤ fk(xk), inequality (9) implies that fk(xk) −
fk(yk) ≥ µ[f̄k(xk) − f̄k(yk)], i.e., that the reduction on fk is greater than

a fraction of the reduction obtained by using the approximating function

f̄k. This is motivated by the fact that, at iteration k, the objective is to

minimize the function fk (see (1)). Moreover, we observe that f̄k = fk is a

1-approximation of fk at xk.

Using this definition, the approximate auxiliary equilibrium principle al-

gorithm can be expressed as follows:

A General Algorithm.

Step 1. Let x0 ∈ C and µ ∈ (0, 1]. Set k = 0.

Step 2. Find f̄k a µ−approximation of fk at xk and denote by xk+1 the unique

solution of problem (P̄k).

Step 3. Increase k by 1 and go to Step 2.

The convergence of this general algorithm is established in two steps.

First we examine the convergence of the algorithm when the sequence {xk} is

bounded and ‖xk+1−xk‖ → 0. Then in a second theorem, we give conditions

to obtain that these two properties are satisfied.

Theorem 1 Assume that εk ≥ ε > 0 for all k ∈ IN . If the sequence {xk} gen-

erated by the General Algorithm is bounded and is such that ‖xk+1 − xk‖ → 0,

k ∈ IN , then every limit point of {xk}k∈IN is a solution of problem (EP).

Proof. Let x∗ be a limit point of {xk}k∈IN and let {xk}k∈IK⊂IN be some sub-

sequence converging to x∗. Since ‖xk+1 − xk‖ → 0, we also have {xk+1}k∈IK →
x∗. Hence, as f̄k ≤ fk and fk(xk+1) ≤ µf̄k(xk+1), we obtain

1

µ
fk(xk+1) ≤ f̄k(xk+1) ≤ fk(xk+1).

Now fk(xk+1) = f(xk, xk+1) → f(x∗, x∗) = 0 for k → +∞ because xk → x∗,

xk+1 → x∗ for k → +∞, k ∈ K, and f is continuous. Hence f̄k(xk+1) → 0
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for k → +∞. On the other hand, since xk+1 solves the convex optimization

problem (P̄k), we have

0 ∈ ∂{εk(f̄k + ψC)}(xk+1) −∇h(xk) + ∇h(xk+1),

i.e.,

∇h(xk) −∇h(xk+1) ∈ ∂{εk(f̄k + ψC)}(xk+1),

where ψC denotes the indicator function associated with C (ψC(x) = 0 if

x ∈ C and +∞ otherwise). Using the definition of the subdifferential, we

obtain

∀y ∈ C f̄k(y) − f̄k(xk+1) ≥ 1

εk
〈∇h(xk) −∇h(xk+1), y − xk+1〉. (10)

Applying the Cauchy-Schwarz inequality and the properties f̄k ≤ fk and ∇h
is Lipschitz continuous on C with constant Λ > 0, we obtain successively for

all y ∈ C,

fk(y) − f̄k(xk+1) ≥ − 1

εk
‖∇h(xk) −∇h(xk+1)‖ ‖y − xk+1‖

≥ − Λ

εk
‖xk − xk+1‖ ‖y − xk+1‖.

Taking the limit on k ∈ IK, we deduce

∀y ∈ C f(x∗, y) ≥ 0,

because f is continuous, f̄k(xk+1) → 0, ‖xk − xk+1‖ → 0, ‖y − xk+1‖ →
‖y − x∗‖ and εk ≥ ε > 0. But this means that x∗ is a solution of problem

(EP). ut

In the next theorem, we give conditions to obtain that the sequence {xk}
is bounded and that ‖xk+1 − xk‖ → 0.

Theorem 2 Assume that there exist γ, c, d > 0 and a nonnegative function

g : C × C → IR such that for all x, y, z ∈ C,

(i) f(x, y) ≥ 0 ⇒ f(y, x) ≤ −γ g(x, y);

(ii) f(x, z) − f(y, z)− f(x, y) ≤ c g(x, y) + d ‖z − y‖2.

If the sequence {εk}k∈IN is nonincreasing and εk <
βµ

2d
for all k and if

c

γ
≤ µ ≤ 1, then the sequence {xk}k∈IN generated by the General Algorithm

is bounded and lim
k→+∞

‖xk+1 − xk‖ = 0.
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Proof. Let x∗ be a solution of problem (EP) and consider for each k ∈ IN

the Lyapounov function Γ k : C × C → IR defined for all y, z ∈ C, by

Γ k(y, z) = h(z) − h(y) − 〈∇h(y), z − y〉 +
εk
µ
f(z, y). (11)

Since h is strongly convex with modulus β > 0, we have immediately that,

for all x ∈ C,

Γ k(xk, x∗) ≥ β

2
‖xk − x∗‖2. (12)

Noticing that εk+1 ≤ εk for all k ∈ IN , the difference Γ k+1(xk, x∗)−Γ k(xk , x∗)

can then be evaluated as follows:

Γ k+1(xk+1, x∗) − Γ k(xk , x∗) ≤ h(xk) − h(xk+1) + 〈∇h(xk), xk+1 − xk〉

+〈∇h(xk) −∇h(xk+1), x∗ − xk+1〉

+
εk
µ
{f(x∗, xk+1) − f(x∗, xk)}

= s1 + s2 + s3,

with

s1 = h(xk) − h(xk+1) + 〈∇h(xk), xk+1 − xk〉,

s2 = 〈∇h(xk) −∇h(xk+1), x∗ − xk+1〉,

s3 =
εk
µ
{f(x∗, xk+1) − f(x∗, xk)}.

