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Abstract. We consider two-phase flow models which constitute from six governing equations
arriving from mathematical formulation of fundamental balance laws of mass, momentum and energy,
and a seventh additional closing equation. Motivated from the work of Kroener and Thanh (SIAM
J. Numer. Anal, 2005), we propose a well-balanced numerical method for a general model of two-
phase flows. The point is to use the addition to leave the system with only one phase having source
terms. Then, restricting to the Baer-Nunziato model, where the closing equation the the compaction
dynamics equation, we employ the same technique as in the Engquist-Osher scheme to deal with the
compaction dynamics equation. This makes the closure of the numerical method.
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1. Introduction. Multi-phase flows occur so commonly both in na-
ture and in technology. Here we have the fluid composites of materials
such that each material may be diffused into other ones. More impor-
tantly, the fluid composites can be made to flow. Example can be seen
in nature such as clouds are droplets of liquids moving in a gas. Oil, gas,
and water coexist in rock. In energy industry we have gas bubbles to
nucleate, grow, and coalesce. In chemical processes, we have mixing of
(possibly reactive) materials.

The dynamics of two-phase flows can be described by a system of six
equations arising from conservation of mass, momentum, and energy in
each phase, and an additional closure equation. If we denote the volume
fraction of the first phase, say solid, by αs, and the volume fraction of
the second phase, say gas, by αg, then we obviously have

αs + αg = 1.

Precisely, the governing equations are the following: Conservation of
mass, (see [9, 5]),

∂t(αsρs) + ∂x(αsρsus) = 0, (1.1)

∂t(αgρg) + ∂x(αgρgug) = 0, (1.2)
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conservation of momentum

∂t(αsρsus) + ∂x(αs(ρsu
2
s + ps)) = pN∂xαs, (1.3)

∂t(αgρgug) + ∂x(αg(ρgu
2
g + pg)) = − pN∂xαs, (1.4)

conservation of energy

∂t(αsρsEs) + ∂x(αsus(ρsEs + ps)) = pNwN∂xαs, (1.5)

∂t(αgρgEg) + ∂x(αgug(ρgEg + pg)) = − pNwN∂xαs. (1.6)

Here, as usual, ρk, pk, ek, Tk, Sk are the thermodynamical variables: spe-
cific volume, pressure, internal energy, absolute temperature, and specific
entropy; uk, Ek are the velocity and total energy of the k-phase, k = s, g.
The total energy is given by

Ek = ek +
u2

k

2
, k = s, l. (1.7)

The quantities pN , wN are given functions of us, ug, ρs, ρg, ps, pg.

For each phase of fluid there is a constitutive relation, known as the
equation of state, to characterize the fluid. However, the system (1.1)-
(1.6) is still under-determined, as the number of equations is less than
the number of variables by 1. To close the system, an obvious tendency
is to find an additional equation relating the variables. In the research
by Ransom and Hicks [17], the interfacial pressure pN is given by

pN =

ps

as

+
pg

ag

1

as

+
1

ag

, (1.8)

and the transport equation for volume fraction to close the system

∂tαs +
us + ug

2
∂xαs =

ps − pg

(as + ag)H
, (1.9)
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Fig. 1.1. A two-phase flow model

where as = csρs, cs = ∂ps/∂ρs, and ag = cgρg, cg = ∂pg/∂ρg are the
acoustic impedance and isentropic sound speed of the first and the second
phase, relatively, and H is the channel width, see Figure 1.1.

Another form of the additional equation is known as the compaction
dynamics equation

∂tαs + wN∂xαs = 0. (1.10)

The Baer-Numziato model, see [4, 5], consists of the equations (1.1)-(1.6)
and (1.10) with the choice pN = pg, wN = us.

