PROPERTIES TRANSFER BETWEEN TOPOLOGIES ON FUNCTION SPACES, HYPERSPACES AND UNDERLYING SPACES

SZYMON DOLECKI

ABSTRACT. Each collection α of families of subsets of X determines a topology $\alpha(X, Z)$ on the space of continuous maps C(X, Z). Interrelations between local properties of $\alpha(X, \mathbb{R})$ and of $\alpha(X, \$)$ (on the hyperspace C(X, \$)), and with properties of a topological space X are studied in a general framework, which allows to treat simultaneously several classical constructions, like pointwise convergence, compact-open topology and the Isbell topology.

1. INTRODUCTION

The interrelation of properties of $C_{\alpha}(X, Z)$ with those of X and Z, is a fascinating theme. Here α is a collection of (openly isotone ¹) families of subsets of X, that defines a topology $\alpha(X, Z)$ on C(X, Z) by a subbase

(1.1)
$$\{[\mathcal{A}, O] : \mathcal{A} \in \alpha, O \in \mathcal{O}_Z\},\$$

where $[\mathcal{A}, O] := \{f : f^-(O) \in \mathcal{A}\}, f^-(O) := \{x : f(x) \in O\}$, and \mathcal{O}_Z is the set of open subsets of Z.

Its very special case, that of $C_p(X, \mathbb{R})$ (the space of real-valued functions with pointwise convergence) has attracted a lot of researchers, among whom A. V. Arhangel'skii (e.g., [1]). Its intermediate case of

$$\alpha = \alpha_{\mathcal{D}} := \{\mathcal{O}_X(D) : D \in \mathcal{D}\},\$$

where \mathcal{D} is a family of subsets of X, is the object of a book of McCoy and Ntantu [15].

Actually the said interrelation corresponds to the upper side of a quadrilateral

$$\begin{array}{cccc} X & \leftrightarrow & C_{\alpha}(X,\mathbb{R}) \\ \uparrow & & \uparrow \\ C_{\alpha}(X,\$^*) & \leftrightarrow & C_{\alpha}(X,\$) \end{array}$$

in which, of course, one can consider also other sides, as well as diagonals. Here ,* stand for the two homeomorphic variants of the Sierpiński topology on $\{0, 1\}$, so that C(X,\$) can be identified with the hyperspace of X, and C(X,\$*) with the set of open subsets of X.

Date: October 10, 2007.

Key words and phrases. function spaces, hyperspaces, polar topologies, dual topologies.

I am thankful to Professor Frédéric Mynard (Georgia Southern, Statesboro) for helpful comments.

¹A family \mathcal{A} of open sets is *openly isotone* if $B \in \mathcal{A}$ provided that B is open and there is an element $A \in \mathcal{A}$ such that $A \subset B$.

SZYMON DOLECKI

It turns out that it is fruitful to study the three other sides in order to better grasp the interrelation of the upper side $X \leftrightarrow C_{\alpha}(X, \mathbb{R})$. Indeed,

- (1) $C_{\alpha}(X, \$)$ is homeomorphic to $C_{\alpha}(X, \$^*)$;
- (2) One can establish a dictionary of easy translations of elementary properties of $C_{\alpha}(X, \$^*)$ and α -properties of X;
- (3) Under a separation condition (by real functions) one can evidence an intimate relationship between $C_{\alpha}(X, \mathbb{R})$ and $C_{\alpha}(X, \mathbb{S})$.

More precisely, if X is completely regular and α is a compact web, then $C_{\alpha}(X, \mathbb{R})$ is a Hausdorff topological vector space, hence the topology $\alpha(X, \mathbb{R})$ is homogeneous. Roughly speaking ², a web α on X is a collection of families of open subsets of X such that for each open subset Y there is $\mathcal{A} \in \alpha$ that can be reconstructed from its trace on Y. A web is compact if its every element \mathcal{A} is a compact family ³.

