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Abstract.We study Bessel processes BESδ(x) in terms of
the Kingman convolution method. In particular, we propose
a higher dimensional model of the Kingman convolution al-
gebras in particular and Urbanik convolution algebras in gen-
eral. We show that every Bessel process BESδ(0) ( starting
from 0) is induced by the Kingman convolution. Moreover,
a new concept of increments of stochastic processes is intro-
duced. It permits to regard Bessel processes as ”stationary
and independent increments processes”.
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I. Introduction: This study is inspired by a distinguished
part of Bessel processes in financial mathematics for decades.
Indeed, if {Wt} is a δ-dimensional Brownian motion (BM δ)
and we put B = ‖W‖. By virtue of Revuz-Yor [10],p.439,we
have

(1.1) B2
t = B2

0 + 2
∫ t

0

Bsdβs + δt,

where W is a linear BM. Consider, for any real number δ ≥
0, x ≥ 0, the following SDE

(1.2) Zt = x + 2
∫ t

0

√
|Zs|dWs + δt.

Note that (1.2) is a special case of the Cox-Ingersoll-Ross(CIR)
family of diffusions ([2]) which have unique solutions. More-
over,these solutions are strong, nonnegative and adapted w.r.t.
the natural filtration {Ft} of {Wt}. Consequently, in the case
δ ≥ 0, x ≥ 0, the absolute sign in (1.2) can be omitted and
{Zt} can be modeled as short term interest rates (cf. Cox-
Ingersoll-Ross [2]).

1.1 Definition( cf. Revuz-Yor [10, XI] For every δ ≥ 0, x ≥
0, the unique strong solution of the equation (1.2) is called the
square of δ-dimensional Bessel process started at x and is de-
noted by BESQδ(x).Further, the square root of BESQδ(a2),
is called the Bessel process of dimension δ started at a and is
denoted by BESδ(a).



3

In the present paper we study the class of Bessel pro-
cesses BESδ(a), δ = 2(s + 1) ≥ 1 via the Kingman convo-
lution method and will use ”s” as the index of the Bessel
process.

Let P denote the class of all p.m.’s on the positive half-
line R+ endowed with the weak convergence and ∗1,δ, δ > 1
denote the Kingman convolution (Hankel transforms) which
was introduced by Kingman [5] in connection with the ad-
dition of independent spherically symmetric random vectors
in Euclidean δ-space. Namely, for each continuous bounded
function f on R+ we write :

∫ ∞

0

f(x)µ ∗1,δ ν(dx) =
Γ(s + 1)√
πΓ(s + 1

2 )
∫ ∞

0

∫ ∞

0

∫ 1

−1

f((x2 + 2uxy + y2)1/2)(1.3)

(1− u2)s−1/2µ(dx)ν(dy)du,

where µ, ν ∈ P , δ = 2(s + 1) > 1 ( cf.Kingman [5] and Ur-
banik [16]). In what follows, for the sake of simplicity, the
Kingman convolution ∗1,δ will be denoted shortly as ◦.The
algebra (P, ◦) is the most important example of Urbanik con-
volution algebras (cf Urbanik [16]). In language of the Ur-
banik convolution algebras, the characteristic measure, say
σs, of the Kingman convolution has the Rayleigh density

(1.4) dσs(y) = 2(s + 1)s+1Γ−1(s + 1)y2s+1exp(−(s + 1)y2)
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with the characteristic exponent κ = 2 and the kernel Λs

(1.5) Λs(x) = Γ(s + 1)Js(x)/(1/2x)s.

It is known (cf. Kingman [5], Theorem 1), that the kernel
Λs itself is an ordinary ch.f. of a p.m., say Fs, defined on the
interval [-1,1]. Thus if θs denotes a r.v. with distribution Fs

then for each t ∈ R+,

(1.6.) Λs(t) = Eexp(itθs) =
∫ 1

−1

exp(itx)dFs(x).

