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quasiequilibrium problems · Solution sets.

1. Introduction

The equilibrium problem, introduced in Blum and Oettli (1994), has been being

studied intensively so far with more and more general problem settings to in-

clude various practical optimization - related problems. The first main focus has

been made for existence conditions, see e.g. recent papers and references therein:

Bianchi and Schaible (2004), Iusem and Sosa (2003), and Hai and Khanh (in

press) for equilibrium problems, Tan (2004), Luc and Tan (2004), and Hai and

Khanh (2006) for variational inclusion problems, Ansari et al. (2000, 2002), Lin

(2006), and Hai and Khanh (2006) for systems of equilibrium problems and Hai

and Khanh (in press) for systems of variational inclusion problems. Recently, to

model generally symmetric features in varying problems in practice, a symmetric

quasiequilibrium problem was proposed in Noor and Oettli (1994). This result

was extended to the vector case in Fu (2003), and Farajzadeh (2006) and to the

multivalued case in Anh and Khanh (submitted for publication).

Stability is a vital subject of applied mathematics. However, for the above-

mentioned problems there have been limited number of works in the literature,

see Bianchi and Pini (2003), Anh and Khanh (2004, 2006, 2006, in press, sub-

mitted for publication), and Ait Mansour and Riahi (2005). To the best of our

knowledge, no paper has been devoted to stability of symmetric equilibrium prob-

lems. This motivates our commitment in this note: investigating semicontinuity

of the solution sets of these problems at a general setting. Moreover, we try to

highlight kinds of semicontinuity, proposing also some semicontinuity - related

definitions to have a better insight. We pay attention on relationships of kinds of

semicontinuity-related properties too.
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In the sequel, if not otherwise stated, let X, Y and Z be Hausdorff topo-

logical vector spaces. Let Λ and M be topological spaces. Let K ⊆ X, D ⊆ Y

be nonempty. Let C ⊆ Z be closed with nonempty interior intC. Let S,A :

K × D × Λ → 2K , T, B : K × D × Λ → 2D, F : K × D × K × M → 2Z and

G : D×K ×D×M → 2Z be multivalued mappings. The parametric symmetric

quasiequilibrium problems under our consideration consist of, for (λ, µ) ∈ Λ×M ,

(SQEP1) finding (x̄, ȳ) ∈ K ×D such that x̄ ∈ S(x̄, ȳ, λ), ȳ ∈ T (x̄, ȳ, λ), and

F (x, ȳ, x∗, µ) ∩ (Z\ − intC) 6= ∅,∀x ∈ S(x̄, ȳ, λ),∀x∗ ∈ A(x̄, ȳ, λ),

G(y, x̄, y∗, µ) ∩ (Z\ − intC) 6= ∅,∀y ∈ T (x̄, ȳ, λ),∀y∗ ∈ B(x̄, λ);

(SQEP2) finding (x̄, ȳ) ∈ K ×D such that x̄ ∈ S(x̄, ȳ, λ), ȳ ∈ T (x̄, ȳ, λ), and

F (x, ȳ, x∗, µ) ⊆ Z\ − intC, ∀x ∈ S(x̄, ȳ, λ),∀x∗ ∈ A(x̄, ȳ, λ),

G(y, x̄, y∗, µ) ⊆ Z\ − intC, ∀y ∈ T (x̄, ȳ, λ),∀ȳ∗ ∈ B(x̄, y, λ).

Note that sufficient conditions for the solution existence of these problems

were provided in Anh and Khanh (submitted for publication). Therefore, we

now focus only on the solution stability, assuming that the referred solution al-

ways exists. Notice also that our problem setting includes all that of Noor and

Oettli (1994), Fu (2003), and Farajzadeh (2006) for symmetric quasiequilibrium

problems and hence of course that of quasiequilibrium problems (when Y = X,

G(y, x̄, y∗) ≡ C,B(x, y) = D and T (x, y) = clS(x, y)).

The layout of the paper is as follows. We supply some definitions and

preliminaries in the rest of this section. In Section 2, we derive various kinds

of semicontinuity of multivalued mappings and the relations of this concepts.

Section 3 is devoted to kinds of lower semicontinuity of the solution sets, while

different types of upper semicontinuity are the subjects of Section 4. In the next
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Section 5 we discuss some comparisons of the solution sets of our two problems.

Applications to a lower and upper bounded quasiequilibrium problem are pre-

sented in the final Section 6.

Recall now some notions. Let X and Y be as above and Q : X → 2Y be a

multifunction. Q is called lower semicontinuous (lsc) at x0 if: Q(x0) ∩ U 6= ∅ for

some open subset U ⊆ Y implies the existence of a neighborhood N of x0 such

that, ∀x ∈ N,Q(x) ∩ U 6= ∅. Q is upper semicontinuous (usc) at x0 if for each

open subset U ⊇ Q(x0), there is a neighborhood N of x0 such that U ⊇ Q(N).

Q is said to be Hausdorff lower semicontinuous (H-lsc) at x0 if for each neighbor-

hood B of the origin in Y , there is a neighborhood N of x0 such that Q(x0) ⊆

Q(x) + B, ∀x ∈ N . Q is termed Hausdorff upper semicontinuious (H-usc) at x0

if the last inclusion replaced by Q(x) ⊆ Q(x0) + B, ∀x ∈ N . Q is called closed at

x0 if, for each net (xα, yα) ∈ graphQ := {(x, y) | y ∈ Q(x)} : (xα, yα) → (x0, y0),

y0 ∈ Q(x0). We say that Q satisfies a certain property in a subset A ⊆ X if Q

satisfies it at every point of A. If A = domQ := {x | Q(x) 6= ∅} we omit “in

domQ” in the saying.

The following assertions are known and we give a reference only in cases of

nonpopular statements.

(a) Q is lsc at x0 if and only if ∀xα → x0. ∀y ∈ Q(x0),∃yα ∈ Q(xα), yα → y.

(b) Q is closed if and only if graphQ is closed.

(c) Q is closed at x0 if Q is H-usc at x0 and Q(x0) is closed (Anh and Khanh

2004).

(d) Q is H-usc at x0 if Q is usc at x0. Conversely, Q is usc at x0 if Q is H-usc

at x0 and Q(x0) is compact (Anh and Khanh 2004).

(e) Q is usc at x0 if Q(A) is compact for any compact subset A of domQ and
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Q is closed at x0.

(f) Q is usc at x0 if Y is compact and Q is closed at x0.

(g) Q is lsc at x0 if Q is H-lsc at x0. The converse is true if Q(x0) is compact.

(Hu and Parageorgiou 1997).

2. Various kinds of semicontinuity

We propose some definitions related to semicontinuity to have a better insight as

follows.

Definition 2.1. Let X be a Hausdorff topological space and Y be a topological

vector space and Q : X → 2Y and ∅ 6= U ⊆ Y .

(i) Q is called U -lower-level closed at x0 if Q(x0) ⊆ clU whenever Q(xα) ⊆
clU,∀α for some net xα → x0 (cl(.) means the closure of (.)).

(ii) Q is said to be U -Hausdorff-lower-level closed at x0 if there is ᾱ, H(x0) \

clU ⊆ Q(xᾱ) + B whenever a net xα → x0 and B is a neighborhood of 0.

(iii) Q is said to be U -upper-level closed at x0 if Q(x0) 6⊆ −intU whenever

Q(xα) 6⊆ −intU,∀α, for some net xα → x0.

(iv) Q is termed U -Hausdorff-upper-level closed at x0 if, for each neighborhood

B of 0, Q(x0) + B 6⊆ −intU whenever a net xα → x0 exists with Q(xα) 6⊆

−intU,∀α.

Note that if intU = ∅ then each Q satisfies both (iii) and (iv). Furthermore,

recall that Q is U -lower-level closed means that Q is U -lower-level closed at

every x ∈ domQ.

Next we define other relaxed semicontinuity properties.
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Definition 2.2. Let X,Y,Q and U be as in Definition 2.1.