For s1, we easily derive from the strong convexity of h that

s1 ≤ −β
2
‖xk+1 − xk‖2. (13)

For s2, we obtain, taking y = x∗ in (10)

s2 = 〈∇h(xk) −∇h(xk+1), x∗ − xk+1〉 ≤ εk{f̄k(x∗) − f̄k(xk+1)}

≤ εk{f(xk, x∗) − 1
µ
f(xk, xk+1)},

because f̄k ≤ f(xk, ·) and (9) hold. Then, using assumption (ii), we deduce

that

s2 + s3 ≤ εk{f(xk, x∗) − 1

µ
f(xk, xk+1)} +

εk
µ
{f(x∗, xk+1) − f(x∗, xk)}

=
εk
µ
{f(x∗, xk+1) − f(x∗, xk) − f(xk, xk+1)} + εkf(xk , x∗)

≤ εk
µ
{c g(x∗, xk) + d ‖xk+1 − xk‖2} + εkf(xk , x∗).
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Consequently, we have

Γ k+1(xk+1, x∗) − Γ k(xk, x∗) ≤ εkf(xk, x∗) − 1

2
(β − 2

εkd

µ
)‖xk+1 − xk‖2

+
εkc

µ
g(x∗, xk).

Applying assumption (i) with x = x∗ and y = xk, since f(x∗, xk) ≥ 0, we

obtain

f(xk, x∗) ≤ −γ g(x∗, xk).

Finally, we have that

Γ k+1(xk+1, x∗)−Γ k(xk , x∗) ≤ −1

2
(β−2

εkd

µ
)‖xk+1−xk‖2−εk(γ− c

µ
)g(x∗, xk).

(14)

Since εk <
β µ

2d
for all k and µ ≥ c

γ
, from (12) and (14), it follows that

{Γ k(xk , x∗)}k∈IN is a nonincreasing sequence bounded below by 0. Hence, it

is convergent in IR. Using again (12), we deduce that the sequence {xk}k∈IN

is bounded and, passing to the limit in (14), that the sequence {‖xk+1 −
xk‖}k∈IN converges to zero. ut

Combining Theorems 1 and 2, we deduce the following theorem.

Theorem 3 Assume that εk ≥ ε > 0 for all k ∈ IN and that all assump-

tions of Theorem 2 are fulfilled, then the sequence {xk}k∈IN generated by the

General Algorithm converges to a solution of problem (EP).

Remark 21 The same result as Theorem 2 can also be obtained when con-

dition (ii) is replaced by the following condition:

(iii) f(x, z) − f(y, z) − f(x, y) ≤ c g(x, y) + d ‖z − y‖,
and when the series

∑+∞

k=0 ε
2
k is convergent. If, in addition, g(x, y) = 0 and

∑+∞

k=0 εk = +∞, then the convergence of the sequence {xk} to a solution of

(EP ) can be proved as in [18] by using the gap function l(x) = −f(x, x∗)

where x∗ is a solution of (EP ).

So in order to obtain the convergence of the General Algorithm, we need

conditions (i) and (ii) or conditions (i) and (iii). Condition (i) is a mono-

tonicity condition. Indeed, when g = 0, this condition means that f is pseu-

domonotone and when g(x, y) = ‖x − y‖2 that f is strongly pseudomono-

tone with modulus γ. Conditions (ii) and (iii) are Lipschitz-type conditions.

The link between conditions (i) and (ii) or (iii) is made by the function g

whose choice depends on the structure of the problem. So, for example, when

f(x, y) = ϕ(x) − ϕ(y) with ϕ : C → IR a continuous convex function, i.e.,
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when problem (EP ) is a constrained convex optimization problem, it suffices

to choose g(x, y) = 0 for all x, y ∈ C to obtain that (i), (ii) and (iii) are

satisfied.

Other sufficient conditions to get conditions (i), (ii) and (iii) are given in

the next two propositions.

Proposition 1 If f is pseudomonotone and f(x, ·) is Lipschitz continu-

ous on C uniformly in x, then conditions (i) and (iii) are satisfied with

g(x, y) = 0.

Proof. Let x, y, z ∈ C. Since f(y, y) = 0, we have

f(x, z) − f(y, z) − f(x, y) = f(x, z) − f(x, y) + f(y, y) − f(y, z)

≤ 2L‖z − y‖,

where L denotes the Lipschitz constant of f(x, ·). ut

Proposition 2 If f is strongly monotone and if (4) holds, then conditions

(i) and (ii) are satisfied with g(x, y) = ‖x− y‖2.

Proof. If f(x, y) ≥ 0, then by the strong monotonicity of f , we have

f(y, x) ≤ −f(x, y) − γ‖x− y‖2 ≤ −γ‖x− y‖2 = −γ g(x, y).

Condition (ii) is immediate from (4). ut

As a consequence of this proposition, Theorem 3 is also valid under as-

sumptions (3) and (4). In particular, when µ = 1, the conditions imposed on

the parameters are εk < β/(2d) for all k and c/γ ≤ 1, and Theorem 3.1 of

Mastroeni [16] is recovered. So, when µ = 1, Theorem 3 can be considered

as a generalization of this theorem.

Finally, we consider the case where f is given by (5) and we introduce

the following definition: F is ϕ−co-coercive on C if there exists γ > 0 such

that for all x, y ∈ C, if 〈F (x), y − x〉 + ϕ(y) − ϕ(x) ≥ 0 holds, then

〈F (y), y − x〉 + ϕ(y) − ϕ(x) ≥ γ ‖F (y) − F (x)‖2. (15)

It is easy to prove that if F is co-coercive on C, then F is ϕ-co-coercive on

C. Indeed, if F is co-coercive on C, then there exists γ > 0 such that

∀x, y ∈ C 〈F (x) − F (y), x− y〉 ≥ γ ‖F (x) − F (y)‖2.

But then, if 〈F (x), y − x〉 + ϕ(y) − ϕ(x) ≥ 0, we have

〈F (y), y − x〉 + ϕ(y) − ϕ(x) = 〈F (y) − F (x), y − x〉 + 〈F (x), y − x〉

+ϕ(y) − ϕ(x) ≥ γ ‖F (y) − F (x)‖2,
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i.e., inequality (15). Now in order to find again Zhu and Marcotte’s conver-

gence result ([19] Theorem 3.2) from our Theorem 3, we need the following

proposition where another choice of g is necessary to obtain (i) and (ii).

