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1 Introduction

Throughout this paper A,B and Y are nonempty sets, S1 : A ⇒ A, S2 : A ⇒ B and
T : A × B ⇒ Y are set-valued maps with nonempty values. Let R(a, b, y) be a relation
linking a ∈ A, b ∈ B and y ∈ Y . It can be identified as a subset of the product space
A×B × Y , and the relation R(a, b, y) is said to hold if the triple (a, b, y) belongs to that
subset. It is quite frequent that a relation is expressed by equality / inequality of real
functions, or by inclusion of set-valued maps of variables a, b and y. We consider the
following variational relation problem, denoted by (VR):

Find ā ∈ A such that
(i) ā is a fixed point of S1, that is ā ∈ S1(ā);
(ii) R(ā, b, y) holds for every b ∈ S2(ā) and y ∈ T (ā, b).

The set-valued maps S1, S2 and T are called constraints and R is called a variational
relation. This general problem has been introduced and studied in [15]. It englobes
a large number of variational inequalities, variational inclusions, equilibrium problems,
optimization problems and many others (see [11] for these particular problems). As
already mentioned in [15], a weaker model can be formulated by requiring R(a, b, y) to
hold for all b ∈ S2(a) and some y ∈ T (a, b), or for some b ∈ S2(a) and some y ∈ T (a, b).
However, the methods of study of this model are similar to those developed in [15] and
in the present paper, therefore, our overall concern will be sticked on (VR) only. In [15]
we have given a number of sufficient conditions for existence of solutions of (VR). The
purpose of the present paper is to investigate topological properties of the solution set of
the variational relation problem (VR) and its stability.

The paper is structured as follows. In Section 2 we present a short study of continu-
ities of set-valued maps. Besides the known concepts of set-limits such as outer and inner
limits, we introduce two new limits: superior open limit and inferior open limit which help
us to link continuities of a set-valued map with its complement. In Section 3 we establish
some topological properties of the solution set such as the uniqueness, the closedness,
the convexity and the boundedness under suitable conditions. In Section 4 we consider a
parametric variational relation problem and prove the four continuity properties ( inner
continuity, outer continuity, inner openness and outer openness) of the solution map. In
Section 5 we concretize the stability criteria of Section 4 to two well-known models of
variational relation problems: the equilibrium model and the variational inclusion model.
These applications show that the continuity criteria for the solution set we develop in
Section 4 are quite general. They extend and sometimes deepen several results of the
recent literature on the topics.

Throughout the paper the following notations will be of use.

• Σ is the solution set of the problem (VR).

• K is the set of all fixed points of the map S1.

• Γ := {a ∈ A : R(a, b, y) holds for all b ∈ S2(a) and y ∈ T (a, b)}.

• PR(b) := {a ∈ A : R(a, b, y) holds for all y ∈ T (a, b)} for each b ∈ B
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• P (b) := {A \ S−12 (b)} ∪ {K ∩ PR(b)} for each b ∈ B.

Given a subset D of A, its complement in A is denoted by Dc. Thus, for instance,
Kc consists of all the non-fixed points of S1 and Γc consists of those a of A for which
R(a, b, y) does not hold for some b ∈ S2(a) and y ∈ T (a, b). We mention also the following
formulas, the first one is clear and the second one is already established in [15]:

Σ = K ∩ Γ, (1)

Σ = ∩b∈BP (b). (2)

The second formula was extensively used in [15] to establish existence conditions. We
shall see in this paper that it is also useful in establishing topological properties of the
solution set and the first formula is helpful in studying stability of parametric variational
relation problems.

2 Continuities of set-valued maps

Throughout this section Λ and X denote topological spaces and F : Λ−→→X denotes a set-
valued map. The superior and inferior limits of F at λ0 are denoted by lim infλ→λ0 F (λ)
and lim supλ→λ0 F (λ) (see [17]). We define two new limits: the inferior open limit and
the superior open limit:

liminfoλ→λ0F (λ) := {x ∈ X : there are open neighborhoods U of λ0 and V

of x such that V ⊆ F (λ) for all λ ∈ U, λ 6= λ0};
limsupoλ→λ0F (λ) := {x ∈ X : there are an open neighborhood V of x and a net λν

converging to λ0 such that V ⊆ F (λν) for all ν with λν 6= λ0}.

Here is a relationship between the above set limits. By definition, the complement map
F c is given by F c(λ) = [F (λ)]c := X \ F (λ).

Lemma 2.1 The following relations hold.

(i) liminfoλ→λ0F (λ) ⊆ liminfλ→λ0F (λ) ⊆ limsupλ→λ0F (λ).

(ii) liminfoλ→λ0F (λ) ⊆ limsupoλ→λ0F (λ) ⊆ limsupλ→λ0F (λ).

(iii) liminfoλ→λ0F
c(λ) = [limsupλ→λ0F (λ)]

c.

(iv) liminfλ→λ0F
c(λ) = [limsupoλ→λ0F (λ)]

c.

Proof. The first and the second relations follow easily from the definition. Let’s prove
(iii). Let x be an element of the set limit on the left hand side. Let U and V be two
neighborhoods of λ0 and x as in the definition of the inferior open limit. Then V ∩F (λ) = ∅
for all λ ∈ U which implies that x does not belong to lim supλ→λ0 F (λ). Conversely, let x
be an element outside of the open inferior limit of F c(λ). Then for every neighborhoods
U of λ0 and V of x, there exists λU,V ∈ U such that V 6⊆ F c(λU,V ). Thus, there is some
xU,V from the intersection V ∩ F (λU,V ). Choose U and V from a basis of neighborhoods
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of λ0 and x so that the nets λU,V and xU,V converge respectively to λ0 and x. Then x
belongs to lim supλ→λ0 F (λ).

Now we prove (iv). Let x be any element of the limit in the left hand side. For every
net λν converging to λ0, there is some xν 6∈ F (λν) such that the net of these xν converges
to x. This implies that for every neighborhood V of x, we have V 6⊆ F (λν) for all λν
sufficiently close to λ0. Hence x does not belong to limsupoλ→λ0F (λ). For the converse, if
x is outside of the set on the left hand side, then there is a net λν converging to λ0 and a
neighborhood V of x such that V ∩ F c(λν) = ∅. Hence V ⊆ F (λν) for all ν, which shows
that x does not belong to the set on the right hand side. The proof is complete. 2

When F is a single-valued, continuous function, it is clear that the inferior open and
superior open limits of F are empty, while its superior and inferior limits coincide with
the value of F at the limit point. In this case the first inclusion of (i) and the second
inclusion of (ii) are strict.

Definition 2.2 We say that the map F is

• closed (respectively open) on Λ if its graph is a closed (respectively open) set in the
product space Λ×X;

• outer-continuous at λ0 ∈ Λ if lim supλ→λ0 F (λ) ⊆ F (λ0);

• inner-continuous (or lower semi-continuous) at λ0 ∈ Λ if lim infλ→λ0 F (λ) ⊇ F (λ0);

• upper semi-continuous (usc) at λ0 ∈ Λ if for every open set V containing F (λ0)
there is a neighborhood U of λ0 such that F (U) ⊆ V ;

• inner-open (or open) at λ0 ∈ Λ if liminfoλ→λ0F (λ) ⊇ F (λ0);

• outer-open at λ0 if limsupoλ→λ0F (λ) ⊆ F (λ0).

When F has certain continuity at every point of Λ, we say that it does so on Λ.

In some literature (e.g. [6]) λ is allowed to take the value λ0 in the limsup and liminf.
In this paper we require, however, that λ converges to λ0 with λ 6= λ0. Here are some
characterizations of continuous maps via their graphs and complements.