(i) Q is said to be U -lower semicontinuous (U -lsc) at x0 if

[xα → x0, Q(x0) ∩ intU 6= ∅] =⇒ [∃ᾱ, Q(xᾱ) ∩ intU 6= ∅].

(ii) Q is said to be U -Hausdorff-lower semicontinuous (U -Hlsc) at x0 if, for

any xα → x0 and B (a neighborhood of 0 in Y ), there is ᾱ such that

Q(x0) ∩ intU ⊆ Q(xᾱ) + B.

(iii) Q is called U -upper semicontinuous (U -usc) at x0 if

[xα → x0, Q(x0) ⊆ intU ] =⇒ [∃ᾱ, Q(xᾱ) ⊆ intU ].

(iv) Q is termed U -Hausdorff-upper semicontinuous (U -Husc) at x0 if, for

[xα → x0, Q(x0) + B ⊆ intU for some neighborhood B of 0]

=⇒ [∃ᾱ, Q(xᾱ) ⊆ intU ].

(v) Q is called lower semicontinuous with respect to U at x0 if, ∀xα → x0,

∀y ∈ Q(x0) \ U , ∃ yα ∈ Q(xα), yα → y.

Similarly as for Definition 2.1 here intU may be empty.

Proposition 2.1. Let X, Y, Q and U be as in Definition 2.1.

(i) Q is U-lsc at x0 if and only if Q is Y \ U-lower-level closed at x0.

(ii) Q is U-Hlsc at x0 if and only if Q is Y \ U-Hausdorff-lower-level closed at

x0.

(iii) Q is U-usc at x0 if and only if Q is −U-upper-level closed at x0.
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(iv) Q is U-Husc at x0 if and only if Q is −U-Hausdorff-upper-level closed at

x0.

Proof. By the similarity we demonstrate only (i) and (iv).

(i) For the “only if” suppose Q is U -lsc at x0 but there is xα → x0 such that

Q(xα) ⊆ cl(Y \U) = Y \intU but Q(x0) 6⊆ Y \intU . Then Q(x0)∩intU 6= ∅.
Since Q is U -lsc at x0, there exists ᾱ with Q(xᾱ)∩intU 6= ∅, which is absurd.

For the “if” suppose Q is Y \ U -lower-level closed at x0 but there

exists xα → x0 such that Q(x0)∩ intU 6= ∅ and Q(xα)∩ intU = ∅,∀α. Then

Q(xα) ⊆ Y \ intU = cl(Y \ U). Since Q is Y \ U -lower-level closed at x0,

the last inclusion implies a contradiction that Q(x0) ⊆ Y \ intU .

(iv) For the “only if” suppose Q is U - Husc at x0 but a net xα tending to x0

exists such that Q(xα) 6⊆ intU , ∀α, and there is a neighborhood B of 0 such

that Q(x0) + B ⊆ intU . As Q is U - Husc at x0, the last inclusion implies

that ∃ᾱ, Q(xᾱ) ⊆ intU , which is impossible.

For the “if” suppose Q is −U -Hausdorff-upper-level closed but there

are xα → x0, a neighborhood B of x0 such that Q(x0) + B ⊆ intU and

Q(xα) 6⊆ intU,∀α. Then, by the −U -Hausdorff-upper-level closedness,

Q(x0) + B 6⊆ intU for each neighborhood B of 0, a contradiction. ¤

Proposition 2.2. Let X, Y, Q and U be as in Definition 2.1.

(i) Q is U-lower-level closed if and only if the lower-level set {x | Q(x) ⊆ clU}

is closed, if and only if Q is Y \ U-lsc.

(ii) Q is U-upper-level closed if and only if the upper-level set {x | Q(x) 6⊆
−intU} is closed, if and only if Q is −U-usc.
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(iii) Q is lsc at x0 if and only if Q is U-lower-level closed at x0 for each U ⊆ Y .

(iv) Q is Hlsc at x0 if and only if Q is U-Hausdorff-lower-level closed at x0 for

each U ⊆ Y .

(v) Q is usc at x0 if and only if Q is U-upper-level closed at x0 for each U ⊆ Y .

(vi) Q is Husc at x0 if and only if Q is U-Hausdorff-upper-level closed at x0 for

each U ⊆ Y .

Proof. (i) and (ii) are obvious.

(iii) “If”. Suppose that Q is U -lower-level closed for each U ⊆ Y but for

some open subset V with Q(x0) ∩ V 6= ∅ there is xα → x0 with Q(xα) ∩ V = ∅.

Then Q(xα) ⊆ Y \V := U = clU . By the U -lower-level closedness Q(x0) ⊆ clU =

Y \ V , i.e Q(x0) ∩ V = ∅, a contradiction.

“Only if”. Suppose that Q is lsc at x0 but there are xα → x0 and U ⊆ Y

with Q(xα) ⊆ clU , ∀α, and Q(x0) 6⊆ clU , i.e. some y0 ∈ Q(x0)\clU exists. By the

lower semicontinuity at x0, there is yα ∈ Q(xα), yα → y0. As yα ∈ clU, y0 ∈ clU ,

which is impossible.

(iv)-(vi) It is checked similarly as (iii). ¤

Proposition 2.3. Let X, Y, Q and U be as in Definition 2.1

(i) Q(.) is lsc at x0 ∈ X if and only if Q(.) \ clU is lsc at x0 for all U ⊆ Y .

(ii) Q(.) is lsc at x0 ∈ X if and only if Q(.) is lsc with respect to U at x0 for all

U ⊆ Y .

(iii) Q(.) is usc at x0 ∈ X if and only if Q(.)\−intU is usc at x0 for all U ⊆ Y .

(iv) Q(.) is Husc at x0 if Q(.)\−intU is Husc at x0 for all U ⊆ Y . The converse

is true if Q(x0) is compact.
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Proof. (i) To check the “only if” let y0 ∈ Q(x0) \ clU and xα → x0. Since

Q(.) is lsc at x0, there is yα ∈ Q(xα), yα → y0. Because y0 /∈ clU we can assume

that yα /∈ clU,∀α, i.e. yα ∈ Q(xα) \ clU . This means the lower semicontinuity of

Q(.) \ clU .

For the “if” suppose that Q is not lsc at x0, i.e. ∃y0 ∈ Q(x0),∃xα →

x0,∀yα ∈ Q(xα), yα 6→ y0. Take arbitrarily a closed subset U which does not

contain y0. Then any yα ∈ Q(xα) \ clU ⊆ Q(xα) cannot tend to y0. This

contradicts the lower semicontinuity of Q(.) \ clU .

(ii) and (iii) are proved similarly.

(iv) For the “if” let U be such that intU = ∅.

For the “converse”, if Q(x0) is compact and Q(.) is Husc, by Proposition

3.1 (Anh and Khanh 2004) Q(.) is usc at x0. Hence Q(.) \ −intU is usc at x0 for

all U ⊆ Y by (iii). Due to (d) in Section 1, Q(.) \ −intU is Husc at x0 for all

U ⊆ Y . ¤

The following example shows that in (iv) the compactness of Q(x0) is

essential.

Example 2.1. Let X = Y = R, Q(x) = (x, x + 4), x0 = 0, and U = (−4,−2).

It is clear that Q(.) is Husc at 0 (Q(.) is not usc at 0), but Q(.) \ −intU is

not Husc at 0. Indeed, let xn = 1
n

and B = (−1, 1). Some direct computations

show that xn → 0 and Q(xn) \ −intU = ( 1
n
, 2]∪ [4, 1

n
+ 4) 6⊆ Q(0) \ −intU + B =

(0, 2] + B = (−1, 3),∀n. The reason is that Q(0) = (0, 4) is not compact.

The following proposition is not hard to verify.

Proposition 2.4. Let X, Y, Q and U be as in Definition 2.1.

(i) Q is lsc at x0 if and only if Q is U-lsc at x0 for all U .
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(ii) Q is usc at x0 if and only if Q is U-usc at x0 for all U .