Nevertheless, the additional equation as the transport volume frac-
tion (1.8) or compaction dynamics (1.9) is still controversial. Moreover,
it causes serious concerns as it is in nonconservative form. Another ten-
dency to make the system determined is to simplify the equations so that
some variable become constant and therefore the system becomes deter-
mined. In [12], the authors considered incompressible two-fluid models,
and propose the closure equation to be

p1 = p2 = p. (1.11)

The multi-phase flows models have been a major challenge for many
authors. The theoretical difficulty is that the system is nonconservative.
Roughly speaking, it conserves ”wrong” quantities. A general approach
to such systems was proposed by Dal Maso, LeFloch, and Murat [8].
Another way can be found in Kröner and Thanh [14]. The numerical
obstacle is that for standard numerical schemes, tests often give unsatis-
factory results. This is the cause of the nonconservative terms.

In this work we will propose a well-balanced numerical method to deal
with the system (1.1)-1.6, as motivated from the work of Kroener-Thanh
[13]. This can be described as follows: first we restrict attention to only
one phase, then it looks like a model of fluid flows in a nozzle with variable
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cross-sections. Second, we can sum up the corresponding balance laws to
get the conservation of the total of the corresponding quantities: mass,
momentum, and energy. Finally, to complete the method, we employ the
idea in using backward/forward differences for the compaction dynamics
equation of the Baer-Nunziato model. The last one may also be used for
other models involving different closure equation.

The method we use was originally developed in [13, 11, 10], and ex-
tended to more general problems in [6, 7, 3]. We note that some proposal
for the compaction dynamics equation and numerical methods for multi-
phase flows were proposed in the works [1, 15, 2].

2. Backgrounds: Non-strict Hyperbolicity and
Non-hyperbolicity. Let us consider the following model of two-phase
flows consisting of the balance laws of mass, momentum, energy, and the
compaction dynamics equation

∂t(αsρs) + ∂x(αsρsus) = 0,

∂t(αsρsus) + ∂x(αs(ρsu
2
s + ps)) = pN∂xαs,

∂t(αsρsEs) + ∂x(αsus(ρsEs + ps)) = pNwN∂xαs,

∂t(αgρgug) + ∂x(αg(ρgu
2
g + pg)) = − pN∂xαs,

∂t(αgρg) + ∂x(αgρgug) = 0,

∂t(αgρgEg) + ∂x(αgug(ρgEg + pg)) = − pNwN∂xαs.

∂tαs + wN∂xαs = 0.

(2.1)

For each phase of the flow, the equation of state is also needed. Fre-
quently, one has the following kinds of equations of state:

(a) Stiffened gas equation of state

pk = (γk − 1)ρkek − γkPk,∞ (2.2)

where γk > 1, Pk,∞ ≥ 0 are constants, k = s, g. For Pk,∞ = 0 we
obtain the perfect gas equation of state.

(b) Van der Waals equation of state

pk =
RkTk

vk − bk

−
ck

v2
k

, (2.3)

vk = 1/ρk is the specific volume, bk, ck, Rk are positive constants,
k = s, g.
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(c) Mie Gruneisen equation of state

pk = (γk(ρk) − 1)ρkek − γk(ρk)Pk,∞(ρk) (2.4)

where γk > 1, Pk,∞ are constants, k = s, g. This is a generalization
of (a) and it is commonly used for high pressure flows.

Since the right-hand side of (2.1) contains nonzero terms in differential
form, the system cannot be written in the conservative form. Let us
consider the characteristic fields of the system. Set the unknown vector
variable

U = (ρs, us, ps, ρg, ug, pg, αs). (2.5)

Then, the system of conservation laws with source terms (2.1) can be
re-written for smooth flows in the nonconservative form of balance laws
as

Ut + A(U)f(U) = 0 (2.6)

where the Jacobian Matrix A(U) is given by
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(2.7)

where

c2
k =

pk

ρ2
k

−
∂k

∂ρk

∂ek

∂pk

, c2
k,N =

pN

ρ2
k

−
∂k

∂ρk

∂ek

∂pk

(2.8)
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representing the sound speed and the sound speed at the interfacial pres-
sure condition of the k phase, k = s, g, respectively.