The radial characteristic function (rad.ch.f.) of a p.m. µ ∈ P,
denoted by µ̂(u), is defined by

(1.7) µ̂(u) =
∫ ∞

0

Λs(ux)µ(dx),

for every u ∈ R+. In particular,the rad.ch.f. of σs is

(1.8) σ̂s(u) = exp(−u2/2), u ∈ R+.
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II Cartesian product of Kingman convolutions1

Denote by R+k, k = 1, 2, ... the k-dimensional nonnegative
cone of Rk and P(R+k) the class of all p.m.’s on R+k

equipped with the weak convergence. Let F1,F2 ∈ P(R+k)
be of the product form

(2.1) Fi = τ1
i × ...× τk

i ,

where τ j
i ∈ P, j=1,2,... and i=1,2. We put

(2.2) F1©kF2 = (F 1
1 ◦ F 2

1 )× ...× (F k
1 ◦ F k

2 ).

Since convex combinations of p.m.’s of the form (2.1) are
dense in P(R+k) the relation (2.2) can be extended to arbi-
trary p.m.’s on R+k. For every F ∈ P(R+k) the k-dimensional
rad.ch.f F̂(t), t ∈ Rk+, is defined by

(2.3) F̂(t) =
∫

R+k

k∏

j=1

Λs(tjxj)F(dx),

1Higher dimensional Urbanik convolution algebras can be intro-
duced in the same way as here for the Kingman convolution case but
this subject will be treated systematically else where.
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Let θ, θ1, ..., θk be i.i.d. r.v’s with the common distribution
Fs. Further, suppose that

X = (X1, ..., Xk) and Θ = (θ1, ..., θk)

be R+k-valued independent r.v.’s such that X d= F. Set

(2.4) ΘX = {θ1X1, ..., θkXk}.

Then, the following formula is the multidimensional general-
ization of (1.6):

(2.5) F̂(t) = E(ei<t,ΘX>),

where t = (t1, ..., tk) ∈ R+k and <,> denotes the inner
product in Rk. In fact, we have

E(ei<(θ1t1,...,θktk),X>)

=
∫

R+k

E(ei
Pk

j=1(tjxjθj F (dx)(2.6)

=
∫

R+k

Πk
j=1Λs(tjxj)F (dx)

= F̂(t).

Thus, F̂ (t) is also an ordinary k-dimensional ch.f., and hence
it is uniformly continuous. For vectors x ∈ R+k the general-
ized translation operators(g.t.o.’s) Tx acting on the Banach
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space Cb(R+k) of real bounded continuous functions f on R+k

are defined, for each y ∈ R+k, by

(2.7) Txf(y) =
∫

R+k

f(u){δx ©k δy}(du).

In terms of these g.t.o.’s the k-dimensional rad.ch.f. of p.m.’s
on R+k can be characterized as the following:

Theorem 2.1 A real bounded continuous function f on R+k

is a (k-dimensional) rad.ch.f. of a p.m., if and only if f(0) =
1 and f is {Tx}-nonnegative definite in the sense that for any
x1, ...,xk ∈ Rk and λ1, ..., λk ∈ C

k∑

i,j=1

λiλ̄jTxif(xj) > 0.

(See Vólkovich [18] for the proof).

Lemma 2.2 Every p.m. F ∈ P(R+k) is uniquely deter-
mined by its k-dimensional rad.ch.f. F̂ and the following for-
mula holds:

(2.8) ̂F1 ©k F2(t) = F̂1(t)F̂2(t),

F1,F2 ∈ P(R+k) and t ∈ R+k.
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Proof The formula (2.8) follows from formulas (1.3) and
(2.2). Now using the formulas (2.3), (2.5) and integrating
the function F̂(t1u1, ..., tkuk), k-times w.r.to σs , we get

∫

R+k

F̂(t1u1, ..., tkuk)σs(du1)...σs(duk) =(2.9)

∫

R+
...

∫

R+k

k∏

j=1

Λs(tjxjuj)F(dx)σs(du1)...σs(duk)

=
∫

R+k

k∏

j=1

exp{−t2jx
2
j}F(dx),

which, by change of variables yj = x2
j , j = 1, ..., k and by the

uniqueness of the k-dimensional Laplace transform, implies
that F is uniquely determined by the left-hand side of (2.9).