(iii) Q is U-lsc, U-usc, U-Hlsc or U-Husc at x0 if and only if Q is intU-lsc,

intU-usc, intU-Hlsc or intU-Husc at x0, respectively.

(iv) U-Hausdorff-lower semicontinuity implies U-lower semicontinuity. The con-

verse is not true even under compactness assumptions.

(v) U-upper semicontinuity implies U-Hausdorff-upper semicontinuity. If Q(x0)

is compact then the converse is true at x0.

(vi) Q is lsc with respect to U at x0 if and only if Q is lsc with respect to V at

x0, for all V ⊇ U .

(vii) Q is lsc with respect to U at x0 if Q(.) \ U is lsc at x0. The converse is

true if U is closed.

The following Examples 2.3 and 2.4 show that in (v) and (vii) we do not

have the inverse implications without the respective compactness and closedness.

Example 2.2 ensures that the converse of (iv) is not true even under the corre-

sponding compactness assumption.

Example 2.2. Let X,Y and x0 be as in Example 2.1, and let U = R+, Q(0) =

[0, 2] and Q(x) = [0, 1] for x 6= 0. It is easy to see that Q(.) is R+-lsc at 0 and Q(x)

is compact ∀x ∈ R. But Q(.) is not R+-Hlsc at 0. Indeed, picking B = (−1
2
, 1

2
)

we see that ∀xα → 0, xα 6= 0, Q(0) ∩ intR+ = (0, 2] 6⊆ Q(xα) + B = (−1
2
, 3

2
),∀α.

Example 2.3. Let X,Y,Q and x0 be as in Example 2.1, and let U = (0, 4). We

easily see that Q(.) is U -Husc at 0, but Q(.) is not U -usc at 0, since Q(0) ⊆ (0, 4)

but, for xn = 1
n
, Q(xn) 6⊆ (0, 4),∀n.
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Example 2.4. Let X,Y and x0 be as in Example 2.1, Q(x) = [|x|, |x| + 2] and

U = (0, 1]. Then Q(0) \ U = {0} ∪ (1, 2] and Q(x) = (1, |x| + 2],∀x 6= 0. Hence

Q(.) \ U is not lsc at 0 but Q(.) is lsc with respect to U . The reason is that U is

not closed.

The following definition in Anh and Khanh (2004) is closely related to

Definition 2.2.

Definition 2.3 [18]. Let X,Y,Q and U be as in Definition 2.1.

(i) Q is called to have the U -inclusion property at x0 if [xα → x0, Q(x0)∩ (Y \

−intU) 6= ∅] =⇒ [∃ᾱ, Q(xᾱ) ∩ (Y \ −intU) 6= ∅].

(ii) Q is said to have the strict U -inclusion property at x0 if [xα → x0, Q(x0) ⊆

Y \ −intU ] =⇒ [∃ᾱ, Q(xᾱ) ⊆ Y \ −intU ].

Note that the difference between Definitions 2.2 and 2.3 is that the set intU

in the former is always open and Y \ −intU in the latter is always closed.

3. Lower-semicontinuity-related results

In the sequel let Sol1(λ, µ) and Sol2(λ, µ) be the solution sets of (SQEP1) and

(SQEP2), respectively, at (λ, µ) and let

E(λ) := {(x, y) | x ∈ S(x, y, λ), y ∈ T (x, y, λ)}.

Theorem 3.1. Assume for problem (SQEP1) that, for ∅ 6= U ⊆ X × Y,

(il) E(.) \ clU is lsc at λ0;

(iiu) S, T , A and B are usc and compact valued in K ×D × {λ0};

(iiill) F and G are (Z\ − C)-lsc in K ×D ×K × {µ0} and D ×K ×D × {µ0},

respectively;
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(iv1) for each (x̄, ȳ) ∈ Sol1(λ0, µ0),

F (x, ȳ, x∗, µ0) ∩ (Z\ − C) 6= ∅,∀x ∈ S(x̄, ȳ, λ0),∀x∗ ∈ A(x̄, ȳ, λ0),

G(y, x̄, y∗, µ0) ∩ (Z\ − C) 6= ∅, ∀y ∈ T (x̄, ȳ, λ0), ∀y∗ ∈ B(x̄, ȳ, λ0).

Then Sol1(., .) is U-lower-level closed at (λ0, µ0).

Proof. Arguing by contraposition, suppose the existence of (λα, µα) → (λ0, µ0)

such that Sol1(λα, µα) ⊆ clU,∀α, but (x0, y0) ∈ Sol1(λ0, µ0) \ clU exists. Then

∀(xα, yα) ∈ Sol1(λα, µα), (xα, yα) 6→ (x0, y0). Since E(.) \ clU is lsc at λ0, there

is (x̄α, ȳα) ∈ E(λα) \ clU , (x̄α, ȳα) → (x0, y0). By the contradiction assumption,

there exists a subnet (x̄β, ȳβ) /∈ Sol1(λβ, µβ), ∀β. This means the existence of

x̂β ∈ S(x̄β, ȳβ, λβ), x̄∗β ∈ A(x̄β, ȳβ, λβ),

F (x̂β, ȳβ, x̄∗β, µβ) ⊆ −intC, (1)

or for some ŷβ ∈ T (x̄β, ȳβ, λβ), ȳ∗β ∈ B(x̄β, ȳβ, λβ),

G(ŷβ, x̄β, ȳ∗β, µβ) ⊆ −intC. (2)

Assume that (1) is fulfilled. Since S, A are usc at (x0, y0, λ0) and S(x0, y0, λ0),

A(x0, y0, λ0) are compact, one has x̂0 ∈ S(x0, y0, λ0), x̄∗0 ∈ A(x0, y0, λ0) such that

x̂β → x̂0, x̄∗β → x̄∗0, (taking subnets if necessary). By (iv1), we have

F (x̂0, y0, x̄
∗
0, µ0) ∩ (Z\ − C) 6= ∅. (3)

By the (Z\−C)-lower semicontinuity of F at (x̂0, y0, x̄
∗
0, µ0), we see a contradic-

tion between (1) and (3). If (2) holds, the reasoning is similar. ¤

To emphasize the symmetry and other relations between the assumptions

of our theorems we adopt some subscripts and superscripts. A subscript l as in
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(il) means that this assumption is about lower semicontinuity. A superscript l as

in (iiill) says that this assumption in imposed to get a lower semicontinuity result.

Taking into account Propositions 2.2 and 2.3 we obtain the following im-

mediate consequence of Theorem 3.1.

Corollary 3.1. Assume for problem (SQEP1) assumptions (iiu) − (iv1) of The-

orem 3.1. Assume further that

(i′l) E is lsc at λ0.

Then Sol1(., .) is lsc at (λ0, µ0).

If X ≡ Y, K ≡ D, then setting S(x, y, λ) := S(y, λ), T (x, y, λ) := clS(y, λ),

A(x, y, λ) := A(y, λ), B(x, y, λ) ≡ K, F (x, x̄, x∗, µ) := F (x, x∗, µ) and G(y, x̄, y∗,

µ) ≡ C, our problems (SQEP1) and (SQEP2) collapse to problems (Psα1) and

(Psα2), respectively, investigated in Anh and Khanh (in press). The following

example shows that in this case Corollary 3.1 improves Theorem 2.2 in Anh and

Khanh (in press).

Example 3.1. Let X = Y = R, Λ ≡ M = [0, 1], K = R, C = R+, S(x, λ) =

[0, 1], A(x, λ) ≡ {x}, λ0 = 0 and

F (x, x∗, λ) =

{
{1} if λ = 0,

{2} otherwise,

Then all assumptions of Corollary 3.1 are fulfilled. By this Corollary the solution

set is lsc at 0 (in fact Sol1(λ) = [0, 1],∀λ ∈ [0, 1]), but Theorem 2.2 in Anh and

Khanh (in press) cannot be applied since F is not lsc at 0.