Solving the characteristic equation for the system

|A − λI| = 0

gives us seven eigenvalues

λ−

k = uk − ck,

λk = uk,

λ+
k = uk + ck, k = s, g

λN = wN .

(2.9)

It is derived from (2.9) that the eigenvalues λk, λN may eventually
coincide and interchange the order with any of the other eigenvalues,
whenever defined. Consequently, the system is is not strictly hyperbolic.
Moreover, for Van der Waals fluids for example, the eigenvalues may be
complex. Thus, the system may not be hyperbolic in a certain region for
certain real fluids such as Van der Waals fluids. The last one was also
observed in incompressible two-fluid models in [12].

3. Component of the scheme: Stationary waves. In this sec-
tion, we will investigate stationary waves of the system. These waves play
a vital role in the construction of the numerical method. For simplicity,
we restrict our consideration to the following under-determined system
describing the dynamics of two-phase flows

∂t(αsρs) + ∂x(αsρsus) = 0,

∂t(αsρsus) + ∂x(αs(ρsu
2
s + ps)) = pg∂xαs,

∂t(αsρsEs) + ∂x(αsus(ρsEs + ps)) = pgug∂xαs,

∂t(αgρg) + ∂x(αgρgug) = 0,

∂t(αgρgug) + ∂x(αg(ρgu
2
g + pg)) = − pg∂xαs,

∂t(αgρgEg) + ∂x(αgug(ρgEg + pg)) = − pgug∂xαs

∂tαs + us∂xαs = 0.

(3.1)

The system (3.1) can be simplified in the following way: we keep the
equations of the second phase (phase of gas), and add up each equation
of the second phase to the corresponding equation of the first phase. We
thus obtain an equivalent simpler system where the three new equations
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have the form of conservation laws of the total mass, momentum, and
energy:

∂t(αgρg) + ∂x(αgρgug) = 0,

∂t(αgρgug) + ∂x(αg(ρgu
2
g + pg)) = pg∂xαg,

∂t(αgρgEg) + ∂x(αgug(ρgEg + pg)) = pgug∂xαg,

∂t(
∑

αρ) + ∂x(
∑

αρu) = 0,

∂t(
∑

αρu) + ∂x(
∑

α(ρu2 + p)) = 0

∂t(
∑

αρE) + ∂x(
∑

αu(ρE + p)) = 0

∂tαs + us∂xαs = 0.

(3.2)

Let us investigate the stationary contacts of the system (3.2). As seen
in [13], stationary contacts are just the limit of stationary smooth solu-
tion of (3.2). Let us investigate the later in more details. A stationary
smooth solution U of (3.2) is a time-independent smooth solution. Conse-
quently, the partial derivatives in t in (3.2) is equal to zero and we omit
them. Furthermore, we will show next that it is sufficient to consider
the equation of the gas phase and the compaction dynamics equation to
determine stationary waves.

Therefore, stationary solutions of the initial value problem for (3.2)
with smooth initial data satisfy the following ordinary differential equa-
tions

d

dx
(αgρgug) = 0,

d

dx
(αg(ρgu

2
g + pg)) = pg

d

dx
αg,

d

dx
(αgug(ρgEg + pg)) = pgug

d

dx
αg,

(3.3)

with the smooth initial data

(ρg, ug, pg, αg)(x, 0) = (ρg,0(x), ug,0(x), pg,0(x), αg,0(x)). (3.4)

In the sequel, for simplicity we will denote

d(.)

dx
= (.)′.
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To determine stationary wave curve, we need the following lemma, which
is just a modification of the one of [13].

Lemma 3.1. The system (3.3) for smooth solutions is equivalent to

(αgρgug)
′ = 0,

ugu
′

g +
p′g
ρg

= 0,

S ′

g = 0,

(3.5)

Consequently, the entropy is conserved across any stationary smooth so-
lution of the initial value problem for (3.2).