Therefore, if X is completely regular and α is a compact web, then to characterize a local property of $C_{\alpha}(X, \mathbb{R})$, it is enough to study the neighborhood filter of the function 0. As we shall see, in this case, the neighborhood filter of the function 0 in $C_{\alpha}(X, \mathbb{R})$ and the neighborhood filter of the empty set \emptyset in the hyperspace $C_{\alpha}(X, \mathbb{S})$ belong to the same class.

Of course, in general, a hyperspace topology $\alpha(X, \$)$ is not homogeneous. As $\alpha(X, \$)$ and $\alpha(X, \$^*)$ are homeomorphic (by complementation), a property of $\mathcal{N}_{\alpha(X,\$)}(A)$ for $A \in C(X, \$)$ is also a property of $\mathcal{N}_{\alpha(X,\$^*)}(X \setminus A)$ and, as a rule, can be characterized in terms of the space $X \setminus A$ with the induced topology. Therefore a local property of $C_{\alpha}(X,\$)$ can be characterized by a hereditary (with respect to open subsets) property of X.

It follows from some more general facts (see [5]) that

(1.2)
$$f \in \lim_{\alpha(X,\mathbb{R})} \mathcal{F} \iff f^{-}(A) \in \lim_{\alpha(X,\$)} \mathcal{F}^{-}(A)$$

for each closed subset A of \mathbb{R} , where $f^{-}(A) := \{x : f(x) \in A\}$ and $\mathcal{F}^{-}(A)$ is a filter generated by $\{\{f^{-}(A) : f \in F\} : F \in \mathcal{F}\}$. Consequently, each α -topology on $C(X, \mathbb{R})$ can be, in principle, characterized in terms of the corresponding α -topology on the hyperspace C(X, \$), actually on its subset consisting of functionally closed subsets of X. Therefore the transfer between $C_{\alpha}(X, \mathbb{R})$ and $C_{\alpha}(X, \$)$ requires, essentially, the complete regularity of X. By the way, it is why Georgiou, Iliadis and Papadopoulos studied properties of real-valued function spaces in terms of topologies on functionally open sets [7].

The present paper restricts its scope to topologies on function spaces (almost always real-valued) and to the corresponding hyperspace topologies. This is just one aspect of a general theory of convergence function spaces and hyperspace convergences that will be discussed in [5].

2. Open-set topologies

We denote by \mathcal{O}_X the set of open subsets of X, by $\mathcal{O}_X(x) := \{O \in \mathcal{O}_X : x \in O\}$, and by $\mathcal{O}_X(A) := \{O \in \mathcal{O}_X : A \subset O\}$. If now \mathcal{A} is a family of subsets of X, then $\mathcal{O}_X(\mathcal{A}) := \bigcup_{A \in \mathcal{A}} \mathcal{O}_X(A)$. A family \mathcal{A} of subsets of X is openly isotone if $\mathcal{O}_X(\mathcal{A}) = \mathcal{A}$.

²A precise definition is given before Lemma 3.7

³A precise definition is given before Lemma 3.7

If α is a non-empty collection of openly isotone families of subsets of X, then (1.1) is a subbase of a topology on C(X, Z), denoted by $\alpha(X, Z)$. The corresponding topological space is denoted by $C_{\alpha}(X, Z)$.

In particular, for a non-empty family \mathcal{D} of subsets of X, the collection $\alpha := \alpha_D$ is defined by

(2.1)
$$\alpha_{\mathcal{D}} := \{\mathcal{O}_X(D) : D \in \mathcal{D}\},\$$

and the symbol $C_{\alpha_{\mathcal{D}}}(X, Z)$ is abridged to $C_{\mathcal{D}}(X, Z)$. It is often required (e.g., [15]) that \mathcal{D} be a (closed) *network* on X, that is, a family of closed sets such that for each $x \in X$ and $O \in \mathcal{O}_X(x)$ there is $D \in \mathcal{D}$ for which $x \in D \subset O$. However (1.1) is a topology subbase for each $\alpha = \alpha_{\mathcal{D}}$ provided that $\mathcal{D} \neq \emptyset$.