Proposition 3 Let f(x, y) = 〈F (x), y−x〉+ϕ(y)−ϕ(x) where F : C → IRn

is continuous and ϕ : C → IR is convex. If F is ϕ−co-coercive on C, then

there exist a nonnegative function g : C × C → IR and γ > 0 such that for

all x, y, z ∈ C and for all ν > 0,

f(x, y) ≥ 0 ⇒ f(y, x) ≤ −γ g(x, y),

f(x, z) − f(y, z)− f(x, y) ≤ 1

2ν
g(x, y) +

ν

2
‖z − y‖2.

Proof. Using the definition of f and the ϕ−co-coercivity of F on C, there

exists γ > 0 such that for all x ∈ C

f(x, y) ≥ 0 ⇒ f(y, x) ≤ −γ‖F (y)− F (x)‖2.

On the other hand, we have for any ν > 0,

f(x, z) − f(y, z)− f(x, y) = 〈F (x) − F (y), z − y〉

≤ 1

2ν
‖F (x) − F (y)‖2 +

ν

2
‖z − y‖2.

So, with g(x, y) = ‖F (y) − F (x)‖2, we obtain the two inequalities. ut

Using this proposition, Theorem 3.2 of [19] can be derived from our Theo-

rem 3 with µ = 1. Indeed, by choosing ν = 1/(2γ), we obtain c = 1/(2ν) = γ

and d = ν/2 = 1/(4γ). Then conditions c/γ ≤ 1 and εk < β/(2d) of Theorem

3 reduce to εk < 2βγ, which is exactly the condition imposed by Zhu and

Marcotte in their convergence theorem.

3 A Bundle Algorithm

In order to obtain an implementable algorithm, we have now to say how to

construct a µ−approximation f̄k of fk at xk such that problem (P̄k) is easier

to solve than problem (Pk). Here we assume that µ ∈ (0, 1). In that purpose,

we observe that if f̄k is a piecewise linear convex function of the form

f̄k(y) = max
1≤j≤p

{aT
j y + bj},



12 Nguyen Thi Thu Van et al.

where aj ∈ IRn, bj ∈ IR for j = 1, . . . , p, the problem (P̄k) is equivalent to

the problem

(QPk)



















min {εkv + h(y) − h(xk) − 〈∇h(xk), y − xk〉}

s.t. v ≥ aT
j y + bj , j = 1, . . . , p

y ∈ C.

When h is the squared norm and C is a closed convex polyhedron, this

problem becomes quadratic.

There exist many efficient numerical methods for solving such a problem.

When f̄k is a piecewise linear convex function, it is judicious to construct f̄k,

piece by piece, by generating successive models

f̄ i
k, i = 1, 2, . . .

until (if possible) f̄ ik

k is a µ−approximation of fk at xk for some ik ≥ 1. For

i = 1, 2, . . . , we denote by yi
k the unique solution of the problem

(P i
k) min

y∈C
{εkf̄ i

k(y) + h(y) − h(xk) − 〈∇h(xk), y〉},

and we set f̄k = f̄ ik

k and xk+1 = yik

k .

In order to obtain a µ−approximation f̄ ik

k of fk at xk, we have to impose

some conditions on the successive models f̄ i
k, i = 1, 2, . . .. However, before

presenting them, we need to define the affine functions lik, i = 1, 2, . . . by

lik(y) = f̄ i
k(yi

k) + 〈γi
k, y − yi

k〉 ∀y ∈ C,

where γi
k =

1

εk
[∇h(xk) −∇h(yi

k)]. By optimality of yi
k, we have

γi
k ∈ ∂(f̄ i

k + ψC)(yi
k). (16)

It is then easy to observe that

lik(yi
k) = f̄ i

k(yi
k) and lik(y) ≤ f̄ i

k(y) for all y ∈ C. (17)

Now we assume that the following conditions inspired for [5] are satisfied by

the convex models f̄ i
k,

(C1) f̄ i
k ≤ fk on C for i = 1, 2, . . .

(C2) f̄ i+1
k ≥ fk(yi

k) + 〈s(yi
k), · − yi

k〉 on C for i = 1, 2, . . .

(C3) f̄ i+1
k ≥ lik on C for i = 1, 2, . . .,

where s(yi
k) denotes the subgradient of fk available at yi

k.

Several models fulfill these conditions. For example, for the first model

f̄1
k , we can take the linear function

f̄1
k (y) = fk(xk) + 〈s(xk), y − xk〉 for all y ∈ C.
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Since s(xk) ∈ ∂fk(xk), condition (C1) is satisfied for i = 1. For the next

models f̄ i
k, i = 2, . . . , there exist several possibilities. A first example is to

take for i = 1, 2, . . .

f̄ i+1
k (y) = max {lik(y), fk(yi

k) + 〈s(yi
k), y − yi

k〉}. (18)

Conditions (C2), (C3) are obviously satisfied and condition (C1) is also sat-

isfied for i = 2, 3, . . ., because each linear piece of these functions are below

fk. Another example is to take for i = 1, 2, . . .

f̄ i+1
k (y) = max

0≤j≤i
{fk(yj

k) + 〈s(yj
k), y − yj

k〉} (19)

where y0
k = xk. Since s(yj

k) ∈ ∂fk(yj
k) for j = 0, . . . , i and since f̄ i+1

k ≥ f̄ i
k ≥

lik, it is easy to see that conditions (C1) − (C3) are satisfied.

Comparing (18) and (19), we can say that lik plays the same role as the i

linear functions fk(yj
k)+ 〈s(yj

k), y−yj
k〉, j = 0, . . . , i−1. It is the reason why

this function lik is called the aggregate affine function (see, e.g., [5]). The first

example (18) is interesting from the numerical point of view, because its use

allows to limit the number of linear constraints in subproblems (QPk).