Furthermore, if in addition, A(x, λ) ≡ {x} then our problems become (QEP)

and (SQEP), respectively, studied in Anh and Khanh (2004). Example 3.1 shows
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also that Corollary 3.1 is strictly stronger Theorem 2.1 in Anh and Khanh (2004).

The following example shows that the rather strong and oddly looking

assumption (iv1) cannot be dropped.

Example 3.2. Let X = Y = Z = R, Λ ≡ M = [0, 1], C = R+, S(x, y, λ) =

T (x, y, λ) = A(x, y, λ) = B(x, y, λ) = [0, 1], F (x, y, x∗, λ) = {λ(y−x)}, G(y, x, y∗,

λ) = {1} and λ0 = 0. Then (i′l)− (iiill) are clearly satisfied. However, some direct

computation gives Sol1(0) = [0, 1] and Sol1(λ) = {1} for each λ > 0 and hence

Sol1(.) is not lsc at 0. The reason is that (iv1) is violated.

Although assumption (iv1) is essential, it together with (iiill) can be replaced

by a condition relating F and G as follows.

Theorem 3.2. Assume (il) and (iiu) as in Theorem 3.1 and replace (iiill) and

(iv1) by

(iii1) F and G have the C-inclusion property in K×D×K×{µ0} and D×K×
D × {µ0}, respectively.

Then Sol1(., .) is U-lower-level closed at (λ0, µ0).

Proof. The first part of the proof of Theorem 3.1 (until the last sentence before

(3)), using only (il) and (iiu) remains valid here. Now assumption (iii1) together

with the fact that (x0, y0) ∈ Sol1(λ0, µ0) implies the existence of β1, β2 such that

F (x̂β1 , ȳβ1 , x̄
∗
β1

, µβ1)∩ (Z\− intC) 6= ∅ and G(ŷβ2 , x̄β2 , ȳ
∗
β2

, µβ2)∩ (Z\− intC) 6= ∅,

which contradicts (1) or (2), respectively. ¤

We clearly have a direct consequence as follows.

Corollary 3.2. Assume (iiu) and (iii1) as in Theorem 3.2 and replace (il) by

(i′l) E is lsc at λ0.
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Then Sol1(., .) is lsc at (λ0, µ0).

When the symmetric quasiequilibrium problems are particularized as qua-

siequilibrium problems, Corollary 3.2 coincides with Theorem 2.2 in Anh and

Khanh (2004). The following example shows that the assumptions of this corol-

lary are easier to check than that of Theorem 2.1 in Anh and Khanh (in press).

Example 3.3. Let X, Y, Λ,M, K, C, λ0 be as in Example 3.1 and S(x, λ) =

[λ, λ + 1], A(x, λ) = [sin α, 2] and

F (x, x∗, λ) =

{
{0} if λ = 0,

{1} otherwise.

It is easy to see that all assumptions of Corollary 3.2 are fulfilled but it is difficult

to verify the openness of Urα in Theorem 2.1 of Anh and Khanh (in press).

The main advantage of assumption (iii1) is that it does not require any

information on the solution set Sol1(λ0, µ0). Moreover, (iii1) may be satisfied even

in cases, where both (iiill) and (iv1) are not fulfilled as shown by the following

example.

Example 3.4. Let X = Y = Z = R,Λ ≡ M = [0, 1], K = D = R,C = R+,

S(x, y, λ) = T (x, y, λ) = A(x, y, λ) = B(x, y, λ) = [0, 1], λ0 = 0 and

F (x, y, x̂, λ) =

{
{0} if λ = 0,

{1} otherwise,

G(y, x, ŷ, λ) =

{
{0} if λ = 0,

{1
2
} otherwise.

Then, it is not hard to see that (il), (iiu) and (iii1) are satisfied and, according

to Theorem 3.2, Sol1(.) is lsc at 0 (in fact Sol1(λ) = [0, 1], for all λ ∈ [0, 1]).

Evidently (iiill) and (iv1) are not fulfilled in this case.
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The following example shows that the assumption (i′l) is essential.

Example 3.5. Let X = Y = Z = R,Λ ≡ M = [0, 1], K = D = R,C = R+,

λ0 = 0, A(x, y, λ) = {x}, B(x, y, λ) = {y} and

S(x, y, λ) =

{
[−1, 1] if λ = 0,

[−λ− 1, 0] if λ 6= 0,

T (x, y, λ) ≡ {1},

F (x, y, x∗, λ) = G(y, x, y∗, λ) ≡ {1}.

Then all assumptions but (i′l) of Corollaries 3.1 and 3.2 are satisfied. In fact,

E(0) = [−1, 1] × {1} and E(λ) = [−λ − 1, 0] × {1},∀λ 6= 0. So E is not lsc at

λ0 = 0. However for U = C × C, E(0) \ clU = [−1, 0) × {1} and E(λ) \ clU =

[−λ−1, 0)×{1} for λ 6= 0 and hence E(.)\ clU is lsc at λ0. Checking directly we

see that Sol1(0) = [−1, 1]× {1} and Sol1(λ) = [−λ− 1, 0]× {1} for λ 6= 0. Then

Sol1(.) is U -lower-level closed at λ0 but Sol1(.) is not lsc at λ0.

Passing to problem (SQEP2) we easily get the following corresponding

results, which are given without proofs.

Theorem 3.3. Assume for problem (SQEP2) (il) and (iiu) of Theorem 3.1. As-

sume further that

(iiilu) F and G are (Z\ −C)-usc in K ×D ×K × {µ0} and D ×K ×D × {µ0},

respectively;

(iv2) for each (x̄, ȳ) ∈ Sol2(λ0, µ0),

F (x, ȳ, x∗, µ0) ⊆ Z\ − C, ∀x ∈ S(x̄, ȳ, λ0), ∀x∗ ∈ A(x̄, ȳ, λ0),

G(y, x̄, y∗, µ0) ⊆ Z\ − C, ∀y ∈ T (x̄, ȳ, λ0),∀y∗ ∈ B(x̄, ȳ, λ0).
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Then Sol2(., .) is U-lower-level closed at (λ0, µ0).

Corollary 3.3. Assume (iiu), (iii
l
u) and (iv2) as in Theorem 3.3 and replace (il)

by

(i′l) E is lsc at λ0.

Then Sol2(., .) is lsc at (λ0, µ0).

Example 3.1 shows also that Corollary 3.3 strictly includes Theorem 2.3 in

Anh and Khanh (2004) and Theorem 2.2 in Anh and Khanh (in press).

Theorem 3.4. Assume for problem (SQEP2), (il) and (iiu). Assume further that

(iii2) F and G have the strict C-inclusion property in K × D × K × {µ0} and

D ×K ×D × {µ0}, respectively.

Then Sol2(., .) is U-lower-level closed at (λ0, µ0).

Corollary 3.4. Assume (iiu) and (iii2) as in Theorem 3.4 and replace (il) by

(i′l) E is lsc at λ0.

Then Sol2(., .) is lsc at (λ0, µ0).

Corollary 3.4 coincides with Theorem 2.4 in Anh and Khanh (2004). In

comparison with the corresponding result of Anh and Khanh (in press), Example

3.3 gives a case where the assumptions of this corollary are easier to be checked

(than that of Theorem 2.1 in Anh and Khanh (in press)).

Example 3.4 indicates also that (iii2) may be satisfied even when both (iiilu)

and (iv2) are violated, since here F and G are single-valued and (iii1) coincides

with (iii2).

We now proceed to Hausdorff lower semicontinuity.
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Theorem 3.5. Assume for (SQEP1) (iiu), (iiill) and (iv1) of Theorem 3.1. As-

sume further, for ∅ 6= U ⊆ X × Y, that

(i) E is lsc with respect to intU at λ0 and E(λ0) \ intU is compact;

(ii) S(., ., λ0), T (., ., λ0), A(., ., λ0) and B(., ., λ0) are lsc;

(iii) F (., ., λ0) and G(., ., λ0) are −C-usc in K × D × K and D × K × D, re-

spectively.