Proposition 2.3 The following assertions hold.

(i) F is outer-open at λ0 if and only if F c is inner-continuous at λ0.

(ii) F is outer-continuous at λ0 if and only if F c is inner-open at λ0.

(iii) F is outer-continuous and closed-valued (resp. inner-open and open-valued) on Λ if
and only if its graph is closed (resp. open).

(iv) If F is outer-continuous at λ0, then it is outer-open there.

(v) F is inner-open at λ0, then it is inner-continuous there.
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Proof. The first and the second assertions follow from the equalities (iv) and (iii) of
Lemma 2.1. The assertion (iv) is derived from the inclusion (ii) of Lemma 2.1. The asser-
tion (v) is quite easy and already known. Let us prove (iii). If F is closed, then it is clear
that it is outer-continuous. Moreover, for every λ, the value F (λ) is closed because it is
the intersection of the closed set {λ} ×X with the graph of F . For the converse, assume
that F is outer-continuous and closed-valued. Let {λν , xν} be any net of the graph of F
converging to (λ0, x

0). Then one can find a subnet, that we denote by the same symbol,
such that either all λν coincide with λ0, which yield xν ∈ F (λ0) for all ν, or λν 6= λ0. In
the first case, x0 ∈ F (λ0) because the latter set is closed. In the second case, x0 belongs
to the superior limit of F (λν), which is included in F (λ0) by the outer-continuity of F .
Thus, (λ0, x

0) belongs to the graph of F and F is closed. For the case of open maps, it
suffices to notice that a map is open if and only if its complement is closed. 2

It is known that inner-continuous maps are not necessarily inner-open, for instance,
single-valued, continuous maps are inner-continuous, but never open. Thus, the converse
of (v) is not true. The same can be said about (iv). The constant map on R whose values
are open set (0, 1) is outer-open, but not outer-continuous. Now we turn to the union and
intersection of set-valued maps. In the remaining part of this section we assume that F
and G are two set-valued maps on Λ with values in X and F ∩G has nonempty values at
the points under consideration.

Lemma 2.4 The following containments and inclusions hold:

lim]λ→λ0F (λ) ∪G(λ) ⊇ lim]λ→λ0F (λ) ∪ lim]λ→λ0G(λ),

lim]λ→λ0F (λ) ∩G(λ) ⊆ lim]λ→λ0F (λ) ∩ lim]λ→λ0G(λ),

in which the symbol ] may be any of "sup", "supo", "inf", "info". Actually the con-
tainment for the superior limit and the inclusion for the inferior open limit are equality.
Moreover, it is also true that

limsupoλ→λ0F (λ) ∪ limsupλ→λ0G(λ) ⊇ limsupoλ→λ0F (λ) ∪G(λ),

liminfoλ→λ0F (λ) ∩ liminfλ→λ0G(λ) ⊆ liminfλ→λ0F (λ) ∩G(λ).

Proof. The containments and inclusions for the inferior and superior limits are standard
(see [6]). The containment and inclusion for the superior open limit and the containment
for the inferior open limit are direct from the definition. Let us prove equality for the
inferior open limit of the intersection. The inclusion

liminfoλ→λ0F (λ) ∩G(λ) ⊆ liminfoλ→λ0F (λ) ∩ liminfoλ→λ0G(λ)

is clear. Let x be an element of the set on the right hand side. There are two neighborhoods
V1 and V2 of x and two neighborhoods U1 and U2 of λ0 such that F (λ) contains V1 for
all λ ∈ U1 and G(λ) contains V2 for all λ ∈ U2. Set V = V1 ∩ V2 and U1 ∩ U2. Then
V ⊆ F (λ) ∩G(λ) for all λ ∈ U . Thus, x belongs to the set on the left hand side.

Let us now prove the last assertion. Let x be an element of the superior open limit of
F ∪G at λ0. By definition, there exist a neighborhood V of x and a net λν converging to
λ0 such that

V ⊆ F (λν) ∪G(λν) for all ν. (3)
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If x belongs to limsupλ→λ0G(λ), then we are done. If not, in view of Lemma 2.1 (iii), it
belongs to the set liminfoλ→λ0G

c(λ) which means that there are neighborhoods W of x
and U of λ0 such that W ⊆ Gc(λ) for all λ ∈ U, λ 6= λ0. This and (3) show that

V ∩W ⊆ F (λν) for all ν with λν 6= λ0.

Hence x belongs to limsupoλ→λ0F (λ).
The last inclusion is obtained from the preceding containment by means of equalities

(iii) and (iv) of Lemma 2.1.
2

Proposition 2.5 The following assertions hold.

(i) If F and G are outer-continuous (respectively inner-open, inner-continuous) at λ0,
then their union is such at λ0.

(ii) If F is outer-continuous and G is outer-open at λ0, then their union is outer-open
at λ0.

Proof. The first assertion follows from the first containment of Lemma 2.4. The second
assertion follows from the first containment of the last assertion of Lemma 2.4. 2

Proposition 2.6 The following assertions hold.

(i) If F is outer-continuous (respectively outer-open) at λ0 and if
[limsupλ→λ0G(λ)] ∩ F (λ0) ⊆ G(λ0)

(respectively [limsupoλ→λ0G(λ)] ∩ F (λ0) ⊆ G(λ0)),
then the intersection map F ∩G is outer-continuous (respectively outer-open) at λ0.

(ii) If F is inner-open at λ0 and if
liminfoλ→λ0G(λ) ⊇ G(λ0) ∩ F (λ0),

then the intersection map F ∩G is inner-open at λ0.

(iii) If F is inner-continuous (respectively inner-open) at λ0 and if
liminfoλ→λ0G(λ) ⊇ G(λ0) ∩ F (λ0)

(respectively liminfλ→λ0G(λ) ⊇ G(λ0) ∩ F (λ0)),
then the intersection map F ∩G is inner-continuous at λ0.

In particular,

(iv) if F and G are outer-continuous (respectively inner-open, outer-open) at λ0, then
their intersection is such at λ0;

(v) if F is inner-open and G is inner-continuous at λ0, then their intersection is inner-
continuous at λ0.
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Proof. For the first assertion, according to the second inclusion of Lemma 2.4, we have

limsupλ→λ0F (λ) ∩G(λ) ⊆ limsupλ→λ0F (λ) ∩ limsupλ→λ0G(λ)

⊆ F (λ0) ∩ limsupλ→λ0G(λ)

⊆ F (λ0) ∩G(λ0),

in which the second inclusion is due to the outer-continuity of F and the last inclusion
follows from the hypothesis on G. The proof for the outer-openness is similar.

The second assertion follows from the second equality of Lemma 2.4 as well:

liminfoλ→λ0F (λ) ∩G(λ) = liminfoλ→λ0F (λ) ∩ liminfoλ→λ0G(λ)

⊇ F (λ0) ∩ liminfoλ→λ0G(λ)

⊇ F (λ0) ∩G(λ0),

in which the second containment is obtained by the inner-openness of F , and the second
containment is by the hypothesis on G. As to the third assertion, by a similar reason we
have

liminfλ→λ0F (λ) ∩G(λ) ⊇ liminfλ→λ0F (λ) ∩ liminfoλ→λ0G(λ)

⊇ F (λ0) ∩ liminfoλ→λ0G(λ)

⊇ F (λ0) ∩G(λ0),

when F is inner-continuous. The same argument works for case where F is inner-open.
2

We notice that the intersection of two inner continuous maps is not necessarily inner
continuous. Likewise, the union of two outer-open maps is not necessarily outer-open. To
see this, let us define set-valued maps F and G on R by F (λ) = Q (the set of rational
numbers) and G(λ) = R \ Q for λ 6= 0, and F (0) = G(0) = {0}. These maps are outer-
open because their superior open limits are empty everywhere. Nevertheless their union
is not outer-open at 0, for the superior open limit of the union at this point is the whole
space R.