Now the algorithm allowing to pass from xk to xk+1, i.e., to make what

is called a serious step, can be expressed as follows.

Serious Step Algorithm.

Let xk ∈ C and µ ∈ (0, 1). Set i = 1.

Step 1. Choose f̄ i
k a convex function that satisfies (C1) − (C3) and solve

problem (P i
k) to get yi

k.

Step 2. If fk(yi
k) ≤ µf̄ i

k(yi
k), then set xk+1 = yi

k, ik = i and STOP; xk+1 is

a serious step.

Step 3. Increase i by 1 and go to Step 1.

Our aim is now to prove that if xk is not a solution of problem (EP) and

if the models f̄ i
k, i = 1, . . . satisfy (C1) − (C3), then there exists ik ≥ 1 such

that f̄ ik

k is a µ−approximation of fk at xk , i.e., that the STOP occurs at

Step 2 after finitely many iterations.

To prove that, we need a lemma whose proof uses the following functions:

l̃ik(y) = lik(y) +
1

εk
{h(y) − h(xk) − 〈∇h(xk), y − xk〉},

f̃ i
k(y) = f̄ i

k(y) +
1

εk
{h(y) − h(xk) − 〈∇h(xk), y − xk〉}.
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Using (16) and (17), we obtain:

l̃ik(y) − l̃ik(yi
k) = lik(y) +

1

εk
{h(y) − h(xk) − 〈∇h(xk), y − xk〉}

−lik(yi
k) − 1

εk
{h(yi

k) − h(xk) − 〈∇h(xk), yi
k − xk〉}

= f̄ i
k(yi

k) + 〈γi
k, y − yi

k〉 +
1

εk
{h(y) − h(xk) − 〈∇h(xk), y − xk〉}

−f̄ i
k(yi

k) − 1

εk
{h(yi

k) − h(xk) − 〈∇h(xk), yi
k − xk〉}

=
1

εk
{h(y) − h(yi

k) − 〈∇h(yi
k), y − yi

k〉}.

Consequently, we obtain

l̃ik(y) = l̃ik(yi
k) +

1

εk
{h(y) − h(yi

k) − 〈∇h(yi
k), y − yi

k〉}. (20)

Moreover from (17) and (C3), we have

f̃ i
k(xk) = f̄ i

k(xk) (21)

l̃ik(yi
k) = f̃ i

k(yi
k) (22)

l̃ik ≤ f̃ i+1
k on C. (23)

Lemma 1 Assume that the models f̄ i
k, i ∈ IN0 satisfy conditions (C1)−(C3)

and let, for each i, yi
k be the unique solution of problem (P i

k). Then

(i) fk(yi
k) − f̄ i

k(yi
k) → 0,

(ii) yi
k → ȳk ≡ arg miny∈C{εkfk(y) + h(y) − h(xk) − 〈∇h(xk), y − xk〉},

where i→ +∞.

Proof. (i) To obtain the first statement, we use the following three steps.

(1) The sequence {l̃ik(yi
k)}i∈IN0

is convergent and yi+1
k − yi

k → 0 when i →
+∞.

For all i, we have

0 = fk(xk) ≥ f̄ i+1
k (xk) (by C1)

= f̃ i+1
k (xk) (by (21))

≥ f̃ i+1
k (yi+1

k ) (by definition of yi+1
k )

= l̃i+1
k (yi+1

k ) (by (22))

≥ l̃ik(yi+1
k ) (by (23))

= l̃ik(yi
k) +

1

εk
Dh(yi+1

k , yi
k) (by (20))

≥ l̃ik(yi
k) +

β

2εk
‖yi+1

k − yi
k‖2 (by strong convexity of h on C)

≥ l̃ik(yi
k)
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where Dh(y, z) = h(y)−h(z)−〈∇h(z), y− z〉. From these relations, we have

for all i, that

l̃i+1
k (yi+1

k ) ≥ l̃ik(yi
k).

So, the sequence {l̃ik(yi
k)}i∈IN0

is nonincreasing and bounded above by 0.

Consequently {l̃ik(yi
k)}i∈IN0

is convergent and yi+1
k − yi

k → 0 when i→ +∞.

(2) The sequence {yi
k}i∈IN0

is bounded.

We have (for y fixed)

fk(y) +
1

εk
{h(y) − h(xk) − 〈∇h(xk), y − xk〉}

≥ f̄ i+1
k (y) +

1

εk
{h(y) − h(xk) − 〈∇h(xk), y − xk〉} (by C1)

= f̃ i+1
k (y)

≥ l̃ik(y) ( by (23))

= l̃ik(yi
k) +

1

εk
{h(y) − h(yi

k) − 〈∇h(yi
k), y − yi

k〉} ( by (20))

≥ l̃ik(yi
k) +

β

2εk
‖y − yi

k‖2 (by h is strongly convex on C).

Since the sequence {l̃ik(yi
k)}i∈IN0

is convergent, the sequence {y− yi
k}i∈IN0

is

bounded and thus the sequence {yi
k}i∈IN0

is also bounded.

(3) fk(yi+1
k ) − f̄ i+1

k (yi+1
k ) → 0.

We have successively

〈s(yi
k), yi+1

k − yi
k〉 ≤ f̄ i+1

k (yi+1
k ) − fk(yi

k) (by C2)

≤ fk(yi+1
k ) − fk(yi

k) (by C1)

≤ 〈s(yi+1
k ), yi+1

k − yi
k〉 (by definition of s(yi+1

k )).

Since {yi
k}i∈IN0

is bounded, then, by Theorem 24.7 in [17], the set ∪i∂fk(yi
k)

is bounded and thus the sequence {s(yi
k)}i∈IN0

is bounded. So, we obtain

f̄ i+1
k (yi+1

k ) − fk(yi
k) → 0 and fk(yi+1

k ) − fk(yi
k) → 0,

and consequently,

fk(yi+1
k ) − f̄ i+1

k (yi+1
k ) = fk(yi+1

k ) − fk(yi
k) + fk(yi

k) − f̄ i+1
k (yi+1

k ) → 0.