If $A \subset X$ and $B \subset Z$ then $[A, B] := \{f \in C(X, Z) : f(A) \subset B\}$. Therefore, $[\mathcal{O}_X(D), O] = [D, O]$ and thus

$$\{[\mathcal{A}, O] : \mathcal{A} \in \alpha_{\mathcal{D}}, O \in \mathcal{O}_Z\} = \{[D, O] : D \in \mathcal{D}, O \in \mathcal{O}_Z\}.$$

Example 2.1. If $\mathcal{D} = X^{\langle \aleph_0}$, then

$$\left\{ [F, O] : F \in X^{<\aleph_0}, O \in \mathcal{O}_Z \right\}$$

is a base of the topological space $C_p(X, Z)$ of pointwise convergence (here p abridges $X^{<\aleph_0}$).

Example 2.2. If $\mathcal{D} = \mathcal{K}_X$ (the family of compact subsets of X), then

$$\{[K,O]: K \in \mathcal{K}_X, O \in \mathcal{O}_Z\}$$

is a base of the topological space $C_k(X, Z)$ of compact-open topology (here k abridges \mathcal{K}_X).

We consider two complementary topologies on, respectively, the hyperspace C(X, \$) and the set $C(X, \$^*)$ of open subsets of X. Here \$ and $\* are two homeomorphic avatars of the *Sierpiński topology* on $\{0, 1\}$:

$$:= \{\emptyset, \{1\}, \{0, 1\}\}$$
 and $:= \{\emptyset, \{0\}, \{0, 1\}\}$.

The indicator function ψ_A of a subset A of X is defined by to be 0 on A and 1 out of A. If X is a topological space, then $\psi_A \in C(X, \$)$ if and only if A is closed, and $\psi_A \in C(X, \$^*) := \mathcal{O}_X$ if and only if A is open. The complementation $^c : 2^X \to 2^X$ associates $A^c := X \setminus A$ with $A \subset X$. In order

The complementation $^c: 2^X \to 2^X$ associates $A^c := X \setminus A$ with $A \subset X$. In order to avoid ambiguity, we denote the image of $\mathcal{A} \subset 2^X$ by the complementation by

$$\mathcal{A}_c := \{ A^c : A \in \mathcal{A} \}$$

The topology $\alpha(X, \$^*)$ on the set $C(X, \$^*)$ (of all open subsets of X) has α for a subbase, because, due to our convention, the subbase consists of $\{[\mathcal{A}, \{0\}] : \mathcal{A} \in \alpha\}$, and $[\mathcal{A}, \{0\}] = \{\psi_B \in C(X, \$^*) : \psi_B^-(0) \in \mathcal{A}\}$ (by definition, $\psi_B^-(0) = B$).

If α is stable for finite intersections, then α is a base of $\alpha(X, \$^*)$. Hence the *neighborhood filter* $\mathcal{N}_{\alpha(X,\$^*)}(Y)$ of $Y \in C(X,\$^*)$ is generated by

$$\{\mathcal{A} \in \alpha : Y \in \mathcal{A}\}$$

In particular, for $\alpha = \alpha_{\mathcal{D}}$ a subbase for open sets is of the form

$$\{\mathcal{O}_X(D): D \in \mathcal{D}\}$$

and $\alpha_{\mathcal{D}}$ is stable for finite intersections provided that \mathcal{D} is stable for finite unions, so that

$$\mathcal{N}_{\alpha_{\mathcal{D}}(X,\$^*)}(Y) \approx \{\mathcal{O}_X(D) : Y \supset D \in \mathcal{D}\}.$$