It is implied from Lemma 3.1 that the non-isentropic system of the gas
phase is reduced to the isentropic case for stationary solutions. Therefore,
stationary contacts of (3.2) can be defined as the limit of sequences of
stationary smooth solutions in a similar way of the isentropic gases (see
[16]).

Proof. Given the initial data U0. The first equation of (3.3) can be
expressed as

αgρgug = C,

for some constant C depending only on U0. Taking into account this, we
can re-write the second equation as

(C · ug + αg · pg)
′ = pg · α

′

g,

or

C · u′

g + αg · p
′

g = 0.

Substituting C, we obtain

αgρg(ugu
′

g +
p′g
ρg

) = 0.

Since the volume fraction is assumed to be positive, we obtain the the
second equation in the lemma.
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Now, the compaction dynamics equation implies that for stationary
waves:

us∂xαs = 0.

Therefore, the equations of balance of energy becomes

d

dx
(αgug(ρgEg + pg)) = 0, (3.6)

or

d

dx
(αgugρg)Eg + (αgugρg)

dE

dx
+

d

dx

(

αgugρg

pg

ρg

)

= 0.

The last equation is equivalent to

C · (Eg +
pg

ρg

)′ = 0.

Besides, the thermodynamics identity says that

TdS = deg + pgdvg, vg =
1

ρg

.

Since we are considering stationary waves, i.e., solutions independent of
time, the thermodynamics identity applied to this kind of waves gives

TgS
′

g = e′g + pgv
′

g. (3.7)

It is then derived from (3.6)-(3.7) that

e′g + ugu
′

g + (pgvg)
′ = 0,

or

TgS
′

g +
p′g
ρg

+ ugu
′

g = 0.
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Using the second equation of (3.5) which is just proved, we can reduce
the last equation as

S ′

g =
dSg

dx
= 0

which is the third equation of (3.5).

The last statement of the lemma can be now proved, since

dS =
dS

dx
dx +

dS

dt
dt = 0, (3.8)

The proof of Lemma 3.1 is complete.
�

The fact that the specific entropy is constant across a stationary con-
tacts (see for example [13]), the last equation becomes trivial. And it is
not difficult to check that for states connecting by stationary contacts,
one has

[αgρgug] = 0

[
u2

g

2
+ hg(ρg, Sg−)] = 0,

(3.9)

where hg is the enthalpy of the gas phase, given by the formula

∂h(ρg, Sg)

∂ρg

=
pg

ρg

. (3.10)

Thus, the determination of stationary waves of the system (3.2) is
similar to that in [13].

4. Construction of the new scheme.

4.1. Description. Observe that the conservative variable of the sys-
tem (3.2) is (U, αs)

t with

U =

(

Ug

V = Ug + Us

)

, (4.1)
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where

Ug = (αgρg, αgρgug, αgρgeg)
T

Us = (αsρs, αsρsus, αsρses)
T ,

(4.2)

Given a uniform time step ∆t, and a spacial mesh size ∆x, setting
xj = j∆x, j ∈ Z, and tn = n∆t, n ∈ N, we denote by Un

j in the
sequel the approximation of the values U(xj, tn) of the exact solution
U = (aρ, aρu, aρe) of (1.1).

Then, from the notation (4.1), the approximative vector has the form
(Un

j , αn
s,j)

t with

Un
j =

(

Un
g,j

V n
j

)

. (4.3)

We define the stationary states (Un
j,±, αn

s,j)
t with

Un
j,± =

(

Un
g,j,±

V n
j

)

. (4.4)

Set

λ =
∆t

∆x
. (4.5)

The constant λ is also required to satisfy the so-called C.F.L. stability
condition

λ max
U

|f ′(U)| ≤ 1. (4.6)