The following theorem is a simple consequence of (1.3)
and (2.2).

Theorem 2.3 The pair (P(R+k,©k) is a commutative topo-
logical semigroup with δ0 as the unit element. Moreover, the
operation ©k is distributive w.r.t. convex combinations of
p.m.’s ∈ P(R+k).

In the sequel, the pair (P(R+k,©k) will be called a k-
dimensional Kingman convolution algebra. It is the same
as in the case k=1, the i.d. elements can be defined as the
following: A p.m. µ ∈ P(R+k is called i.d.if for every natural
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m there exists a p.m. µm such that µ = µm ©k µm...µm ©k

µm(m terms).

Now observe that the function

(2.10) Σ̂s,k(t1, t2, ..., tk) =
k∏

j=1

exp(−t2j ),

where tj , j = 1, 2, ..., k ∈ R+ is the k-dimensional rad.ch.f. of
the distribution

(2.11) Σs,k = σs × ...× σs (k terms)

being the k-fold Cartesian product of σs. In the sequel, the
Σs,k will be called the k-dimensional Rayleigh distribution .

Now, let us denote by ID(©k) the class of all i.d.p.m.’s
in (P(R+k,©k). The following theorem stands for a slight
generalization of Theorem 7 in Kingman [5] and its proof is
omitted.

Theorem 2.5 µ ∈ ID(©k) if and only if there exist a σ-
finite measure M on R+k with the property that M({0}) = 0,
M is finite outside every neighborhood of 0 and

∫

R+k

‖x‖2
1 + ‖x‖2 M(dx) < ∞
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and for each t = (t1, ..., tk) ∈ Rk

−logµ̂(t) =(2.12)
∫

R+k

(1−
k∏

j=1

Λs(< tj , xj >)
‖x‖2

1 + ‖x‖2 M(dx).

III Convolution structure of Bessel processes

Given a p.m. µ ∈ P and n=1,2,... we put, for any x ∈
R+, B ∈ B(R+),

(3.1) Pn(x,E) = δx ◦ µ◦n(E),

here the power is taken in the convolution ◦ sense. Us-
ing the rad.ch.f. one can show that {Pn(x,E)} satisfies the
Chapman-Kolmogorov equation and therefore, there exists a
homogeneous Markov sequence, say {Sx

n}, n=0,1,2,..., with
{Pn(x,E)} as its transition probability. More generally,suppose
that {µk, k = 1, 2, ...} is a sequence of p.m’s on R+. Put, for
any 0 6 n < m, x ∈ R+, E ∈ B(R+),

(3.2) Pn,m(x,E) = δx ◦ µn ◦ µn+1 ◦ ... ◦ µm−1(E).
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Then, Pn,m(x, E) satisfies the Chapman-Kolmogorov equa-
tion and therefore, there exists a Markov sequence {Xx

n}, n =
0, 1, 2, ... with the transition probability Pn,m(x,E).

In what follows we will discuss the case of Bessel pro-
cesses which stand for a continuous counter part of the above
symmetric random walks.

Suppose that µ is an i.d.p.m. w.r.t. the Kingman con-
volution ◦.Putting

(3.3) q(t, x, E) := µ◦t ◦ δx(E)

and taking into account the fact that the family q(t, x, .) of
distributions satisfies the Chapman-Kolmogorov equation and
therefore, it stands for a transition probability of a homoge-
neous strong Markov Feller process, say {Xx

t }, t, x ∈ R+.
and, moreover {Xx

t } is stochastically continuous and has a
CADLAG version (cf.Nguyen [13], Theorem 2.6).

3.1 Definition A stochastic process {Xx
t } is called a Lévy-

type ( or, ◦-Lévy ) process if (i) Xx
0 = x (P.1);(ii) {Xx

t } is
strong Markov Feller process with transition probability of the
form (3.3); (iii){Xx

t } is a stochastically continuous process
with CADLAG realizations with (P.1).