3 Topological properties of the solution set

In this section we wish to know under which kind of data the solution set of (VP) has
nice properties such as uniqueness, convexity, boundedness and closedness. These prop-
erties are desired because they are tightly related to convergence and efficiency of meth-
ods for computing solutions of the problem. As already said, in this paper we deal
with topological properties of the solution set and its stability only, therefore, we as-
sume throughout that the problem under consideration admits solutions. Let us begin
with the uniqueness. Recall that a set-valued map S on a metric space (M,d) is a
contraction if there is a positive number α < 1 such that for every u, v ∈ M one has
max{supx∈S(u) d(x, S(v)); supy∈S(v) d(y, S(u))} ≤ αd(u, v).
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Proposition 3.1 Problem (VR) has at most one solution if either A is a metric space
and S1 is a contraction, or the following conditions hold

(i) the fixed point set K of S1 is contained in the image S2(x) for all x being fixed point
of S1;

(ii) R is anti-symmetric on K, that is, if a, b ∈ K with a 6= b and R(a, b, y) holds for
all y ∈ T (a, b), then R(b, a, y) does not hold for some y ∈ T (b, a).

Proof. It is evident that if S1 is a contraction, then it has at most one fixed point, and
therefore (VP) cannot have more then one solution. Assume (i) and (ii). Let a1 and a2
be two solutions of (VR). In particular, both of them are fixed points of S1 and in view of
(i), a1 ∈ S2(a2) and a2 ∈ S2(a1). This implies that R(a1, a2, y) holds for all y ∈ T (a1, a2),
and R(a2, a1, y) holds for all y ∈ T (a2, a1). In view of (ii), the solutions a1 and a2 must
coincide. 2

The anti-symmetry of the relation R can be guaranteed for instance when R is de-
termined by a strict inequality of a real-valued function, or by a strict inclusion of a
set-valued map. Thus, let f be a real-valued function on A×B and let F be a set-valued
map from A × B to some space Z. Assume that R(a, b, y) holds for a 6= b if and only if
f(a) < f(b), or it holds for a 6= b if and only if F (a) ⊂ F (b) and F (a) 6= F (b). Then R is
anti-symmetric.

The following example of classical variational inequality problem gives a link between
the anti-symmetry of a relation and the strict monotonicity of an operator.

Example 3.2 Consider the Stampacchia variational inequality problem:
Find a ∈ A such that 〈f(a), x− a〉 ≥ 0 for all x ∈ A,

where A is a convex subset of a real Hilbert space H and f is an operator from H to itself.
To express this problem in the form of (VR), it suffices to define B = A, Y = H,S1(x) =
A, S2(x) = A and T (x, b) = {b} for all x, b ∈ A. The relation R is defined as follows:
R(x, b, y) holds if and only if 〈f(x), y−x〉 ≥ 0. It is easy to see that the relation R is anti-
symmetric if the operator is strictly monotone in the sense that 〈f(x)− f(y), x− y〉 > 0
when x 6= y. The interested reader is referred to [9], [8], [14], [16] for uniqueness of
solutions in variational inequalities.

In what follows A,B and Y are assumed to be topological spaces. We say that R is
closed if the set determining it is closed in the product space A×B×Y . This is often the
case when R is defined by non-strict inequalities of real-valued continuous functions, or
non-strict inclusions of set-valued maps. We say also that R is closed in the first variable
if R(a, b, y) holds whenever R(aν , b, y) holds for all ν with aν converging to a and with
b and y being fixed. The next two propositions give conditions for the closedness of the
solution set.

Proposition 3.3 The solution set Σ is closed provided that the following conditions hold:

(i) S1 is closed;
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(ii) S2 is inner-continuous;

(iii) T is inner-continuous;

(iv) R is closed.

Proof. Let {aν} be a net of solutions of (VP) converging to some a ∈ A. We show that
this limit is also a solution. Indeed, by (i), it belongs to the set K. For every b ∈ S2(a)
and y ∈ T (a, b), one can find bν ∈ S2(a

ν) converging to b and yν ∈ T (aν , bν) converging
to y due to (ii) and (iii). We know that R(aν , bν , yν) holds by assumptions. In view of
(iv), R(a, b, y) is satisfied. Thus, a belongs to Γ. By the relation (1) it is a solution of the
problem. 2

The closedness of the solution set can also be obtained by relaxing conditions (iii) and
(iv), but strengthening condition (ii).

Proposition 3.4 The solution set Σ is closed provided that the following conditions hold:

(i) S1 is closed;

(ii) S2 has open inverse values;

(iii) T is inner-continuous in the first variable;

(iv) R is closed in the first and third variables.

Proof. As in the previous proof, let {aν} be a net of solutions of (VP) converging to
some a ∈ X. We show that this limit is a solution by using the second relation at the end
of Section 1. Let b be any element of B. By (ii), the set A\S−12 (b) is closed, and by (i) the
set K is closed. We prove now that PR(b) is closed. Indeed, let {aν} be a net of elements
of PR(b) converging to to some a ∈ A. Let y be any element of T (a, b). By (iii) there is
yν ∈ T (aν , b) converging to y. Since R(aν , b, yν) are satisfied, in view of (iv), R(a, b, y) is
satisfied too. By this, a belongs to PR(b) and hence PR(b) is closed. We conclude that
P (b) is closed for every b ∈ B and hence Σ is closed. 2

In order to study the convexity of the solution set, we need some convexity concepts
of set-valued maps.

Definition 3.5 Assume that A, B and Y are convex subsets of linear spaces.

• A set-valued map S : A⇒ Y is said to be convex (by inclusion) if for any x1, x2 ∈ A
and t ∈ [0, 1] one has tS(x1)+(1− t)S(x2) ⊆ S(tx1+(1− tx2)); When the inclusion
"⊆" is replaced by the containment "⊇", the map S is said to be concave.

• The relation R is said to be convex if whenever R(ai, bi, yi) holds for ai ∈ A, bi ∈ B
and yi ∈ Y, i = 1, 2, the relation R(ta1 + (1 − t)a2, tb1 + (1 − t)b2, ty1 + (1 − t)y2)
is satisfied for all t ∈ [0, 1]. In other words, R is convex if the set determining it is
convex in the product space A×B × Y .
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In many models (see Section 5) the maps S1 and S2 are constant with convex values,
so that they are concave and convex at the same time. Moreover, if R is defined by the
inequality f(a, b, y) ≤ 0 where f is a real-valued function on A×B × Y and A, B and Y
are convex sets, then R is convex if and only if the function f is convex.

Proposition 3.6 Assume that A, B and Y are convex subsets of linear spaces. Then the
solution set Σ is convex provided that the constraint map S1 is convex, the maps S2 and
T are concave and the relation R is convex.

Proof. It follows from the convexity of S1 that K is convex. We show that Γ is convex.
Indeed, let a1 and a2 be two elements of Γ. For each t ∈ [0, 1] and b ∈ S2(ta1 +(1− t)a2),
there exist b1 ∈ S2(a1) and b2 ∈ S2(a2) such that b = tb1+(1− t)b2. Let y be any element
of T (ta1 + (1 − t)a2, tb1 + (1 − t)b2). Since T is concave, there exist y1 ∈ T (a1, b1) and
y2 ∈ T (a2, b2) such that y = ty1 + (1− t)y2. Then R(ai, bi, yi), i = 1, 2 hold. The convex-
ity of R implies that R(ta1 + (1− t)a2, tb1 + (1− t)b2, ty1 + (1− t)y2) is satisfied. Thus,
ta1+(1−t)a2 belongs to Γ. According to the relation (1) we conclude that Σ is convex. 2

When the image of every element a ∈ A under S2 is the whole set B, the convexity
requirement on T and R can be weakened.