(ii) yi
k → ȳk ≡ arg min

y∈C
{εkfk(y) + h(y) − h(xk) − 〈∇h(xk), y − xk〉}.

Since the sequence {yi
k}i∈IN0

is bounded, it remains to prove that every limit

point y∗k of this sequence is equal to ȳk, i.e., that

1

εk
{∇h(xk) −∇h(y∗k)} ∈ ∂(fk + ψC)(y∗k)
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or, by definition of the subdifferential, we obtain from (16) and (C1) that

∀y ∈ C fk(y) ≥ f̄ i
k(y) ≥ f̄ i

k(yi
k) +

1

εk
〈∇h(xk) −∇h(yi

k), y − yi
k〉,

i.e.,
∀y ∈ C fk(y) ≥ [f̄ i

k(yi
k) − fk(yi

k)] + [fk(yi
k) − fk(y∗k)]

+fk(y∗k) +
1

εk
〈∇h(xk) −∇h(yi

k), y − yi
k〉.

(24)

Since y∗k is a limit point of {yi
k}i∈IN0

, there exists IK ⊆ IN0 such that

yi
k → y∗k for i ∈ IK, i→ +∞.

Taking the limit (for i ∈ IK) of both sides of (24), we obtain, for all y ∈ C,

that

fk(y) ≥ lim
i

[f̄ i
k(yi

k) − fk(yi
k)] + lim

i
[fk(yi

k) − fk(y∗k)] + fk(y∗k)

+
1

εk
lim

i
〈∇h(xk) −∇h(yi

k), y − yi
k〉.

Since lim
i

[f̄ i
k(yi

k)− fk(yi
k)] = 0 by (i), lim

i
[fk(yi

k) − fk(y∗k)] = 0 because fk is

continuous, and ∇h is continuous at y∗k, we deduce that

fk(y) ≥ fk(y∗k) +
1

εk
〈∇h(xk) −∇h(y∗k), y − y∗k〉 ∀y ∈ C.

This completes the proof. ut

Theorem 4 Assume xk is not a solution of problem (EP). Then the serious

step algorithm stops after finitely many iterations ik with f̄ ik

k a µ− approxi-

mation of fk at xk and with xk+1 = yik

k .

Proof. Suppose, to get a contradiction, that the STOP never occurs. Then

fk(yi
k) > µf̄ i

k(yi
k) ≥ µf̄ i

k(yi
k) for all i ∈ IN0. (25)

Moreover, by Lemma 1, yi
k → ȳk. Then taking the limit of both members of

(25), we obtain

fk(ȳk) ≥ µfk(ȳk)

because fk is continuous over C and fk(yi
k)− f̄ i

k(yi
k) → 0. Hence, since µ < 1,

we deduce that fk(ȳk) ≥ 0.

On the other hand, by definition of ȳk (see Lemma 1), we have, for all y ∈ C,

that

εkfk(ȳk) + h(ȳk) − h(xk) − 〈∇h(xk), ȳk − xk〉 ≤ εk fk(y) + h(y) − h(xk)

−〈∇h(xk), y − xk〉.
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If we choose y = xk and observe that fk(xk) = 0, then this inequality becomes

εkfk(ȳk) ≤ −h(ȳk) + h(xk) + 〈∇h(xk), ȳk − xk〉.

Finally, using the strong convexity of h yields

0 ≤ εkfk(ȳk) ≤ −β
2
‖ȳk − xk‖.

Consequently ‖ȳk − xk‖ = 0 and thus xk = ȳk. But this means that xk is a

solution of problem (EP), which contradicts the assumption of the theorem.

So the Serious Step Algorithm stops after finitely many iterations. ut

Incorporating the Serious Step Algorithm in Step 1 of the General Algo-

rithm, we obtain the following algorithm.

Bundle Algorithm for solving problem (EP).

Let an initial point x0 ∈ C, together with a tolerance µ ∈ (0, 1) and a positive

sequence {εk}k∈IN . Set y0
0 = x0 and k = 0, i = 1.

Step 1. Choose a piecewise linear convex function f̄ i
k satisfying (C1) − (C3)

and solve

(P i
k) min

y∈C
{ εkf̄ i

k(y) + h(y) − h(xk) − 〈∇h(xk), y − xk〉}
to obtain the unique optimal solution yi

k ∈ C.

Step 2. If

fk(yi
k) ≤ µf̄ i

k(yi
k), (26)

then set xk+1 = yi
k, y

0
k+1 = xk+1, increase k by 1 and set i = 0.

Step 3. Increase i by 1 and go to Step 1.

From Theorems 3 and 4, we obtain the following convergence results.

Theorem 5 If after some k has been reached, the criterion (26) is never

satisfied, then xk is a solution of problem (EP).

Theorem 6 Assume that εk ≥ ε > 0 for all k ∈ IN and that all assumptions

of Theorem 2 are fulfilled, and that the sequence {xk} generated by the Bundle

Algorithm is infinite. Then {xk} converges to some solution of problem (EP).

For practical implementation, it is necessary to give a stopping criterion. In

order to present it, we introduce the definition of a stationary point.

Definition 2 Let ∆ ≥ 0. A point x∗ ∈ IRn is called a ∆−stationary point

of problem (EP) if x∗ ∈ C and if

∃ γ ∈ ∂∆(fx∗ + ψC)(x∗) such that ‖γ‖ ≤ ∆.
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Using the definition of the ∆−subdifferential of the convex function fx∗+ψC ,

we obtain that if x∗ is a ∆−stationary point of problem (EP), then

∀y ∈ C fx∗(y) ≥ fx∗(x
∗) + 〈γ, y − x∗〉 − ε ≥ −∆ ‖y − x∗‖ −∆,

where we have used fx∗(x
∗) = 0, the Cauchy-Schwarz inequality and ‖γ‖ ≤ ε.