It is evident that all Lévy processes are ∗-Lévy ones. The
simplest example of Lévy-type but non-Lévy processes is ab-
solute value of the linear BM. Similarly,the following theorem
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shows that Bessel processes starting from 0 stands for Lévy
type processes induced by Kingman convolutions.

3.2 Theorem Let {Bδ
t } denote a Lévy-type process which

has transition probability (3.3) with x=0 and µ = σs. Then,
up to a scale change, {Bδ

t } and BESδ(0) have the same dis-
tribution. Consequently, they are induced by the Kingman
convolution.

Proof. Let pδ
x denote the law of BESδ(x), δ ≥ 0, x ≥ 0

on C(R+,R) (cf. Revuz-Yor [10],XII P.445) which entails
that the density pδ

t (0, y) of the Bessel semigroup is found
(cf.Revuz-Yor [10],XII P.446), for δ ≥ 0, x = 0, to

(3.4) P δ
t (0, y) = 2−st−(s+1)Γ(s + 1)−1y2s+1exp(−y2/2t).

It should be noted that functions (3.4) are Rayleigh functions
of y. In addition, if t=2 we get P δ(0) = σs. Next, by(1.8),
we have

σ̂◦ts (u) = exp(−tu2/4(s + 1)), u ≥ 0.

Our further aim is to prove that, up to a scale change,
the rad.ch.f. of σ◦ts is equal to the rad.ch.f.of P δ

t (0, y). Accord-
ingly, integrating the kernel Λs(uz) w.r.t. P δ

t (0, z) it follows,
by (1.3), (1.5), (3.4) that the rad.ch.f. of P δ

t (0, y) is given,
for each u ≥ 0, by

(3.5) P̂ δ
t (0, y)(u) =

∫ ∞

0

Λs(uz)P δ
t (0, z)dz
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= 2−st−(s+1)Γ(s + 1)−1

∫ ∞

0

z2s+1Λs(uz)exp(−z2/2t)dz

Hence and by virtue of the Weber integral1 we have

q̂δ
t (0, y)(u)

= {2−st−(s+1)Γ(s + 1)−1}{2−12s+1ts+1Γ(s + 1)e−
tu2
2

= σ̂◦ts (u), u ≥ 0,

which shows that
qδ
t (0) = σ◦ts .

IV Bessel processes as stationary independent ”in-
crements” processes

Suppose that Xj , j = 1, 2, ... are nonnegative independent
r.v.’s with the corresponding distributions FXj , j = 1, 2, ...
and θ, θ1, θ2... are i.i.d. r.v’s with the common distribution

1From Watson [19] , p.394 we have, for s ≥ −1/2, a ≥ 0, p > 0,Z ∞

0
ts+1Js(at)e−p2t2dt = as(2p2)−s−1e−a2/4p2

which may be written asZ ∞

0
t2s+1Λs(at)e−p2t2dt =

1

2
Γ(s + 1)p−2(s+1)e−a2/4p2

.
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Fs and the r.v.’s Xj , j = 1, 2, ....θ, θ1, θ2, ... are independent.
Following Kingman [5] we say that for a fixed s > −1/2 any
one of the equivalent r.v.’s

(4.1) X1 ⊕X2 :=
√

X2
1 + X2

2 + 2X1Y2θ1

is a radial sum of the two independent nonnegative r.v.’s
X1, X2. By induction, the radial sum X1 ⊕ X2 ⊕ ... ⊕ Xk

is defined for any finite k=2,3,.... It should be noted [5] that
the operation ⊕ is associative.