Proposition 3.7 Assume that A, B and Y are convex subsets of linear spaces. Then
each of the following conditions is sufficient for the solution set Σ to be convex:

(i) S1 is convex, S2 is constant of value B, T is convex in the first variable and R is
convex in the first and the third variables;

(ii) S1 is convex, S2 is constant of value B, T is constant of value Y and R is convex
in the first variable.

Proof. Apply the same argument as the proof of the preceding proposition with use of
the relation (2) instead of (1). 2

Example 3.8 Let A and f be as in Example 3.2. Consider the Minty variational in-
equality problem:

Find a ∈ A such that 〈f(x), x− a〉 ≥ 0 for all x ∈ A.
To express this problem in the form of (VR), it suffices to define B = A, Y = H,S1(x) =
A, S2(x) = A and T (x, b) = A for all x, b ∈ A. The relation R is defined as follows:
R(x, b, y) holds if and only if 〈f(y), y − x〉 ≥ 0. It is clear that R is convex in the first
variable, so the solution set of the Minty variational inequality problem is always convex if
it is nonempty in view of Proposition 3.7. When f is continuous and pseudo-monotone in
the sense that 〈f(y), x−y〉 ≥ 0 implies 〈f(x), x−y〉 ≥ 0, the solution set of the Stampac-
chia problem and the Minty problem coincide, hence the solution set of the Stampacchia
problem is convex too (see (Proposition 3.1,[12]) for this known result).

We now turn to the boundedness of the solution set. To this end a concept of coer-
civeness of the relation R is needed.
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Definition 3.9 Assume that A is a subset of a normed space. We say that R is coercive
in the first variable (with respect to the constraints (S1, S2, T )) if for every sequence {xk}
in K whose norm converges to ∞, one can find an integer k0 such that whenever k ≥ k0
the relation R(xk, bk, yk) does not holds for some bk ∈ S2(x

k) and yk ∈ T (xk, bk).

It is clear that when S1(A) is bounded, then K is bounded, and hence R is coercive.
When R is defined by the inequality f(x, b, y) ≤ 0, where f is a real-valued function on
A×B × Y , it is coercive in the first variable provided that f is coercive in x in the sense
that lim‖x‖→∞ f(x, b, y) =∞ for all b and y.

Proposition 3.10 Assume that A is an unbounded subset of a normed space. Then the
solution set Σ is bounded if R is coercive in the first variable.

Proof. The conclusion follows directly from the hypothesis and from the formula (1). 2

In the Stampacchia problem if the operator f is coercive on A in the sense that
limx∈A,‖x‖→∞〈f(x), x − a〉 = ∞ for some a fixed, then it is clear that R is coercive in
the first variable. Hence, the solution set is bounded (see Theorem 3.2 of [12]). On the
other hand, for the Minty problem, if all vectors f(y), y ∈ A are strictly positive on the
recession cone of A without the origin, then R is coercive and hence the solution set is
bounded too. We refer the interested reader to [10] for more examples of coercive relations
of equilibrium problems.

4 Stability

Throughout this section Λ, A, B and Y are topological spaces. For each λ ∈ Λ, we as-
sume that Aλ ⊆ A, Bλ ⊆ B, Y λ ⊆ Y are nonempty sets; Sλ1 : Aλ−→→Aλ, Sλ2 : Aλ−→→Bλ,
T λ : Aλ×Bλ−→→Y λ are set-valued maps with nonempty values; and Rλ(a, b, y) is a relation
linking elements a ∈ Aλ, b ∈ Bλ and y ∈ Y λ. The variational relation problem with the
data Aλ, Bλ, Y λ, Sλ1 , S

λ
2 , T

λ and Rλ is denoted by (V R)λ. The notations Σλ, Kλ, Γλ

etc. are defined accordingly. In this section we study the question how the solution set
Σλ changes when the data of the problem vary. More precisely, we shall establish inner
and outer-continuity as well as inner and outer-openness of Σλ as a set-valued map of the
variable λ. We shall fix a value λ0 ∈ Λ and assume that the problem (VR) corresponds
to the case of (V R)λ0 . The complement of the map Γλ is understood in the space A.

Theorem 4.1 The set-valued map Σλ is outer-open at λ0, that is, limsupoλ→λ0Σ
λ ⊆ Σ if

the maps Kλ is outer-open at λ0 and limsupoλ→λ0Γ
λ ∩K ⊆ Γ. In particular this is true

under the following conditions

(i) lim supλ→λ0 A
λ ⊆ A;

(ii) for every x ∈ A, x ∈ S1(x) whenever x ∈ Sλν1 (x) for some net λν converging to λ0;

(iii) for every x ∈ K,
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(iii1) lim infλ→λ0 S
λ
2 (x) ⊇ S2(x);

(iii2) lim infλ→λ0,b′∈Sλ2 (x)→b T
λ(x, b′) ⊇ T (x, b);

(iii3) R(x, b, y) holds whenever there are some nets λν converging to λ0, b
ν ∈ Sλν2 (x)

converging to b and yν ∈ T λν (x, bν) converging to y such that Rλν (x, bν , yν)
holds for all ν.

Proof. According to (1), we have Σλ = Kλ ∩Γλ. Therefore, the first part of the theorem
is derived from Proposition 2.6 (i). For the second part, we show that the set-valued map
λ 7→ Kλ is outer-open at λ0. Let x ∈ limsupoλ→λ0K

λ. There is a net λν converging to λ0
and a neighborhood V of x with V ⊆ Aλν and z ∈ Sλν1 (z) for all z ∈ V . It follows from
(i) that x ∈ A, and from (ii) that x ∈ S1(x). Thus, x ∈ K.

Now, if x ∈ K ∩ limsupoλ→λ0Γ
λ, then for some net λν converging to λ0 and some

neighborhood V of x one has V ⊆ Aλν and the relation Rλν (z, b, y) holds for all z ∈ V, b ∈
Sλν2 (z) and y ∈ T λν (z, b). Given b ∈ S2(x) and y ∈ T (x, b), in view of (iii1) and (iii2)
one can find bν ∈ Sλν2 (x) and yν ∈ T λν (x, bν) such that bν and yν converge respectively
to b and y. Then Rλν (x, bν , yν) holds, and by (iii3), R(x, b, y) holds too. In this way,
K ∩ limsupoλ→λ0Γ

λ ⊆ Γλ and by Proposition 2.6(i) the proof is complete. 2

Theorem 4.2 The map Σλ is outer-continuous at λ0, that is, lim supλ→λ0 Σ
λ ⊆ Σ, if Kλ

is outer-continuous at λ0 and [limsupλ→λ0Γ
λ] ∩ K ⊆ Γ. In particular this is true under

the following conditions

(i) lim supλ→λ0 A
λ ⊆ A;

(ii) for every x ∈ A, x ∈ S1(x) whenever there are a net λν converging to λ0 and
xν ∈ Sλν1 (xν) converging to x;

(iii) for every x ∈ K,

(iii1) lim infλ→λ0,xλ∈Aλ→x S
λ
2 (x

λ) ⊇ S2(x);

(iii2) lim infλ→λ0,xλ∈Aλ→x,bλ∈Sλ2 (xλ)→b T
λ(xλ, bλ) ⊇ T (x, b);

(iii3) R(x, b, y) holds whenever R
λν (xν , bν , yν) holds for some xν ∈ Aλν , bν ∈ Sλν2 (xν)

and yν ∈ T λν (xν , bν) converging to x, b and y respectively, and λν converges to
λ0.