Observe that if ∆ = 0, then a ∆−stationary point of problem (EP) is a

solution of problem (EP). Now to prove that the iterate xk generated by the

bundle algorithm is a ∆-stationary point of problem (EP) for k large enough,

we need the following results.

Proposition 4 Let yi
k be the solution of problem (P i

k) and let

γi
k =

1

εk
[∇h(xk) −∇h(yi

k)] and δi
k := 〈γi

k, y
i
k − xk〉 − f̄ i

k(yi
k). (27)

Then

δi
k ≥ 0 and γi

k ∈ ∂δi

k

(fk + ψC)(xk).

Proof. By optimality of yi
k, we obtain that

0 ∈ εk∂(f̄ i
k + ψC)(yi

k) + ∇h(yi
k) −∇h(xk),

i.e.,

γi
k ∈ ∂(f̄ i

k + ψC)(yi
k).

Hence by definition of the subdifferential and since f̄ i
k ≤ fk, we have, for all

x ∈ C

fk(x) ≥ f̄ i
k(x) ≥ f̄ i

k(yi
k) + 〈γi

k, x− yi
k〉. (28)

In particular for x = xk , and noting that fk(xk) = 0, we deduce that

0 ≥ f̄ i
k(yi

k) + 〈γi
k, x

k − yi
k〉,

i.e., that δi
k ≥ 0.

On the other hand, from (28) and the definition of δi
k, we can write for all

x ∈ C,

fk(x) ≥ f̄ i
k(yi

k) + 〈γi
k, x− yi

k〉 = fk(xk) + 〈γi
k, x− xk〉 − δi

k,

i.e., that γi
k ∈ ∂δi

k

(fk + ψC)(xk). ut

Theorem 7 Assume that εk ≥ ε > 0 for all k ∈ IN and that all assumptions

of Theorem 2 hold. Let {xk} be the sequence generated by the Bundle Algo-

rithm.

(i) If {xk} is infinite, then the sequences {γik

k }k and {δik

k }k converge to zero.

(ii) If {xk} is finite with k the latest index, then the sequences {γ i
k}i and

{δi
k}i converge to zero.
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Proof. (i) Since {xk}k is infinite, it follows from Theorem 6 that {xk}
converges to some solution x∗ of problem (EP).

On the other hand, we have, for all k

0 ≤ ‖γik

k ‖ = ‖∇h(x
k) −∇h(yik

k )

εk
‖ ≤ Λ

ε
‖xk − yik

k ‖ =
Λ

ε
‖xk − xk+1‖,

because ∇h is Lipschitz-continuous with constant Λ > 0, εk ≥ ε > 0 and

yik

k = xk+1. Since ‖xk+1 − xk‖ → 0, we obtain that the sequence {γik

k }k

converges to zero. Moreover, since

|〈γik

k , y
ik

k − xk〉| ≤ ‖γik

k ‖ ‖yik

k − xk‖ = ‖γik

k ‖ ‖xk+1 − xk‖,

we also obtain that 〈γik

k , y
ik

k − xk〉 → 0 when k → +∞. Finally, by definition

of xk+1 and (26), we have

1

µ
fk(xk+1) ≤ f̄ ik

k (xk+1) ≤ fk(xk+1). (29)

But fk(xk+1) = f(xk , xk+1) → f(x∗, x∗) = 0 by continuity of fk, so that

(29) implies that f̄ ik

k (xk+1) → 0. Consequently, we obtain that δi
k → 0 when

k → +∞.

(ii) Let k be the latest index of the sequence {xk}. Then xk is a solution of

problem (EP) by Theorem 5 and {yi
k}i converges to ȳk when i → +∞ by

Lemma 1. Hence xk = ȳk and ‖xk − yi
k‖ → 0 when i→ +∞. But this means

that {γi
k}i converges to zero. Moreover, by Lemma 1, for i → +∞, we have

fk(yi
k)− f̄ i

k(yi
k) → 0 and thus f̄ i

k(yi
k) = f̄ i

k(yi
k)− fk(yi

k)+ fk(yi
k) → 0 because

fk is continuous and fk(yi
k) = f(xk, yi

k) → f(xk , xk) = 0. Consequently

δi
k → 0 when i→ +∞. ut

Thanks to Proposition 4 and Theorem 7, we can easily introduce a stop-

ping criterion in the Bundle Algorithm just after Step 1 as follows.

Compute γi
k and δi

k by using (27). If ‖γi
k‖ ≤ ∆ and δi

k ≤ ∆, then STOP;

xk is a ∆−stationary point of problem (EP). Otherwise, go to Step 2 of the

Bundle Algorithm.

Let us mention that this criterion is a generalization of the classical stop-

ping test for bundle methods in optimization (see, e.g., [15]).

4 Application to variational inequality problems

First we apply the Bundle Algorithm for solving problem (GVIP) under the

assumption that F : IRn → IRn is a continuous mapping and ϕ : IRn → IR a

convex function. As we know it, this problem is a particular case of problem
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(EP) corresponding to the function f defined, for all x, y ∈ IRn, by f(x, y) =

〈F (x), y − x〉 + ϕ(y) − ϕ(x). Since the function ϕ may be nondifferentiable,

we choose as model f̄ i
k, the function

f̄ i
k(y) = θi

k(y) − ϕ(xk) + 〈F (xk), y − xk〉,

where θi
k is a piecewise linear convex function which approximates ϕ at xk.

Moreover, we assume that this function θi
k satisfies the three following con-

ditions:

(C ′1) θi
k ≤ ϕ on C for i = 1, 2, . . .

(C ′2) θi+1
k ≥ ϕ(yi

k) + 〈s′(yi
k), · − yi

k〉 on C for i = 1, 2, . . .