4.1 Definition Let Bb be the ring of subsets of a non-empty
bounded Borel subsets of R+. A function

M : Bb → L+,

where L+ = K+(Ω,F , P ) denotes the class of all nonnegative
r.v.’s on the probability space (Ω,F , P ), is said to be an ◦-
scattered random measure, if (i) M(∅) = 0 (P.1), (ii) For
any A,B ∈ Bb, A ∩ B = ∅, then M(A) and M(B) are
independent and

M(A ∪B) d= M(A)⊕M(B)

(iii) For any pairwise disjoint sets A1, A2, ... ∈ Bb, with
the union in Calb the r.v.’s M(Aj), j = 1, 2, ... are indepen-
dent and

M(∪∞j=1Aj)
d=

∞⊕

j=1

M(Aj).
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It is well known that if {W (t)}, t ∈ R+ is a Wiener process,
then there exists a Gaussian stochastic measure M(A), A ∈
B0, where Bb is the ring of bounded Borel subsets of R+ with
the property that, for every t > 0, we have W (t) = M((0, t]).
The same it is also true for Bessel processes. Namely, we get

4.2 Theorem Let {Bδ
t } denote a Bessel process starting

from 0. Then there exists a unique ( up to finite dimensional
distributions) ◦-scattered r.m.B(A), A ∈ Bb with the Lebesgue
measure as its control measure such that for each t > s > 0
we have

(4.2) B([0, t]) = Bδ
s ⊕B((s, t]) d= σt−s

s .

We proceed the proof of the Theorem by proving the following
Lemma.

4.3 Lemma Let π := {0 = t0 < t1 < t2 < ...} be a subdi-
vision of R+. Then there exist independent r.v.’s X1, X2, ...
such that

σtk−tk−1
s

d= Xk, k = 0, 1, 2, ...

.Moreover,we have

(4.3) Bδ
tn

d= X1 ⊕X2 ⊕ ...⊕Xn (n = 2, 3, ....

and

(4.4) B((tn, t(n+r])
d= σtn+r−tn

s



16

Proof. Following the ideal of Kingman([5], pp.20) let us take
as sample space Ω the Cartesian product of countably many
intervals R+ with countably many intervals [-1,1]. The prob-
ability measure is defined on Ω as the product of the distri-
butions σ

tk−tk−1
s , k = 1, 2, ... on each of the first set of R+

together with the distribution Fs (see(1.6))on each of the sec-
ond set. If the typical point ω ∈ Ω has components

X1(ω), X2(ω), ...; η1(ω), η2(ω), ...,

then Sm(ω) is defined inductively by

S0 = 0,

Sm+1(ω) =(4.4)

{S2
m(ω) + X2

m+1(ω) + 2ηm(ω)Sm(ω)Xm+1(ω)} 1
2 .

Thus, we have
Sm+1 = Sm ⊕Xm+1

which, by virtue of the associativity of ⊕, implies that for
each m =2,3,...

(4.5) Sm = X1 ⊕X2 ⊕ ...⊕Xm.

Moreover, since Xk, k = 2, 3, ... are independent it follows
that

(4.6) Sm
d= σtm

d= B(tm).
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Now, since the operation ⊕ is associative (cf. Kingman [5],The-
orem 1), we can show that

(4.7) Sm+r = Sm ⊕ Sm
r ,

where Sm
r is defined inductively by

(4.8) Sm
0 = 0, Sm

r+1 = Sm
r ⊕Xm+r+1.

Note, by (4.6,7,8), that

(4.9) σtm+r−tm
d= Sm

r
d=

(
Xm ⊕ ...⊕Xm+r

)

which entails (4.3,4).

Proof of Theorem 4.2. Let B0) denote the class of
finite unions of disjoint finite intervals (a, b] i.e.

∪k
j=1Ij , Ij = (t2j , t2j+1], j = 0, 1, ..., k = 1, 2, ...

We put

B(∪k
j=1Ij) =

k⊕

j=1

B((Ij)).

Finally, using the transfinite induction and by Lemma 4.4
and the usual extension method of random interval functions
one can gets an ◦-random measure B(.) on Bb with the re-
quired properties.
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4.2 Definition For every 0 6 a 6 b the quantity M((a, b])
is called the increment-type of the Bessel processes BESδ

t .
Mor3eover, from Theorems 3.2 and 4.2 we have

Theorem Every Bessel process which starts from 0 has a
modification as a process with stationary and increments-type
process.

The above theorem permits us to construct a new stochastic
integration with respect Bessel processes with convergence in
distribution which will be discuss in a subsequent paper.
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