Proof. As in the proof of Theorem 4.1, the first part of the theorem is derived from
Proposition 2.6 (i). For the second part, we note that due to (i) and (ii), the set-valued
map λ 7→ Kλ is outer-continuous at λ0. Now let x ∈ [limsupλ→λ0Γ

λ] ∩ K. There are
xν ∈ Γλν converging to x as λν converging to λ0. We show that x belongs to Γ. Let b
be any element of S2(x) and let y be any element of T (x, b). By (iii1) and (iii2) there
are some bν ∈ Sλν2 and yν ∈ T λν (xν , bν) which converge respectively to b and y. Since
Rλν (xν , bν , yν) holds for all ν, by (iii3) one deduces that R(x, b, y) is satisfied, and hence
x belongs to Γ, completing the proof. 2
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Theorem 4.3 The set-valued map Σλ is inner-open at λ0, that is liminfoλ→λ0Σ
λ ⊇ Σ, if

the maps Kλ is inner-open at λ0 and liminfoλ→λ0Γ
λ ⊇ Γ ∩K. In particular this is true

under the following conditions

(i) liminfoλ→λ0A
λ ⊇ A;

(ii) for every x ∈ A, liminfoλ→λ0,x′∈Aλ→xS
λ
1 (x

′) ⊇ S1(x);

(iii) for every x ∈ K,

(iii1) S
λ
2 (x

′) is upper semi-continuous and compact-valued in the variables (λ, x′) at
(λ0, x);

(iii2) T
λ(x′, b′) is upper semi-continuous and compact-valued in the variables (λ, x′, b′)

at (λ0, x, b) with b ∈ S2(x);

(iii3) R(x, b, y) does not hold whenever Rλν (xν , bν , yν) does not hold for some xν ∈
Aλν converging to x, bν ∈ Sλν2 (xν) converging to b and yν ∈ T λν (xν) converging
to y with for all λν converging to λ0.

Proof. The first part of the theorem follows from Proposition 2.6 (ii). For the second
part, first we prove that the map λ 7→ Kλ is inner-open at λ0. Let x be an element of K,
that is x ∈ A and x ∈ S1(x). By (i), there are neighborhoods U1 of λ0 and V1 of x such
that V1 ⊆ Aλ for all λ ∈ U1, λ 6= λ0. It follows from (ii) that there exist neighborhoods
U2 of λ0, W2 and V2 of x such that V2 ⊆ Sλ1 (x

′) for all λ ∈ U2, λ 6= λ0, and x
′ ∈W2 ∩ Aλ.

By taking U = U1 ∩ U2 and V = V1 ∩ V2 ∩W2 we deduce that for every λ ∈ U, λ 6= λ0,
and x′ ∈ V one has x′ ∈ Aλ ∩ Sλ1 (x′). Thus, V ⊆ Kλ for all λ ∈ U, λ 6= λ0.
Now, to complete the proof, let x ∈ Γ ∩ K. We have to show that x ∈ liminfoλ→λ0Γ

λ.
Suppose to the contrary that x does not belong to the inferior open limit of Γλ at λ0.
According to Lemma 2.1(iii), x belongs to the superior limit of (Γλ)c. Let xν ∈ [Γλν ]c

converging to some x as λν tends to λ0. For each ν, either xν does not belongs to Aλν ,
or it does belong to Aλν and Rλν (xν , bν , yν) does not holds for some bν ∈ Sλν2 (xν) and
yν ∈ T λν (xν , bν). If the first case occurs for a subnet of λν , then in view of (i) and Propo-
sition 2.3(ii), x does not belong to A, and neither to Γ. In the other case, in view of (iii1)
and (iii2) we may assume that bν and yν converge respectively to some b ∈ S2(x) and
y ∈ T (x, b). By (iii3), R(x, b, y) does not holds, which yields x 6∈ Γ, a contradiction. The
proof is complete. 2

It is clear that the roles of the maps Kλ and Γλ in the first part of the above theorems
are symmetric, so that they can be switched by each other without altering the conclusion.
We now turn to the inner continuity of the solution set.

Theorem 4.4 The set-valued map Σλ is inner-continuous at λ0, that is, liminfλ→λ0Σ
λ ⊇

Σ, if either Kλ is inner-open at λ0 and liminfλ→λ0Γ
λ ⊇ Γ∩K, or Kλ is inner-continuous

at λ0 and liminfoλ→λ0Γ
λ ⊇ Γ∩K. In particular this is true under the following conditions

(i) liminfoλ→λ0A
λ ⊇ A;

(ii) for every x ∈ A, liminfoλ→λ0,x′∈Aλ→xS
λ
1 (x

′) ⊇ S1(x);
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(iii) for every x ∈ K,

(iii1) S
λ
2 (x) is upper semi-continuous and compact-valued at λ0;

(iii2) T
λ(x, b′) is upper semi-continuous and compact-valued at (λ0, b) with b ∈ S2(x);

(iii3) R(x, b, y) does not hold whenever there are λν converging to λ0, b
λν ∈ Sλν2 (x)

and yλν ∈ T λν (x, bλν ) converging to b and y respectively such that x ∈ Aλν and
Rλν (x, bλν , yλν ) does not hold for all ν.

Proof. Again, the first part of the theorem is obtained from Proposition 2.6 (iii). For the
second part, observe that the map λ 7→ Kλ is inner-open at λ0 as proven in the preceding
theorem. Let x ∈ Γ∩K. We have to show that for every net λν converging to λ0 one can
find some xν ∈ Γλν converging to x. Suppose to the contrary that this is not true, that is,
there is a neighborhood V of x such that V ∩ Γλν = ∅ for some net λν converging to λ0.
In view of (i), we may assume that V ⊆ Aλν for all ν. Thus, there are some elements bν of
Sλν2 (x) and yν of T λν (x, bν) such that Rλν (x, bν , yν) does not hold. By (iii1) and (iii2) one
may assume that bν and yν converge respectively to b ∈ S2(x) and y ∈ T (x, b). The last
hypothesis (iii3) yields that R(x, b, y) does not hold. This is in contradiction with x ∈ Γ,
and the proof is complete. 2

We finish this section with another kind of sufficient conditions for continuity of the
map Γλ. These involve the complement of the relation R. We say that a set Λ0 ⊆ Λ is
open (respectively closed) at λ0 if there is an open (respectively closed) neighborhood U0

of λ0 such that U0 ∩ Λ0 is open (respectively closed). We need the following lemma.

Lemma 4.5 The following assertions are true.

(i) Γλ is outer-open (respectively inner-continuous) at λ0 if, for every x 6∈ Γ (respec-
tively x ∈ Γ), the set

Ux = {λ ∈ Λ : Rλ(x, b, y) does not hold for some b ∈ Sλ2 (x) and y ∈ T λ(x, b)}

is open (respectively closed) at λ0.

(ii) Γλ is outer-continuous (respectively inner-open) at λ0 if the set

U = {(λ, x) ∈ Λ×A : either x 6∈ Aλ or Rλ(x, b, y) does not hold for some

b ∈ Sλ2 (x) and y ∈ T λ(x, b)}

is open at (λ0, x) with x 6∈ Γ (respectively closed at (λ0, x) with x ∈ Γ).