Then Sol1(., .) is U-Hausdorff-lower-level closed at (λ0, µ0).

Proof. We first show that Sol1(λ0, µ0) is closed in X×Y . Suppose that (xα, yα) ∈

Sol1(λ0, µ0), (xα, yα) → (x0, y0). If (x0, y0) /∈ Sol1(λ0, µ0). Then there exist x̂0 ∈

S(x0, y0, λ0), x∗0 ∈ A(x0, y0, λ0),

F (x̂0, y0, x
∗
0, µ0) ⊆ −intC, (4)

or ŷ0 ∈ T (x0, y0, λ0), y∗0 ∈ B(x0, y0, λ0),

G(ŷ0, x0, y
∗
0, µ0) ⊆ −intC. (5)

Suppose (4) is fulfilled. Since S(., ., λ0) and A(., ., λ0) are lsc in K × D,

there are x̂α ∈ S(xα, yα, λ0), x∗α ∈ A(xα, yα, λ0) such that (x̂α, x∗α) → (x̂0, x
∗
0). As

(xα, yα) ∈ Sol1(λ0, µ0), we have

F (x̂α, yα, x∗α, µ0) 6⊆ −intC. (6)

By the −C−upper semicontinuity of F (., ., ., µ0) in K × D × K, we see a con-

tradiction between (4) and (6). The argument for the case, where (5) holds, is

similar. Hence, Sol1(λ0, µ0) is closed and hence Sol1(λ0, µ0) \ intU is compact, by

(i).

We show that ∀(λα, µα) → (λ0, µ0), ∀(x̄0, ȳ0) ∈ Sol1(λ0, µ0) \ intU , ∃(x̄α,
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ȳα) ∈ Sol1(λα, µα), (x̄α, ȳα) → (x̄0, ȳ0). Suppose to the contrary that there ex-

ist (λα, µα) → (λ0, µ0) and (x̄0, ȳ0) ∈ Sol1(λ0, µ0) ∩
(
(X × Y ) \ intU

)
such that

∀(xα, yα) ∈ Sol1(λα, µα), (xα, yα) 6→ (x̄0, ȳ0). Since E is lsc with respect to intU at

λ0, there is (x̄α, ȳα) ∈ E(λα), (x̄α, ȳα) → (x̄0, ȳ0). By the contradiction assump-

tion, there exists a subnet (x̄β, ȳβ) /∈ Sol1(λβ, µβ),∀β. The further argument to

see a contradiction is similar as that of Theorem 3.1.

Now suppose that Sol1(., .) is not U -Hausdorff-lower-level closed at (λ0, µ0),

i.e. ∃B (a neighborhood of the origin in X × Y ), ∃(λα, µα) → (λ0, µ0) such

that ∀α, ∃(x0α, y0α) ∈ Sol1(λ0, µ0) \ clU , (x0α, y0α) /∈ Sol1(λα, µα) + B. Since

Sol1(λ0, µ0)\ intU is compact, we can assume that (x0α, y0α) → (x0, y0) ∈ Sol1(λ0,

µ0)\ intU . So we can suppose that there are α1, a neighborhood B1 of 0 in X×Y

with B1 + B1 ⊆ B and bα ∈ B1 such that, ∀α ≥ α1, (x0α, y0α) = (x0, y0) + bα. By

the preceding part of the proof there is (xα, yα) ∈ Sol1(λα, µα), (xα, yα) → (x0, y0)

and hence, one can assume that there is α2,∀α ≥ α2,

(xα, yα) ∈ (x0, y0)−B1,

i.e., there exists b′α ∈ B1, (xα, yα) = (x0, y0)− b′α. Hence ∀α ≥ α0 = max{α1, α2},

(x0α, y0α) = (x0, y0) + bα = (xα, yα) + b′α + bα ∈ (xα, yα) + B.

This is impossible due to the fact that (x0α, y0α) /∈ Sol1(λα, µα) + B. Thus,

Sol1(., .) is U -Hausdorff-lower-level closed at (λ0, µ0). ¤

Propositions 2.2, 2.3 and Theorem 3.5 derive the following result.

Corollary 3.5. Assume all assumptions as in Theorem 3.5 but (i), and replace

(i) by

(i’) E is lsc at λ0 and E(λ0) is compact.
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Then Sol1(., .) is Hlsc at (λ0.µ0).

The following example explains the essentialness of the compactness of E(λ0).

Example 3.6. Let X = Y = Z = R,Λ ≡ M = [0, 1], K = D = R,C = R+,

S(x, y, λ) = A(x, y, λ) = {x}, T (x, y, λ) = {λx}, B(x, y, λ) = {y}, F (x, y, x∗, µ) =

G(y, x, y∗, µ) ≡ {1}.
It is clear that E(λ) = {(x, λx) ∈ R2 | x ∈ R}. So, E is lsc; S, T, A and B

are continuous and have compact values in K×D×Λ; F and G are continuous and

compact valued in R4. Hence, all assumptions of Corollary 3.5 but (i) are fulfilled.

It is easy to see that Sol1(λ) = E(λ) = {(x, λx) | x ∈ R}. Thus, Sol1(.) is lsc in R.

But ∀λ0 ∈ Λ, Sol1(.) is not Hlsc at λ0, since ∀λ 6= λ′, H
(
Sol1(λ), Sol1(λ

′)
)

= +∞,

where H(., .) is the Hausdorff distance. The reason is that E(λ0) is not compact.

Similarly, we obtain the following results corresponding to Theorems 3.2-3.4

and Corollaries 3.2-3.4.

Theorem 3.6. Assume all assumptions of Theorem 3.5 but (iiill) and (iv1) . As-

sume further that

(iii1) F and G have the C-inclusion property in K × D × K × {µ0} and D ×
K ×D × {µ0}, respectively.

Then Sol1(., .) is U-Hausdorff-lower-level closed at (λ0, µ0).

Corollary 3.6. Assume all assumptions of Theorem 3.6 but (i), and replace (i)

by

(i’) E is lsc at λ0 and E(λ0) is compact.

Then Sol1(., .) is Hlsc at (λ0.µ0).
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Theorem 3.7. Assume all assumptions of Theorem 3.3 and (i), (ii) of Theorem

3.5. Assume further that

(iii’) F (., ., ., µ0) and G(., ., ., µ0) are −C-lsc.

Then Sol2(., .) is U-Hausdorff-lower-level closed at (λ0, µ0).

Corollary 3.7. Assume all assumptions of Theorem 3.7 but (i) and replace (i)

by

(i’) E is lsc at λ0 and E(λ0) is compact.

Then Sol2(., .) is Hlsc at (λ0.µ0).

Theorem 3.8. Assume all assumptions of Theorem 3.7 but (iiiul) and (iv2). As-

sume further that

(iii2) F and G have the strict C-inclusion property in K ×D ×K × {µ0} and

D ×K ×D × {µ0}, respectively.

Then Sol2(., .) is U-Hausdorff-lower-level closed at (λ0, µ0).

Corollary 3.8. Assume all assumptions of Theorem 3.8 but (i) and replace (i)

by

(i’) E is lsc at λ0 and E(λ0) is compact.

Then Sol2(., .) is Hlsc at (λ0.µ0).

Example 3.6 shows also that the assumed compactness of E(λ0) is essential

for Corollaries 3.6-3.8, since the C-inclusion properties are satisfied and F and G

are single-valued.
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4. Upper-semicontinuity-related results

Theorem 4.1. Assume for problem (SQEP1) that, for U ⊆ X × Y ,

(iu) E(.) \ −intU is usc and E(λ0) \ −intU is compact;

(iil) S, T , A and B are lsc in K ×D × {λ0};

(iiiuu) F and G are (−C)−usc in K × D × K × {µ0} and D × K × D × {µ0},

respectively.

Then Sol1(., .) is U-upper-level closed at (λ0, µ0).