The homeomorphic image of $\alpha(X, \$^*)$ by the complementation is a topology on the hyperspace C(X, \$) denoted by $\alpha(X, \$)$. Accordingly, $\{\mathcal{A}_c : \mathcal{A} \in \alpha\}$ is a subbase of $\alpha(X, \$)$ -open sets on the hyperspace C(X, \$); the neighborhood of $H \in C(X, \$)$ with respect to $\alpha(X, \$)$ is

$$\mathcal{N}_{\alpha(X,\$)}(H) \approx \{\mathcal{A}_c : H^c \in \mathcal{A} \in \alpha\}.$$

In particular, a base of $\mathcal{N}_{\alpha_{\mathcal{D}}(X,\$)}(A_0)$ consists of

$$\{\{A \in C(X, \$) : A \cap D = \varnothing\} : D \in \mathcal{D}, \ A_0 \cap D = \varnothing\}$$

This form of basic neighborhoods is at the origin of the term \mathcal{D} -miss topology.

Remark 2.3. Gruenhage introduced the so-called γ -connection [10]. In particular, a filter $\Gamma(Y, X)$, where Y is an open subset of X, is defined in a way equivalent to

$$\Gamma(Y,X) := \left\{ \mathcal{O}_X(F) : Y \supset F \in X^{<\aleph_0} \right\},\,$$

hence $\Gamma(Y, X)$ is a neighborhood base of Y with respect to $\alpha_{X^{<\aleph_0}} := \{\mathcal{O}_X(F) : F \in X^{<\aleph_0}\}.$

3. Compact families

An openly isotone family \mathcal{A} is *compact* if each family \mathcal{P} of open sets such that $\bigcup \mathcal{P} \in \mathcal{A}$ has a finite subfamily \mathcal{P}_0 of \mathcal{P} such that $\bigcup \mathcal{P}_0 \in \mathcal{A}$. We denote by $\kappa(X)$ the collection of all compact families on X. Here are fundamental examples:

$$K \text{ compact } \Rightarrow \mathcal{O}_X(K) \in \kappa(X);$$
$$x \in \lim_X \mathcal{F} \Rightarrow \mathcal{O}_X(\mathcal{F} \land \{x\}) \in \kappa(X),$$

where $\mathcal{F} \land \{x\} := \{\{F \cup \{x\}\} : F \in \mathcal{F}\}.$

The collection of (openly isotone) compact families fulfill the following properties:

$$\emptyset, \{O_X\} \in \kappa(X);$$

$$\alpha \subset \kappa(X) \Rightarrow \bigcup_{\mathcal{A} \in \alpha} \mathcal{A} \in \kappa(X);$$

$$\mathcal{A}_0, \mathcal{A}_1 \in \kappa(X) \Rightarrow \mathcal{A}_0 \cap \mathcal{A}_1 \in \kappa(X).$$

Therefore (see [9], [2])

Corollary 3.1. $\kappa(X)$ is the collection of open sets of a topology on $\mathcal{O}_X = C(X, \$^*)$.

Example 3.2. If $\kappa = \kappa(X)$ is the collection of (openly isotone) compact families on X, then

$$[\mathcal{A}, O] : \mathcal{A} \in \kappa(X), O \in \mathcal{O}_Z\}$$

is a subbase of the Isbell topology on C(X, Z). in particular, $\kappa(X)$ is the collection of open sets of $C_{\kappa}(X, \$^*)$.

Lemma 3.3. If $\mathcal{A} = \mathcal{O}(\mathcal{A})$ is a compact family of subsets of a completely regular topological space X, and F is a closed subset of X with $F^c \in \mathcal{A}$, then there is $A \in \mathcal{A}$ and $h \in C(X, [0, 1])$ such that $h(A) = \{0\}$ and $h(F) = \{1\}$.

Proof. By complete regularity, for every $x \notin F$, there is an open neighborhood O_x of x and $f_x \in C(X, [0, 1])$ such that $f_x(O_x) = \{0\}$ and $f_x(F) = \{1\}$. Therefore $F^c = \bigcup_{x \notin F} O_x \in \mathcal{A}$, so that by the compactness of \mathcal{A} there is $n < \omega$ and $x_1, \ldots, x_n \notin F$ such that $A = \bigcup_{1 \leq i \leq n} O_{x_i} \in \mathcal{A}$. The continuous function $\min_{1 \leq i \leq n} f_{x_i}$ is 0 on A and 1 on F.