Proof. To prove (i), let x 6∈ Γ. Then λ0 ∈ Ux. If Ux is open at λ0, then there is a
neighborhood U of λ0 which is contained in Ux. So x belongs to [Γλ]c for all λ ∈ U . Hence
x belongs to liminfλ→λ0Γ

λ, which, by Proposition 2.3(i), implies that Γλ is outer-open.
Let x ∈ Γ. Then λ0 6∈ Ux. If Ux is closed at λ0, then there is a closed neighborhood U0

of λ0 such that U0 ∩ Ux is a closed set. It follows that there is some open neighborhood
U ⊆ U0 of λ0 such that U ∩ Ux is an empty set. Thus, x belongs to Γλ for all λ ∈ U .

14



Hence, x belongs to liminfλ→λ0Γ
λ, and Γλ is inner-continuous.

For the outer-continuity in Assertion (ii), let x0 6∈ Γ. Then (λ0, x0) ∈ U . Since the
set U is open at this point, there are open neighborhoods U of λ0 and V of x0 such that
U × V ⊆ U . This implies that x 6∈ Γλ for all x ∈ V and λ ∈ U . By definition, x0 belongs
to liminfoλ→λ0 [Γ

λ]c and by Proposition 2.3 (ii), Γλ is outer-continuous.
For the inner-openness, let x0 ∈ Γ. Then (λ0, x0) 6∈ U . Since the set U is closed, there

are closed neighborhoods U0 of λ0 and V0 of x0 such that U0×V0∩U is closed. We can find
some small open neighborhoods U ⊆ U0 of λ0 and V ⊆ V0 of x0 such that U ×V ∩U = ∅.
This implies that V ⊆ Γλ for all λ ∈ U . Thus, Γλ is inner-open at λ0 and the proof is
complete. �

Remark 4.6 In many models it is assumed that the sets Aλ, Bλ and Y λ are constant
and that the set

W = {(λ, x, b, y) ∈ Λ× A×B × Y : Rλ(x, b, y) does not hold}

is open at (λ0, x, b, y) for y ∈ T (x, b), b ∈ S2(x) and x 6∈ Γ. If in addition the map Sλ2 (x)
is inner-continuous at (λ0, x) and T λ(x, b) is inner-continuous at (λ0, x, b) for all x 6∈ Γ,
b ∈ S2(x), then the set U is open at (λ0, x) for all x 6∈ Γ. Indeed, let x0 6∈ Γ. Then
there are some b0 ∈ S2(x0) and y0 ∈ T (x0, b0) such that R(x0, b0, y0) does not hold. By
hypothesis, there are open neighborhoods U1 of λ0, V1 of x0, W1 of b0 and Z1 of y0 such
that U1 × V1 ×W1 × Z1 ⊆ W. By the inner-continuity hypothesis of T λ, there are open
neighborhoods U2 ⊆ U1 of λ0, V2 ⊆ V1 of x0 andW2 ⊆W1 of b0 such that T λ(x, b)∩Z1 6= ∅
for all (λ, x, b) ∈ U1 × V1 ×W1. Similarly, by the inner-continuity of Sλ2 , one can find
open neighborhoods U ⊆ U2 of λ0 and V ⊆ V2 of x0 such that Sλ2 (x) ∩W2 6= ∅ for all
(λ, x) ∈ U × V . It is clear now that for each (λ, x) ∈ U × V , there are some b ∈ Sλ2 (x)
and y ∈ T λ(x, b) such that (λ, x, b, y) belongs to W, that is Rλ(x, b, y) does not hold. In
this way, U × V ⊆ U .

Along the same line, assume that the set W is closed at (λ0, x, b, y), the maps Sλ2 and
T λ are outer-continuous and compact-valued at (λ0, x) and (λ0, x, b) respectively for every
x ∈ Γ, b ∈ S2(x) and y ∈ T (x, b), and that the set Y is compact. Then U is closed at
(λ0, x) for all x ∈ Γ. In fact, let x0 ∈ Γ. Then for every b ∈ S2(x0) and y ∈ T (x0, b),
R(x0, b, y) does hold. By hypothesis, there are closed neighborhoods Uby of λ0, Vby of x0,
Wby of b and Zby of y such that Uby × Vby × Wby × Zby ∩ W = ∅. By the hypothesis,
the set T (x0, S2(x0)) is compact, and hence we may choose a finite number of points, say
b1, ..., bk ∈ S2(x0) and y1, ..., yk ∈ T (x0, S2(x0)) such that the sets W1 = ∪ki=1Wbiyi and
Z1 = ∪ki=1Zbiyi are closed neighborhoods of S2(x0) and T (x0, S2(x0)) respectively. Set
U1 = ∩ki=1Ubiyi and V1 = ∩ki=1Vbiyi . They are closed neighborhoods of λ0 and x0 respec-
tively and the closed neighborhood U1×V1×W1×Z1 does not meet the set W. Now, by
the outer-continuity of T λ, there are closed neighborhoods U2 ⊆ U1 of λ0, V2 ⊆ V1 of x0
and W2 ⊆W1 of S2(x0) such that T λ(x, S2(x)) ⊆ Z1. Similarly, by the outer-continuity of
Sλ2 , there are closed neighborhoods U ⊆ U2 of λ0 and V ⊆ V2 of x0 such that Sλ2 (x) ⊆W2

for all λ ∈ U and x ∈ V. Consequently, the closed neighborhood U × V of (λ0, x0) does
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not meet W which means that it does not intersect U . Therefore, U is closed at (λ0, x0).

Let us now derive sufficient conditions for continuity of the solution map Σλ in terms
of the sets Ux, U and W above.

Corollary 4.7 The following assertions hold.

(i) Σλ is outer-open at λ0 provided that the map Kλ is outer-open at λ0 and the set Ux
is open at λ0 for all x 6∈ Γ.

(ii) Σλ is outer-continuous at λ0 provided that the map Kλ is outer-continuous at λ0
and that the set U is open at (λ0, x) for all x 6∈ Γ, which is true in particular when
the maps Aλ, Bλ and Y λ are constant, the maps Sλ2 and T λ are inner-continuous
at (λ0, x) and (λ0, x, b) respectively, and the set W is open at (λ0, x, b, y) for x 6∈ Γ,
b ∈ S2(x) and y ∈ T (x, b).

(iii) Σλ is inner-open at λ0 provided that the map Kλ is inner-open at λ0 and the set
U is closed at (λ0, x) for all x ∈ Γ, which is true in particular when Y is compact,
Sλ2 (x) and T λ(x) are outer-continuous, compact-valued respectively at (λ0, x) and
(λ0, x, b), and W is closed at (λ0, x, b, y) for every x ∈ Γ, b ∈ S2(x), y ∈ T (x, b).

(iv) Σλ is inner-continuous at λ0 provided that the map Kλ is inner-open (respectively,
inner-continuous) at λ0 and the set Ux (respectively, U) is closed at λ0 (respectively,
(λ0, x)) for all x ∈ Γ.

Proof. Invoke Lemma 4.5, Theorems 4.1-4.4 and the remark given after Lemma 4.5. �

Note that although the assumptions of Corollary 4.7 are difficult to be checked, they
are properly weaker than the particular conditions of Theorems 4.1-4.4. Indeed, from the
proof of this corollary we see that the particular assumptions of Theorems 4.1-4.4 imply
the assumptions of Corollary 4.7. The following example shows that the converse is not
true and Corollary 4.7 may be applicable in cases where the second parts of the above
mentioned theorems are not.