Proof. Reasoning ad absurdum suppose the existence of (λα, µα) → (λ0, µ0)

such that Sol1(λα, µα) 6⊆ −intU for all α but Sol1(λ0, µ0) ⊆ −intU . Then there

exists (xα, yα) ∈ Sol1(λα, µα) \ −intU . By (iu) one can assume that (xα, yα)

tends to some (x0, y0) ∈ E(λ0) \ −intU . If (x0, y0) /∈ Sol1(λ0, µ0) then there are

x̂0 ∈ S(x0, y0, λ0), x∗0 ∈ A(x0, y0, λ0),

F (x̂0, y0, x
∗
0, µ0) ⊆ −intC, (7)

or for some ŷ0 ∈ T (x0, y0, λ0), y∗0 ∈ B(x0, y0, λ0),

G(ŷ0, x0, y
∗
0, µ0) ⊆ −intC. (8)

If (7) is fulfilled, then since S and A are lsc at (x0, y0, λ0), there exist x̂α ∈
S(xα, yα, λα), x∗α ∈ A(xα, yα, λα) such that x̂α → x̂0, x∗α → x∗0. As F is (−C)-usc

at (x̂0, y0, x
∗
0, µ0) there must be then an ᾱ such that F (x̂ᾱ, yᾱ, x∗ᾱ, µᾱ) ⊆ −intC,

which is impossible as (xᾱ, yᾱ) ∈ Sol1(λᾱ, µᾱ). If (8) holds one gets a similar

contradiction. Thus (x0, y0) ∈ Sol1(λ0, µ0) ⊆ −intU , which contradicts the fact

that (xα, yα) /∈ −intU for all α. ¤

22



Corollary 4.1. Assume (iil) and (iiiuu) as in Theorem 4.1 and replace (iu) by

(i′u) E is usc and E(λ0) is compact.

Then Sol1(., .) is both usc and closed at (λ0, µ0).

Proof. The upper semicontinuity follows immediately from Theorem 3.1 and

Propositions 2.2 and 2.3.

Suppose that Sol1(., .) is not closed at (λ0, µ0), i.e. there is a net (λα, µα, xα,

yα) → (λ0, µ0, x0, y0) with (xα, yα) ∈ Sol1(λα, µα) but (x0, y0) /∈ Sol1(λ0, µ0).

Then we repeat the second part of the proof of Theorem 4.1 to get a contradiction.

¤

In the case where our problems are reduced to quasiequilibrium problems

investigated in Anh and Khanh (2004) and Anh and Khanh (in press), Corollary

4.1 improves Theorem 3.1 in Anh and Khanh (2004), Theorem 3.1 and 4.1 in

Bianchi and Pini (2003), while this corollary coincides with Theorem 3.1 in Anh

and Khanh (in press) (but this corollary is easier to use). Example 3.1 shows also

that this corollary is strictly stronger Theorem 3.1 in Anh and Khanh (2004),

since F is a single-valued function. The following example ensures that Corollary

4.1 improves the corresponding results in Bianchi and Pini (2003).

Example 4.1. Let X = Z = R,Λ ≡ M = R,K = [0, 1], C = R+, S(x, λ) =

K, A(x, λ){x}, λ0 = 0 and

F (x, x∗, λ) =

{
{0} if λ = 0,

{1} otherwise.

Then all assumptions of Corollary 4.1 are fulfilled. Hence, this corollary yields the

upper semicontinuity of the solution set, but Theorems 3.1 and 4.1 in Bianchi and

Pini (2003) do not work, since F is neither pseudomonotone nor α-upper-level

closed for all α > 0.
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Similarly one can obtain the same properties for problem (SQEP2) as fol-

lows.

Theorem 4.2. Assume for problem (SQEP2) (iu) and (iil) as in Theorem 4.1.

Assume further that

(iiiul ) F and G are (−C)-lsc in K × D × K × {µ0} and D × K × D × {µ0},

respectively.

Then Sol2(., .) is U-upper-level closed at (λ0, µ0).

Corollary 4.2. Assume (iil) and (iiiul ) as in Theorem 4.2 and replace (iu) by

(i′u) E is usc and E(λ0) is compact.

Then Sol2(., .) is both usc and closed at (λ0, µ0).

For the special case of quasiequilibrium problems Corollary 4.2 coincides

with Theorem 3.1 in Anh and Khanh (in press). Example 3.1 explains that it

improves Theorem 3.3 in Anh and Khanh (2004).

The following example shows that assumption (i′u) in Corollaries 4.1 and 4.2

is essential.

Example 4.2. Let X = Y = Z = R, Λ ≡ M = [0, 1], K = D = R, C = R+, λ0 =

0, A(x, y, λ) = {x}, B(x, y, λ) = {y} and

S(x, y, λ) = (−λ− 1, λ],

T (x, y, λ) ≡ {−1},

F (x, y, x∗, λ) = G(y, x, y∗, λ) ≡ {1}.

Then it is easy to see that all assumptions but (i′u) of Corollaries 4.1 and 4.2

are fulfilled. For (i′u) we check directly that E(λ) = (−λ − 1, λ] × {1} is not
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compact at λ0 = 0, but for U = C × C, E(λ) \ −intU = [0, λ] × {1} and hence

E(λ0) \−intU is compact and E(.) \−intU is usc. By direct computation we get

Sol1(λ) = (−λ− 1, λ]×{−1}, which is neither usc nor closed at λ0 = 0, although

Sol1(.) is U -upper-level closed at λ0.

Passing to Hausdorff upper-level closedness we see that the assumptions

can be weakened correspondingly as follows.

Theorem 4.3. Assume for problem (SQEP1) that, for ∅ 6= U ⊆ X × Y,

(ihu) E(.) \ −intU is Husc and E(λ0) \ −intU is compact;

(iil) S, T , A and B are lsc in K ×D × {λ0};

(iiihu) F and G are −C-Husc in K × D × K × {µ0} and D × K × D × {µ0},
respectively;

(ivh) ∀BX (open neighborhood of 0 in X), ∀(x, y) /∈ S1(λ0, µ0)+BX , ∃BY (neigh-

borhood of 0 in Y ), ∃x̂ ∈ S(x, y, λ0), ∃x∗ ∈ A(x, y, λ0) such that

F (x̂, y, x∗, µ0) + BY ⊆ −intC,

or ∃ŷ ∈ T (x, y, λ0), ∃y∗ ∈ B(x, y, λ0) such that

G(ŷ, x, y∗, µ0) + BY ⊆ −intC.

Then Sol1(., .) is U-Hausdorff-upper-level closed at (λ0, µ0).

Proof. Suppose to the contrary that there are a net (λα, µα) → (λ0, µ0) and a

B (open neighborhood of 0 in X × Y ) such that Sol1(λα, µα) 6⊆ −intU for all α

but Sol1(λ0, µ0) + B ⊆ −intU . There exists then (xα, yα) ∈ Sol1(λα, µα) \−intU .

By the compactness of E(λ0) \−intU and the Hausdorff upper semicontinuity of
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E(.) \ −intU at λ0, we can assume that (xα, yα) → (x0, y0) for some (x0, y0) ∈

E(λ0)\−intU . If (x0, y0) /∈ Sol1(λ0, µ0)+BX , then (ivh) yields some neighborhood

BY of 0 in Y and some x̂0 ∈ S(x0, y0, λ0), x∗0 ∈ A(x0, y0, λ0) such that

F (x̂0, y0, x
∗
0, µ0) + BY ⊆ −intC, (9)

or some ŷ0 ∈ T (x0, y0, λ0), y∗0 ∈ B(x0, y0, λ0) such that

G(ŷ0, x0, y
∗
0, µ0) + BY ⊆ −intC. (10)

Assume that (9) is satisfied. Taking the lower semicontinuity of S and A

at (x0, y0, λ0) into account one has x̂α ∈ S(xα, yα, λα), x∗α ∈ A(xα, yα, λα) such

that (x̂α, x∗α) → (x̂0, x
∗
0). Since F is −C-Husc at (x̂0, y0, x

∗
0, µ0), there is some

ᾱ such that F (x̂ᾱ, yᾱ, xᾱ∗ , µᾱ) ⊆ −intC, which is impossible, since (xᾱ, yᾱ) ∈

Sol1(λᾱ, µᾱ). The case of (10) is analogous. Thus (x0, y0) ∈ Sol1(λ0, µ0) + BX ⊆

−intU . This in turn contradicts the fact that (xα, yα) /∈ −intU for all α. ¤

Taking into account Proposition 3.1 in Anh and Khanh (2004) and Propo-

sitions 2.2 and 2.3 we obtain the following immediate consequence of Theorem

4.3.