Lemma 3.4. If \mathcal{A} is a compact openly isotone family on X and C is a closed subset of X, then $\mathcal{O}(\{A \cap C : A \in \mathcal{A}\})$ is compact.

Proof. Indeed, if \mathcal{P} is a family of open sets such that $\bigcup \mathcal{P} \in \mathcal{O}(\{A \cap C : A \in \mathcal{A}\})$, then $\bigcup \mathcal{P} \cup (X \setminus C) \in \mathcal{A}$, hence there exists a finite subfamily \mathcal{P}_0 of \mathcal{P} such that $\bigcup \mathcal{P}_0 \cup (X \setminus C) \in \mathcal{A}$, thus $\bigcup \mathcal{P}_0 \in \mathcal{O}(\{A \cap C : A \in \mathcal{A}\})$.⁴

The concept of *network* is well-known. Here we introduce a notion of web that extends and weakens that of network. A collection α of openly isotone families is a *web* in X if for every $x \in X$ and each $O \in \mathcal{O}_X(x)$ there is $\mathcal{A} \in \alpha$ such that \mathcal{A} is generated by a filter on O. In particular, $\alpha_{\mathcal{D}}$ (2.1) is a web if for each $x \in X$ and every $O \in \mathcal{O}_X(x)$ there is $D \in \mathcal{D}$ such that $D \subset O$. This is a weaker property than that of \mathcal{D} being a network. A collection of openly isotone families is called a *compact web* if it is a web consisting of compact families.

Proposition 3.5. If \mathcal{D} is a compact network, then $\alpha_{\mathcal{D}}$ is a compact web.

Indeed, in this case, $\alpha_{\mathcal{D}}$ is a collection of compact families. It is a web, because it includes $\{\mathcal{O}_X(\{x\}): x \in X\}$. For instance, $\{\mathcal{O}_X(F): F \in X^{<\aleph_0}\}$ and $\{\mathcal{O}_X(K): K \in \mathcal{K}(X)\}$ are compact webs. Therefore,

Corollary 3.6. $\kappa(X)$ is a compact web on X.

In fact, $\kappa(X)$ is a web, because it includes a web, for example, $\{\mathcal{O}_X(K) : K \in \mathcal{K}(X)\}$. The following result extends [15, Theorem 1.1.5].

Lemma 3.7. If Z is Hausdorff and α is a web, then $C_{\alpha}(X, Z)$ is Hausdorff.

Proof. If $f_0 \neq f_1$ then there is $x \in X$ such that $f_0(x) \neq f_1(x)$, and because Z is Hausdorff, there exist disjoint open sets O_0 and O_1 such that $f_0(x) \in O_0$ and $f_1(x) \in O_1$. Therefore $W := f_0^-(O_0) \cap f_1^-(O_1) \in \mathcal{O}_X(x)$, and since α is a web, there exists $\mathcal{A} \in \alpha$ such that \mathcal{A} is generated by a filter on W. Therefore $f_0 \in [\mathcal{A}, O_0], f_1 \in [\mathcal{A}, O_1]$ and $[\mathcal{A}, O_1] \cap [\mathcal{A}, O_0]$ is empty, for if $f \in [\mathcal{A}, O_1] \cap [\mathcal{A}, O_0]$ then there exist $W \supset A_0, A_1 \in \mathcal{A}$ such that $A_0 \subset f^-(O_0), A_1 \subset f^-(O_1)$ and $A := A_0 \cap A_1 \in \mathcal{A}$, hence $f(\mathcal{A}) \subset O_0 \cap O_1 = \emptyset$.