Example 4.8 Let Aλ = Bλ = Y λ = R, Λ = [0, 1], λ0 = 0, Sλ1 (x) = [0, λ],

Sλ2 (x) =

{

(0, 1) if λ = 0,

{−1} otherwise,

T λ(x, b) =

{

(−1, 0) if λ = 0,

{1} otherwise,

F λ(b, y) = [0, 1].

Let the relation R be defined by: R(x, b, y) holds if and only if F λ(b, y) ⊆ R+. Then
Kλ = [0, λ] satisfies all (i)-(v) of Corollary 4.7. All the sets Ux, U and W are empty and
hence also satisfy (i)-(v). Direct calculations give Σλ = [0, λ], which have all continuity
and openness properties. But Sλ2 (x) and T

λ(x, b) do not fulfil any assumption of Theorems
4.1-4.4.
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5 Particular cases

In this section we apply the results of Section 4 to two models of variational relations:
variational inclusion problems and quasi-equilibrium problems. To derive and improve
existing results of recent literature on these models we focus on outer-continuity and
inner-continuity only, since the other two kinds of continuity are newly introduced in the
present paper.

5.1 Variational inclusion problems

Let A,B, Y and Z be nonempty sets. Let S1 : A−→→A, S2 : A−→→B, T : A × B−→→Y ,
F : A×B × Y−→→Z and G : A× A× Y−→→Z be set-valued maps. Consider the variational
inclusion problem
(VIP) Find x ∈ A such that

(i) x ∈ S1(x);

(ii) F (x, b, y) ⊆ G(x, x, y) for all b ∈ S2(x) and y ∈ T (x, b).

This model generalizes several optimization related problems, including practical prob-
lems of traffic network equilibria and has been studied in [3, 4]. To see that it is a particular
case of (VR), it suffices to define a variational relation R associated to it as follows: for
x ∈ A, b ∈ S2(x) and y ∈ T (x, b), R(x, b, y) holds if and only if F (x, b, y) ⊆ G(x, x, y).
Now, assume that the data of (VIP) depend on a parameter λ from Λ, and as in Section 4,
A,B,Y and Λ are topological spaces. In [3, 4] the authors have studied stability of (VIP)
without perturbing the spaces A, B and Y . Thus, the following result ([4], Corollary 4.1)
is immediate from Theorem 4.2.

Corollary 5.1 Assume that Aλ = A, Bλ = B and Y λ = Y are all constant maps and
that the following conditions hold:

(i) Kλ is outer-continuous at λ0;

(ii) Sλ2 (x) is inner-continuous at (λ0, x0) for x0 ∈ K;

(iii) T λ(x, b) is inner-continuous at (λ0, x0, b0) for x0 ∈ K and b0 ∈ S2(x0);

(iv) F (x, b, y) ⊆ G(x, x, y) whenever there are λν converging to λ0, x
ν ∈ A, bν ∈ Sλν2 (xν)

and bν ∈ T λν (xν , bν) converging respectively to x, b and y such that F λν (xν , bν , yν) ⊆
Gλν (xν , xν , yν).

Then Σλ is outer-continuous at λ0.

Note that in the literature on problems of type (VIP), the maps S1, T and (F,G)
are separately perturbed by independent parameters. Such a perturbation is useful when
studying Hölder continuity of the solution set, since the Hölder degrees with respect to
these parameters may be different. For semicontinuities, this is unnecessary because all
these parameters can be considered as one by choosing it from a suitably defined product
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space.

Again with the spaces A, B and Y unperturbed, the following result ([3], Corollary
3.2) is immediate from Theorem 4.4.

Corollary 5.2 Assume that the following conditions hold

(i) Kλ is inner-continuous at λ0;

(ii) Sλ2 (x) is upper semi-continuous and compact-valued at (λ0, x0) for x0 ∈ K;

(iii) T λ(x, b) is upper semi-continuous and compact-valued at (λ0, x0, b0) for x0 ∈ K and
b0 ∈ S2(x0);

(iv) F (x, b, y) 6⊆ G(x, x, y) whenever there are λν converging to λ0, x
ν ∈ A, bν ∈ Sλν2 (xν)

and yν ∈ T λν (xν , bν) converging respectively to x, b and y such that F λν (xν , bν , yν) 6⊆
Gλν (xν , xν , yν).

Then Σλ is inner-continuous at λ0.

Together with (VIP) consider the auxiliary problem (VIP∗), which is obtained from (VIP)
by replacing the inclusion in (ii) by

F (x, b, y) ⊆ intG(x, x, y).

As it is shown in the next corollary, stability of this auxiliary problem implies stability of
problem (VIP).

Corollary 5.3 Assume that (VIP∗) has a nonempty solution set Σλ
∗ . Assume further

that

(i) Kλ is inner-continuous at λ0;

(ii) Sλ2 (x) is usc and compact-valued at (λ0, x0) for x0 ∈ K;

(iii) T λ(x, b) is usc and compact-valued at (λ0, x0, b0) for x0 ∈ K and b0 ∈ S2(x0);

(iv) Σλ ⊆ cl Σλ
∗ for every λ;

(v) for all x ∈ K, F (x, b, y) 6⊆ G(x, x, y), whenever there are λν converging to λ0, b
ν ∈

Sλν2 (x) and yν ∈ T λν (x, bν) converging respectively to b and y with F λν (x, bν , yν) 6⊆
Gλν (x, x, yν).

Then Σλ
∗ and Σλ are inner-continuous at λ0.

Proof. By (ii), (iii) and (v), for each x ∈ K the set Ux for problem (VIP∗) is closed at
λ0. Therefore, by Corollary 4.7(iv), the solution map Σλ∗ is inner-continuous. In view of
assumption (iv) the solution map Σλ is inner-continuous too. �
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Remark 5.4 Assumption (iv) of Corollary 5.3 can be guaranteed provided that Kλ is
convex and the following conditions hold:

(a) For every x1 ∈ Σλ
∗ , x2 ∈ Σλ, and b ∈ Sλ2 ((1− t)x1 + tx2) with t ∈ [0, 1),

F λ(x1, b, y) ⊆ intGλ(x1, x1, y) for all y ∈ T λ(x1, b),

F λ(x2, b, y
′) ⊆ Gλ(x2, x2, y

′) for all y′ ∈ T λ(x2, b);

(b) For every b ∈ B, the map F λ(., b, .) is Gλ-quasiconvex with respect to T λ(., b) in the
sense that for all x1, x2 ∈ Kλ, y1 ∈ T λ(x1, b) and y2 ∈ T λ(x2, b), the inclusions

F λ(x1, b, y1) ⊆ intGλ(x1, x1, y1),

F λ(x2, b, y2) ⊆ Gλ(x2, x2, y2),

imply F λ(xt, b, yt) ⊆ intGλ(xt, xt, yt) for all xt = (1 − t)x + tx′ and yt ∈ T λ(xt, b) with
t ∈ [0, 1).

This is because if x1 ∈ Σλ
∗ and x2 ∈ Σλ, then the interval [x1, x2) is included in

Σλ
∗ , and hence the set Σλ is included in the closure of Σλ

∗ . The conditions of this re-
mark have been considered in [3]. Hence, Corollary 5.3 extends Theorem 3.5 of [3]. As far
as we know, [3, 4] are the only works devoted to stability of variational inclusion problems.

The reason for introducing the auxiliary problem (VIP∗) is that under certain conti-
nuity assumptions, the inner-openness of the maps Σλ∗ is easier to obtain than the inner-
openness of the map Σλ. This can be clearly seen in the case when G is a constant map,
say equal to a closed convex cone C with a nonempty interior, and F λ(x, b, y) is a single-
valued continuous function. Then for the inclusion F λ0(x0, b0, y0) ∈intC one can find a
neighborhood U of λ0 and V of (x0, b0, y0) such that F λ(x, b, y) ∈intC for all λ ∈ U and
(x, b, y) ∈ V . This, however, is not true in general for the inclusion F λ0(x0, b0, y0) ∈ C.