Corollary 4.3. Assume (iil), (iiihu) and (ivh) as in Theorem 4.3 and replace (ihu)

by

(i′hu) E is Husc and E(λ0) is compact.

Then Sol1(., .) is Husc at (λ0, µ0).

The newly imposed assumption (ivh) cannot be dropped even for the case of

quasiequilibrium problems as shown by Example 3.2 in Anh and Khanh (2004).

Furthermore, for the special case of quasiequilibrium problems, Corollary 4.3

improves Theorem 3.2 in Anh and Khanh (2004) and it coincides with Theorem

3.2 in Anh and Khanh (in press).
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5. Comparison of the two solution sets

We have seen a symmetry between the sufficient conditions for the two solution

sets Sol1 and Sol2 to be U -lower-level closed or U -upper-level closed. The follow-

ing examples show that these are far from necessary conditions and the two sets

may be or not be U -level closed to very different extends.

Example 5.1 (Sol1 is continuous, Sol2 is not lower or upper-level closed). Let

X = Y = Z = R,Λ ≡ M = [0, 1], K = D = R, C = R+, A(x, y, λ) =

{x}, B(x, y, λ) = {y}, S(x, y, λ) = T (x, y, λ) = [−1, 1], λ0 = 0 and

F (x, y, x∗, λ) =

{
(1 + x∗)[−1, 1] if λ = 0,

(1− x∗)[−1, 1] otherwise,

G(y, x, y∗, λ) =

{
(1 + y∗)[−1, 1] if λ = 0,

(1− y∗)[−1, 1] otherwise.

It is easy to see that Sol1(λ) = [−1, 1] × [−1, 1], ∀λ ∈ Λ and Sol2(0) = {−1} ×
{−1}, Sol2(λ) = {1} × {1},∀λ ∈ (0, 1]. So Sol1(.) is satisfied all kinds of U -

semicontinuity at 0. Taking U = R+ × R+, we see that Sol2(.) is neither U -

lower-level closed at 0 nor U -Hausdorff-upper-level closed at 0. Indeed, ∀λα →

0, Sol2(λα) = {1} × {1} ∈ clU , but Sol2(0) = {−1} × {−1} /∈ clU , and with B =

(−1
2
, 1

2
) × (−1

2
, 1

2
), Sol2(λα) /∈ −intU , but Sol2(0) + B = (−3

2
,−1

2
) × (−3

2
,−1

2
) ⊆

−intU .

Example 5.2 (Sol1 is not lower-level closed, Sol2 is continuous). Let X,Y, Z, Λ,

M,K,D,C,A, B, S, T, U and λ0 be as in Example 5.1 and

F (x, y, x∗, λ) =

{
{x∗ − x, 1} if λ = 0,

{x∗ − x} otherwise,

G(y, x, y∗, λ) =

{
{y∗ − y, 1} if λ = 0,

{y∗ − y} otherwise.
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One sees that Sol1(0) = [−1, 1] × [−1, 1], Sol1(λ) = {1} × {1} for λ ∈ (0, 1] and

Sol2(λ) = {1} × {1} for all λ ∈ [0, 1]. Hence Sol1(.) is not U -lower-level closed at

0 and S2(.) satisfies all kinds of U -level closedness at 0.

Example 5.3 (Sol1 is not Hausdorff-upper-level closed, Sol2 is continuous). Let

X,Y, Z, Λ, M,K, D,C,A, B, S, T, U and λ0 be as in Example 5.1 and

F (x, y, x∗, λ) =

{
{x− x∗} if λ = 0,

{x− x∗, 1} otherwise,

G(y, x, y∗, λ) =

{
{y − y∗} if λ = 0,

{y − y∗, 1} otherwise.

Then Sol1(0) = {−1} × {−1}, Sol1(λ) = [−1, 1] × [−1, 1],∀λ ∈ (0, 1], Sol2(λ) =

{−1} × {−1},∀λ ∈ [0, 1]. So Sol2(.) fulfils all kinds of U -level closedness at 0.

But Sol2(.) is not U -Hausdorff-upper-level closed at 0. Indeed, taking λα → 0,

B = (−1
2
, 1

2
)× (−1

2
, 1

2
), Sol1(λα) = [−1, 1]× [−1, 1] 6⊆ −intU , and Sol1(0) + B =

(−3
2
,−1

2
)× (−3

2
,−1

2
) ⊆ −intU .

Being very different in general but under some connectedness assumptions

the two solution sets coincide as follows.

Theorem 5.1. Assume that ∀(x̄, ȳ) ∈ Sol1(λ0, µ0),∀x ∈ S(x̄, ȳ, λ0), ∀x∗ ∈ A(x̄,

ȳ, λ0),∀y ∈ T (x̄, ȳ, λ0), ∀y∗ ∈ B(x̄, ȳ, λ0), F (x, ȳ, x∗, µ0) and G(y, x̄, y∗, µ0) are

arcwisely connected and does not meet the boundary of −C. Then Sol2(λ0, µ0) =

Sol1(λ0, µ0).

Proof. We always have Sol2(λ0, µ0) ⊆ Sol1(λ0, µ0). To see the reverse inclusion

let (x̄, ȳ) /∈ Sol2(λ0, µ0) then ∃x ∈ S(x̄, ȳ, λ0),∃x∗ ∈ A(x̄, ȳ, λ0) such that,

∃z1 ∈ F (x, ȳ, x∗µ0), z1 ∈ −intC, (11)

28



or ∃y ∈ T (x̄, ȳ, λ0),∃y∗ ∈ B(x̄, ȳ, λ0) such that,

∃z′1 ∈ G(y, x̄, y∗µ0), z
′
1 ∈ −intC. (12)

Suppose that (x̄, ȳ) ∈ Sol1(λ0, µ0). Then, since F (x, ȳ, x∗, µ0) does not meet the

boundary of −C, ∃z2 ∈ F (x, ȳ, x∗, µ0)\ (−C). Since F (x, ȳ, x∗, µ0) is arcwisely

connected, there exists a continuous mapping ϕ : [0, 1] → F (x, ȳ, x∗, µ0) such

that ϕ(0) = z1 and ϕ(1) = z2. Let T = {t ∈ (0, 1] : ϕ([t, 1]) ⊆ Z\(−C)} and

t0 = inf T . Since z1 ∈ −intC there is an open set A such that A∩F (x, ȳ, x∗, µ0) is

arcwisely connected and z1 ∈ A ⊆ −intC. Then ϕ−1(A∩F (x, ȳ, x∗, µ0))∩T = ∅.

Since ϕ−1(A ∩ F (x, ȳ, x∗, µ0)) is open in [0, 1], it is of the form [0, t1). So it

contains 0 and 0 < t1 ≤ t0. Similarly, t0 < 1. Then, for all large n, there is

tn ∈
(
t0 − 1

n
, t0

]
such that ϕ(tn) ∈ −C. Then ϕ(t0) ∈ −C since tn → t0 and −C

is closed. On the other hand, for all large n, there is tn ∈
(
t0, t0 + 1

n

)
such that

ϕ(tn) ∈ Z\(−C). So ϕ(t0) ∈ cl(Z\(−C)). Thus ϕ(t0) is in the boundary of −C,

contradicting the fact that ϕ(t0) ∈ F (x, ȳ, x∗, µ0). If (12) holds, we also have the

same contradiction. Hence Sol1(λ0, µ0) = Sol2(λ0, µ0). ¤

The examples below ensure us the essentialness of the assumptions of The-

orem 5.1.