(C ′3) θi+1
k ≥ l′

i
k on C for i = 1, 2, . . .

where l′
i
k(y) = θi

k(yi
k)+〈γi

k−F (xk), y−yi
k〉 and s(yi

k) denotes the subgradient

of ϕ available at yi
k.

With these choices, problem (P i
k) is equivalent to the problem

min
y∈C

{ εkθi
k(y) + εk〈F (xk), y − xk〉 + h(y) − h(xk) − 〈∇h(xk), y − xk〉},

and (26) becomes

ϕ(xk) − ϕ(yi
k) ≥ µ [ϕ(xk) − θi

k(yi
k)] + (1 − µ)〈F (xk), yi

k − xk〉.

Finally, the Bundle Algorithm can be particularized as follows:

Bundle Algorithm for solving problem (GVIP).

Let an initial point x0 ∈ C, together with a tolerance µ ∈ (0, 1) and a positive

sequence {εk}k∈IN . Set y0
0 = x0 and k = 0, i = 1.

Step 1. Choose a piecewise linear convex function θi
k satisfying (C ′1)− (C ′3)

and solve

min
y∈C

{ εkθi
k(y) + εk〈F (xk), y − xk〉 + h(y) − h(xk) − 〈∇h(xk), y − xk〉} (30)

to obtain the unique optimal solution yi
k ∈ C.

Step 2. If

ϕ(xk) − ϕ(yi
k) ≥ µ [ϕ(xk) − θi

k(yi
k)] + (1 − µ) 〈F (xk), yi

k − xk〉, (31)

then set xk+1 = yi
k, y

0
k+1 = xk+1, increase k by 1 and set i = 0.

Step 3. Increase i by 1 and go to Step 1.

This algorithm was presented by Salmon et al. in [18] and proven to be

convergent under the assumption that F is ϕ−co-coercive on C. Thanks to

Proposition 3, we can deduce from Theorem 6 the convergence theorems

obtained in [18] for the bundle method applied for solving problem (GVIP)

(see Theorems 4.2 and 4.3 in [18]).
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Theorem 8 Assume that the sequence {εk} is nonincreasing and satisfies

0 < ε ≤ εk for all k. If F is ϕ−co-coercive on C with γ >
ε0

2β µ2
, and

if the sequence {xk} generated by the Bundle Algorithm for solving (GVIP)

is infinite, then the sequence {xk} converges to some solution of problem

(GVIP).

Proof. From Theorem 6 and Proposition 3, we only have to prove that if

γ >
ε0

2βµ2
then there exists τ > 0 such that ε0 <

βµ

τ
and µ ≥ 1

2τγ
. Since

ε0 < 2βµ2γ, it is sufficient to set τ =
1

2µ γ
> 0 to obtain the two inequalities.

ut

As a second application, we apply the general algorithm to the multi-

valued variational inequality problem (MVIP). This problem corresponds to

problem (EP) with the function f defined, for all x, y ∈ C, by f(x, y) =

sup
ξ∈F (x)

〈ξ, y − x〉 where F : C → 2IRn

is a continuous multivalued mapping

with compact values. Thanks to Proposition 23 in [2], it is easy to see that

f is continuous on C × C. At iteration k, we consider the approximating

function f̄k(y) = 〈ξk , y−xk〉 with ξk ∈ F (xk). Here, we assume that at least

one element of F (x) is available for each x ∈ C. When h is the squared norm,

the subproblem (P̄k) becomes

min
y∈C

{εk〈ξk, y − xk〉 +
1

2
‖y − xk‖2}. (32)

We observe that the optimality conditions associated with (32) are

〈εkξk + yk − xk, y − yk〉 ≥ 0 ∀y ∈ C, (33)

where yk is a solution of (P̄k). In other words, yk is the orthogonal projection

of the vector xk − εkξk over C. This problem is a particular convex quadratic

programming problem whose solution can be found explicitly when C has

a special structure as a box, a ball, . . . . Without loss of generality, we can

assume that yk 6= xk. Indeed, if yk = xk, then it is easy to see that xk is a

solution of (MVIP).

Our aim is first to find conditions to ensure that the function f̄k defined

above is a µ-approximation of fk at xk and then to apply Theorem 3 to

get the convergence of the sequence {xk}. In that purpose, we introduce the

following definitions.

Definition 3 Let C be a nonempty closed convex subset of IRn and let

F : C → 2IRn

.
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(i) F is strongly monotone on C if ∃α > 0 such that ∀x, y ∈ C, ∀ξ1 ∈
F (x), ∀ξ2 ∈ F (y), one has

〈ξ1 − ξ2, x− y〉 ≥ α‖x− y‖2.

(ii) F is Lipschitz continuous on C if ∃L > 0 such that ∀x, y ∈ C, one has

g(x, y) ≤ L‖x− y‖,

where

g(x, y) := sup
ξ1∈F (x)

inf
ξ2∈F (y)

‖ξ1 − ξ2‖2. (34)

(iii) F is co-coercive on C if ∃ γ > 0 such that ∀x, y ∈ C, ∀ξ1 ∈ F (x), ∀ξ2 ∈
F (y), one has

〈ξ1 − ξ2, x− y〉 ≥ γg(x, y) .

In the next proposition, we present the main property of the function f̄k.

Proposition 5 Assume F is co-coercive on C with constant γ > 0. Let

µ ∈ (0, 1) and xk ∈ C. If εk ≤ 4γ(1−µ), then the function f̄k(y) = 〈ξk, y−xk〉
with ξk ∈ F (xk) is a µ-approximation of fk at xk, i.e., f̄k ≤ fk and fk(yk) ≤
µf̄k(yk) where yk is a solution of problem (P̄k).