5.2 Quasi-equilibrium problems

Let Λ and X be topological spaces, let C be a closed subset of a topological vector space
Z with a nonempty interior. Let S,G : X−→→X and F : X ×X−→→Z be set-valued maps. A
quasi-equilibrium problem, denoted by (QEP), is the following

Find ā ∈ X such that
(i) ā is a fixed point of clS, that is ā ∈ clS(ā);
(ii) F (b, y) ⊆ Z \ −intC for every b ∈ S(ā) and y ∈ G(ā).

This problem has been investigated in e.g. [1, 2]. It is a particular case of (VR) in
which A, B and Y coincide with X, S1(x) = clS(x), S2(x) = S(x), T (x, b) = G(x) for
all x, b ∈ X, and the relation R(x, b, y) holds if and only if F (b, y) ⊆ Z \ −intC. As in
the previous subsection, for simple presentation we assume that Aλ = A, Bλ = B and
Y λ = Y are all constant maps.
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Corollary 5.5 Assume that the following conditions hold:

(i) Sλ(x) is inner-continuous and clSλ(x) is outer-continuous, in the variables (λ, x) at
(λ0, x0) for x0 ∈ K;

(ii) Gλ(x) is inner-continuous at (λ0, x0) for x0 ∈ K;

(iii) F λ(x, b) is inner-continuous at (λ0, x0, b0) for x0 ∈ K and b0 ∈ Y .

Then Σλ is outer-continuous at λ0.

Proof. This is immediate from Theorem 4.2. �

This corollary contains Theorem 3.4 of [1] as a special case with Gλ(x) = {x}.

Corollary 5.6 Assume that the following conditions hold:

(i) Kλ is inner-continuous at λ0;

(ii) Sλ2 (x) is outer-continuous and compact-valued at (λ0, x0) for x0 ∈ K;

(iii) Gλ(x) is usc and compact-valued at (λ0, x0) for x0 ∈ K;

(iv) F (b, y) ⊆ Z \ −intC whenever there are λν converging to λ0, x
ν ∈ A, bν ∈ Sλν (xν),

yν ∈ T λν (xν) converging respectively to x, b and y such that F λν (bν , yν) ⊆ Z \−intC.

Then Σλ is inner-continuous at λ0.

Proof. This is immediate from Theorem 4.4. �

Theorem 2.4 of [1] is a special case with Gλ(x) = {x} of this corollary too. Observe
that we can derive immediately Theorem 3.1 of [2] (hence improve also the corresponding
result of [7]) from part (ii) of Corollary 4.6 and Theorem 2.1 of [2] (with the improvement
that Ux replaces U) from part (iv).

The following version of quasi-equilibrium problems is often studied in the recent
literature (e.g. [13]), denoted by (QEP’):

Find ā ∈ A such that
(i) ā ∈ S(ā)
(ii) f(ā, b) ∈ Z \ −intC(ā) for every b ∈ S(ā).

In this model, f is a single-valued function from A× Y to Z with Z being a topological
vector space, and C : A−→→Z is a set-valued map whose values are convex cones with
nonempty interior. It is clear that this problem is a particular case of the variational
inclusion problem (VIP) with S1 = S2 = S, T being the identity map, F (x, b, y) =
{f(x, b)} and G(x, x, y) = Z \ −intC(x). For this problem, the following stability result
([13], Theorem 4.1) is a direct consequence of Corollary 4.7 (ii).

Corollary 5.7 Assume for (QEP’) that
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(i) Sλ(x) is outer-continuous and compact-valued in {λ0} × A;

(ii) the following set W is open at (λ0, x, b) for x ∈ Γ and b ∈ S(x):

W = {(λ, x, b) ∈ Λ× A× A : F (λ, x, b) 6∈ Z \ −intC(λ, x)}.

Then Σλ is outer-continuous at λ0.

We denote the corresponding auxiliary problem of (QEP’) by (QEP’∗), where−intC(ā)
is replaced by the closure of −C(ā), that is:

Find ā ∈ A such that
(i) ā ∈ S(ā)
(ii) f(ā, b) ∈ Z \ −clC(ā) for every b ∈ S(ā).

Similar to the case of variational inclusions, stability of this auxiliary problem implies
stability of the quasi-equilibrium problem (QEP’) under a suitable condition.

Corollary 5.8 Assume that (QEP’∗) has solutions and that the following conditions hold:

(i) Kλ is inner-continuous at λ0;

(ii) Sλ(x) is upper semi-continuous and compact-valued at (λ0, x0) for every x0 ∈ A;

(iii) the set {(λ, x, b) ∈ Λ × A × A : F λ(x, b) ∈ Z \ −clCλ(x)} is open at (λ0, x, b) for
every x, b ∈ A;

(iv) Σλ ⊆ cl Σλ
∗ for every λ.

Then the set-valued maps Σλ
∗ and Σλ are inner-continuous at λ0.

Proof. It follows from conditions (ii) and (iv) that the set Ux of Lemma 4.5 is closed.
Hence, by Corollary 4.7 (iv), the solution map λ → Σλ

∗ is inner-continuous at λ0. By
condition (iv), the map λ→ Σλ is inner-continuous there too. �

We notice that this corollary improves Theorem 5.1 of [13]. In fact, the above-said
theorem requires the following conditions in addition to the assumptions of Corollary 5.8
(except assumption (iv)): 1) Sλ(x) is convex-valued and concave with respect to x; 2)
Kλ is convex; 3) a generalized quasiconvexity stronger than the condition that for each λ,
F λ(., b) is C-quasiconvex (with respect to the identity map), see the definition in Remark
5.4(b). It follows from these conditions (the assumption on convex-values of Sλ(x) is not
used) that for every x ∈ Σλ

∗ and x′ ∈ Σλ, the interval [x, x′) is included in Σλ
∗ ⊆ Σλ. By

this, Σλ is included in the closure of Σλ
∗ . It is evident that the latter inclusion can be true

without the three conditions above.

It is not hard to see that the results on upper and lower semi-continuities for symmetric
quasi-equilibrium problems of [5] are also consequences of the results of Section 4.
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6 Final remark

Let X and Z be nonempty sets, M a nonempty subset of Z and F a set-valued map from
X to Z. Consider the following general inclusion problem:

(GI) Find x ∈ X such that F (x) ⊆M .

There are several ways to interpret (GI) as a variational relation problem. One of
them is as follows. Set A = {x ∈ X : F (x) 6= ∅}, B = A, Y = Z, S1(x) = A, S2(x) = A
and T (x, b) = F (x) for all x and b of A. Given (x, b, z) ∈ A×A×Z, we say that R(x, b, z)
holds if x ∈M. Then with these data, the problem (VR) is exactly the problem (GI).
It turns out that (VR) can also be expressed as an inclusion problem. For this purpose,
set X = A and Z = A×B× Y . Define a subset M of the space Z as the set determining
the relation R, that is, (x, b, y) ∈ M if and only if R(x, b, y) holds. The map F : X ⇒ Z
is given by

F (x) = {(x, b, y) ∈ Z : b ∈ S2(x), y ∈ T (x, b)} ∩ S1(x)×B × Y.

Then the obtained problem (GI) is exactly the problem (VR). The specific form of (VR)
which involves the constraint maps S1, S2 and T makes it mathematically attractive and
applicable to several models of practice as it is shown in [15] and the present study.
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