Example 5.4. Let X,Y, Z, Λ,M, K, D, C, A and B as in Example 5.1 and

S(x, y, λ) = T (x, y, λ) = [0, 1], F (x, ȳ, x∗, λ) = {−x∗, x∗}, G(y, x̄, y∗, µ) = {1}. It

is clear that Sol1(λ) = [0, 1] × [0, 1],∀λ ∈ Λ and Sol2(λ) = {0} × [0, 1],∀λ ∈ Λ.

Hence Sol1(λ0, µ0) 6= Sol2(λ0, µ0), the reason is that for (x̄, ȳ) ∈ Sol1(λ), x̄ 6= 0,

F (x, ȳ, x∗, λ) is not arcwisely connected for some x ∈ S(x̄, ȳ, λ), x∗ ∈ A(x̄, ȳ, λ).

Example 5.5. Let X, Y, Z, Λ,M, K,D, C, S, T, A, B and G as in Example

5.4 and F (x, ȳ, x∗, λ) = [−x∗, x∗]. Then Sol1(λ) = [0, 1] × [0, 1],∀λ ∈ Λ and
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Sol2(λ) = {0} × [0, 1], ∀λ ∈ Λ. Hence Sol1(λ0, µ0) 6= Sol2(λ0, µ0), the reason is

that for (x̄, ȳ) ∈ Sol1(λ), F (x, ȳ, x∗, λ) meets the boundary of −C.

6. Applications

Since symmetric quasiequilibrium problems contain many problems as special

cases, including quasiequilibrium problems, quasivariational inequalities, quasi-

optimization problems, fixed point and coincidence point problems, complemen-

tarity problems, Nash equilibria problems, etc, we can derive from theorems and

corollaries in Sections 3 and 4 consequences for these special cases. In this section

we discuss only some corollaries for a lower and upper bounded quasiequilibrium

problem as an example. This problem, see Chadli et al. (2002) and Congjun

(2006), for (λ, µ) ∈ Λ×M , consists of

(BQEP) finding x̄ ∈ S1(x̄, λ) such that ∀y ∈ S1(x̄, λ),

α ≤ f(x̄, y, µ) ≤ β,

where S1 : K × Λ → 2X , f : K ×K ×M → R, α, β ∈ R : α < β.

Setting X = Y , Z = R, K = D, C = R+, S(x, y, λ) = T (x, y, λ) =

S1(x, λ), A(x, y, λ) = {x}, B(x, y, λ) = {y} and

F (x, ȳ, x∗, µ) = f(x∗, x, µ)− α, (13)

G(y, x̄, y∗, µ) = β − f(x∗, y, µ), (14)

problem (BQEP) becomes a case of problem (SQEP1) (or, the same, (SQEP2)).

Set E1 = {x ∈ K | x ∈ S(x, λ)} and Sol(λ, µ) is solution set of (BQEP) at

(λ, µ) ∈ Λ×M .

Let us now analyze the assumptions of the results in Sections 3 and 4,
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applied to (BQEP).

For F and G given in (13) and (14) the condition that F and G are (0, +∞)-

lsc at (x0, y0, µ0) become (in terms of f)

[(xγ, yγ, µγ) → (x0, y0, µ), α < f(x0, y0, µ0) < β]

=⇒ [∃γ̄, α < f(xγ̄, yγ̄, µγ̄) < β].

This property is naturally called the (α, β)-boundedness of f at (x0, y0, µ0).

It is clear that F and G are R−-usc or R−-Husc become that f is (−∞, α)∪

(β, +∞)-bounded.

Similarly R+-inclusion properties in (iii1) and (iii2) will be the following

condition in terms of f :

[(xγ, yγ, µγ) → (x0, y0, µ0), α ≤ f(x0, y0, µ0) ≤ β]

=⇒ [∃γ̄, α ≤ f(xγ̄, yγ̄, µγ̄) ≤ β],

which is called the [α, β]-boundedness of f at (x0, y0, µ0).

Not that if f : X → R is continuous at x̄ and α, β ∈ R then f is (α, β)-

bounded at x̄ but f may be not [α, β]-bounded at x̄ as shown by the following

example.

Example 6.1. Let X = Y = R, f(x) = x, α = 0, β = 1, x0 = 0. It is clear that

f is continuous at 0 but f is not [0, 1]-bounded at 0. Indeed, let xn = − 1
n
, one

has f(0) ∈ [0, 1] but f(xn) 6∈ [0, 1],∀n.

Now Theorems 3.1 - 3.2 and Corollaries 3.1 - 3.2 derive the following four

corollaries, respectively.

Corollary 6.1. For problem (BQEP) assume that, for ∅ 6= U ⊆ X,
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(il) E1(.) \ clU is lsc at λ0;

(iiu) S is usc and compact valued in K × {λ0};

(iiill) f is (α, β)-bounded in K ×K × {µ0};

(iv1) for each x ∈ Sol(λ0, µ0), ∀y ∈ S(x, λ), α < f(x, y, µ0) < β.

Then Sol(., .) is U-lower-level closed at (λ0, µ0).

Corollary 6.2. Assume (iiu)− (iv1) of Corollary 6.1. Assume further that

(i′l) E is lsc at λ0.

Then Sol(., .) is lsc at (λ0, µ0).

Corollary 6.3. Assume (il) and (iiu) as in Corollary 6.1 and replace (iiill) and

(iv1) by

(iii1) f is [α, β]-bounded in K ×K × {µ0}.

Then Sol(., .) is U-lower-level closed at (λ0, µ0).

Corollary 6.4. Assume (iiu) and (iii1) as in Corollary 6.3 and replace (il) by

(i′l) E is lsc at λ0.

Then Sol(., .) is lsc at (λ0, µ0).

The next four corollaries are direct consequences of Theorems 3.5 - 3.6 and

Corollaries 3.5 - 3.6, respectively.

Corollary 6.5. Assume (iiu), (iiill) and (iv1) of Corollary 6.1. Assume further,

for ∅ 6= U ⊆ X, that

(i) E is lsc with respect to intU at λ0 and E(λ0) \ intU is compact;

(ii) S(., ., λ0) is lsc;
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(iii) f(., ., λ0) is (−∞, α) ∪ (β, +∞)-bounded in K ×K.

Then Sol(., .) is U-Hausdorff-lower-level closed at (λ0, µ0).

Corollary 6.6. Assume all assumptions as in Corollary 6.5 but (i), and replace

(i) by

(i’) E is lsc at λ0 and E(λ0) is compact.

Then Sol(., .) is Hlsc at (λ0.µ0).

Corollary 6.7. Assume all assumptions of Corollary 6.5 but (iiill) and (iv1) .

Assume further that

(iii1) f is [α, β]-bounded in K ×K × {µ0}.

Then Sol(., .) is U-Hausdorff-lower-level closed at (λ0, µ0).

Corollary 6.8. Assume all assumptions of Corollary 6.7 but (i), and replace (i)

by

(i’) E is lsc at λ0 and E(λ0) is compact.

Then Sol(., .) is Hlsc at (λ0.µ0).

It is easy to see that for the solution set of problem (BQEP) the upper

semicontinuity and Hausdorff upper semicontinuity coincide. The following two

corollaries are direct consequences of the results in Section 4.

Corollary 6.9. Assume that, for ∅ 6= U ⊆ X,

(iu) E(.) \ −intU is usc and E(λ0) \ −intU is compact;

(iil) S is lsc in K × {λ0};

(iiiuu) f is (−∞, α) ∪ (β, +∞)-bounded in K ×K × {µ0}.
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Then Sol(., .) is U-upper-level closed at (λ0, µ0).

Corollary 6.10. Assume (iil) and (iiiuu) as in Corollary 6.9 and replace (iu) by

(i′u) E is usc and E(λ0) is compact.

Then Sol(., .) is both usc and closed at (λ0, µ0).
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