Proof. Let µ ∈ (0, 1) and ξk, ξ ∈ F (xk). From (33) with y = xk, we deduce

that

εk〈ξk , yk − xk〉 ≤ −‖xk − yk‖2 < 0. (35)

Using successively the co-coercivity of F , the definition of g in (34) and the

Cauchy Schwarz inequality. We have, for every η ∈ F (yk) and for any ν > 0,

that

〈ξ − ξk, y
k − xk〉 = 〈ξ − η, yk − xk〉 + 〈η − ξk, y

k − xk〉

≤ −γg(xk, yk) + ‖η − ξk‖ ‖yk − xk‖

≤ −γg(xk, yk) + (1/2ν)‖η − ξk‖2 + ν/2‖yk − xk‖2.

Taking the infimum on η ∈ F (yk) and using (35), we obtain

〈ξ − ξk, y
k − xk〉 ≤ −γg(xk, yk) + 1

2ν
infη∈F (yk) ‖η − ξk‖2 + ν

2‖yk − xk‖2

≤ ( 1
2ν

− γ) g(xk, yk) − νεk

2
〈ξk , yk − xk〉

for all ν > 0. Choosing ν = 1/(2γ), we can write

〈ξ, yk − xk〉 ≤ (1 − εk

4γ
) 〈ξk, yk − xk〉.



A Bundle Method for Solving EPs 23

Finally, taking the supremum on ξ ∈ F (xk), and using the condition εk <

4γ(1− µ), we deduce the thesis. ut

Since f̄k is a µ-approximation of fk at xk for a suitable value of εk, using

this approximating function, the general algorithm becomes:

Given xk ∈ C and εk > 0, choose ξk ∈ F (xk) and solve the problem

min
y∈C

{εk 〈ξk , y − xk〉 +
1

2
‖y − xk‖2}

to get xk+1.

In particular case, when F is co-coercive on C, the assumptions (i) and

(ii) of Theorem 2 are satisfied.

Proposition 6 Let f(x, y) = sup
ξ∈F (x)

〈ξ, y − x〉 and g defined by (34). Then

(i) for every x, y, z ∈ C and for any ν > 0,

f(x, z) − f(y, z) − f(x, y) ≤ 1

2ν
g(x, y) +

ν

2
‖z − y‖2,

(ii) if F is co-coercive on C with constant γ, then for every x, y ∈ C,

f(x, y ≥ 0 ⇒ f(y, x) ≤ −γg(x, y).

Finally, for the sequence {xk} generated by this algorithm, we obtain the

following convergence theorem.

Theorem 9 Assume F is co-coercive on C with constant γ > 0. Let {εk} be

a nonincreasing sequence bounded away from 0. If εk < 4(2−
√

3) γ for all k,

then the sequence {xk} converges to some solution x∗ of problem (MVIP).

Proof. Since β = 1, from Propositions 5 and 6, and from Theorem 3, we

only have to prove that there exist µ ∈ (0, 1), and ν > 0 such that

εk ≤ 4γ(1 − µ), εk <
µ

ν
,

1

2νγ
≤ µ.

Choosing the smallest possible ν, we obtain ν = 1/(2µγ). Then the previous

conditions become:

εk ≤ 4γ(1 − µ) and εk < 2µ2γ. (36)

It is easy to see that the maximum of the function r(µ) = min {4γ(1 −
µ), 2µ2γ} occurs at µ =

√
3− 1 and has 4(2−

√
3)γ for optimal value. So the

conditions (36) are satisfied with this value of µ if εk < 4(2 −
√

3) γ. ut
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When F is singlevalued, the approximating function f̄k coincides with fk.

In that case, µ = 1 and Proposition 5 must not be considered. This means

that only the second inequality in (36) must be retained, i.e.,

εk < 2γ.

An interesting particular case is when F is strongly monotone (with constant

α > 0) and Lipschitz continuous (with constant L > 0) on C. Then, for all

x, y ∈ C,

g(x, y) ≤ L2 ‖x− y‖2.

Hence, F being strongly monotone, we have, for all x, y ∈ C and ξ ∈ F (x), η ∈
F (y), that

〈ξ − η, x− y〉 ≥ α ‖x− y‖2 ≥ α

L2
g(x, y).

But this means that F is co-coercive on C with constant γ = α/L2. Then

Theorem 9 becomes:

Theorem 10 Assume F is strongly monotone (with constant α > 0) and

Lipschitz continuous (with constant L > 0) on C. Let {εk} be a nonincreasing

sequence bounded away from 0. If εk < 4(2 −
√

3) α
L2 for all k, then the

sequence {xk} converges to the unique solution x∗ of problem (MVIP). When

F is singlevalued, the same property holds but with εk <
2α
L2 for all k.

Let us mention that when F is singlevalued, we retrieve a classical result

for variational inequalities (see, for instance, [1]). In the multivalued case, our

algorithm has been studied by El Farouq in [6] but under the assumption that

the series
∑

ε2k is convergent, and thus that the sequence {εk} converges to

0.

Acknowledgements We are very grateful to Prof. Roberto Cominetti and the
referees for their really helpful and constructive comments; in particular to one of
the referees for bringing to our attention references [7] and [13].

References

1. Anh, P.N., Muu, L.D.: Coupling the Banach Contraction Mapping Principle
and the Proximal Point Algorithm for Solving Monotone Variational Inequali-
ties. Acta Math. Vietnam. 29, 119–133 (2004)

2. Aubin, J.P., Ekeland, I.: Applied Nonlinear Analysis. John Wiley and Sons
Inc., New York (1984)

3. Blum, E., Oettli, W.: From Optimization and Variational Inequalities to Equi-
librium Problems. The Math. Stud. 63, 123–145 (1994)

4. Cohen, G.: Auxiliary Problem Principle Extended to Variational Inequalities.
J. Optimization Theory Appl. 59, 325–333 (1988)



A Bundle Method for Solving EPs 25
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14. Lemaréchal, C., Nemirovskii, A., Nesterov, Y.: New Variants of Bundle Meth-
ods. Math. Program. 69 (1), 111–147 (1995)
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