The motivation of our study in the following new scheme is to take into
account the effect of stationary waves. The method can be decomposed in
two stages: first we deal with the stationary waves, and then we descretize
the system. The first stage constitutes from two steps:
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(i) First at each grid node xj, j ∈ Z, we determine two stationary
waves of (1.1) in which one stationary wave arrive at xj with the
cross-section level αn

g,j from the given left-hand state Un
j−1 (with

αn
g,j−1) by a right-hand state, denoted by Un

g,j−1,+, and another
stationary wave arrive at xj with the cross-section level αn

g,j from
the given right-hand state Un

g,j+1 (with αn
g,j+1) by a left-hand state,

denoted by Un
g,j+1,−;

(ii) Second, taking a standard numerical scheme for computing Un+1
g,j

at time t = (n + 1)h, we substitute Un
g,j+1 by Un

g,j+1,−, substitute
Un

g,j−1 by Un
g,j−1,+.

Precisely, the new scheme is defined by:

Un+1
j = Un

j − λ(gN(Un
j , Un

j+1,−) − gN(Un
j−1,+, Un

j )), (4.7)

where gN(U, V ) can be any standard numerical flux for gas dynamics
equations, and Un

j+1,−, Un
j−1,+ are given shortly below.

In the scheme (4.7), the states Un
j+1,−, Un

j−1,+ defined by (4.4) where
Un

g,j+1,− and Un
g,j−1,+ are determined from observing that the entropy is

constant across each stationary jump, and by computing ρn
g,j+1,−, un

g,j+1,−

from the following equations

αn
j+1ρ

n
g,j+1u

n
g,j+1 = αn

j ρn
g,j+1,−un

g,j+1,−,

(un
g,j+1)

2

2
+ hg(ρ

n
g,j+1) =

(un
g,j+1,−)2

2
+ hg(ρ

n
g,j+1,−),

(4.8)

and computing ρn
g,j−1,+, un

g,j−1,+ from the equations

αn
j−1ρ

n
g,j−1u

n
g,j−1 = αn

j ρn
g,j−1,+un

g,j−1,+,

(un
g,j−1)

2

2
+ hg(ρ

n
g,j−1) =

(un
g,j−1,+)2

2
+ hg(ρ

n
g,j−1,+).

(4.9)

4.2. Closure of method: discretization of the compaction dy-
namics equation. Let us consider the compaction dynamics equation
of the Baer-Nonziato model

∂tαs + us∂xαs = 0. (4.10)
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Since this is a nonconservative balance law, it is expected to have cer-
tain difficulty dealing with it. Here, we propose to employ the technique
in the Engquist-Osher scheme. We first write

u = max{u, 0} + min{u, 0} = u+ + u−. (4.11)

and then we apply the backward difference scheme for u+ and forward
difference scheme for u−. This can be done as arrive at

αn+1
j = αn

j − λ
(

u+,n
j (αn

j − αn
j−1) + u−,n

j (αn
j+1 − αn

j )
)

. (4.12)

Thus, the scheme is well-defined from (4.7) and (4.12).

4.3. Efficiency of the New Scheme. The scheme constructed in
the last subsection was shown by experiments to be balanced and fast
when we consider the following one-dimensional space gas dynamics equa-
tions that describe the evolution of a gas flow in a nozzle with cross-
sectional area a = a(x) > 0, x ∈ RI :

∂t(aρ) + ∂x(aρu) = 0,

∂t(aρu) + ∂x(a(ρu2 + p)) = p∂xa,

∂t(aρE) + ∂x(au(ρE + p)) = 0, x ∈ RI , t > 0.

(4.13)

The model (4.13) can be seen as the restriction on one phase of the
model of two-phase flow (1.1)-(1.6).

In this case, we have the exact solutions (see [16]) to compare between
the new scheme and other known schemes. For example, we can see from
the Figure 4.1 that the stationary contact is well-approximated with only
a short time by the new scheme, while there is significant oscillation if
we use known schemes, see Figure 4.2. The reader is referred to see [13]
where many tests are available to justify the efficiency of the method.
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