Lemma 3.8. If X is completely regular, α is a compact web, and Z is a (real) topological vector space, then $C_{\alpha}(X, Z)$ is a Hausdorff topological vector space.

Proof. Let O be open, $\mathcal{A} \in \alpha$ and $f - g \in [\mathcal{A}, O]$, that is, there is $A \in \mathcal{A}$ such that $f - g \in [A, O]$. By the assumptions on Z, for each $x \in A$, there exist open sets P_x and Q_x such that $f(x) \in P_x, g(x) \in Q_x$ and $P_x - Q_x \subset O$. Because f and g are continuous, there exist an open neighborhood V_x and a closed neighborhood W_x of x such that $W_x \subset V_x \subset A, f \in [V_x, P_x] \subset [W_x, P_x]$ and $g \in [V_x, Q_x] \subset [W_x, Q_x]$. As $\bigcup_{x \in A} V_x \in \mathcal{A}$, by the compactness of \mathcal{A} , there is a finite subset F of A such that $\bigcup_{x \in F} V_x \in \mathcal{A}$. On the other hand, $\mathcal{A}_x := \mathcal{O}(\mathcal{A} \lor W_x)$ is compact, $f \in [\mathcal{A} \lor W_x, P_x]$ and $g \in [\mathcal{A} \lor W_x, Q_x]$ for each $x \in A$, a fortiori for $x \in F$. Consequently,

$$f - g \in \bigcap_{x \in F} [\mathcal{A} \lor W_x, P_x] - \bigcap_{x \in F} [\mathcal{A} \lor W_x, Q_x] \subset [\mathcal{A}, O].$$

⁴More generally, this holds for arbitrary compact (isotone) families in convergence spaces: denote by $\mathcal{A} \vee C$ the isotone family generated by $\{\mathcal{A} \cap C : \mathcal{A} \in \mathcal{A}\}$. If C is closed and \mathcal{A} is compact, then $\mathcal{F}\#(\mathcal{A} \vee C)$ implies that the filter $\mathcal{F} \vee F$ meshes with \mathcal{A} , hence $\operatorname{adh}(\mathcal{F} \vee F) =$ $\operatorname{adh} \mathcal{F} \cap \operatorname{adh} F = \operatorname{adh} \mathcal{F} \cap F$ meshes with \mathcal{A} , equivalently $\operatorname{adh} \mathcal{F}$ meshes $\mathcal{A} \vee C$.

SZYMON DOLECKI

If now O is open, $\mathcal{A} \in \alpha$ and $\lambda f \in [\mathcal{A}, O]$ for a scalar λ , then there is $A \in \mathcal{A}$ such that for each $x \in A$ there exist an open subsets P_x and I_x of Z such that $\lambda f \in I_x P_x \subset O$. By continuity, there exist an open neighborhood V_x and a closed neighborhood W_x of x such that $W_x \subset V_x \subset A, f \in [V_x, P_x] \subset [W_x, P_x]$. As $\bigcup_{x \in A} V_x \in \mathcal{A}$, by the compactness of \mathcal{A} , there is a finite subset F of A such that $\bigcup_{x \in F} V_x \in \mathcal{A}$. On the other hand, $\mathcal{A}_x := \mathcal{O}(\mathcal{A} \lor W_x)$ is compact and $f \in [\mathcal{A} \lor W_x, P_x]$ for each $x \in A$, a fortiori for $x \in F$. Therefore

$$\lambda f \in \bigcap_{x \in F} I_x \cap \bigcap_{x \in F} [\mathcal{A} \lor W_x, P_x].$$

It follows that if α is a compact web, then $C_{\alpha}(X, \mathbb{R})$ is a topological vector space.

4. Polar topologies

Recall that if $\Omega \subset V \times W$, then the Ω -polar Ω^*A of a subset A of V is the greatest subset B of W such that $A \times B \subset \Omega$. Dual topologies can be represented in terms of polarity.

The canonical coupling is the map that associates $\langle x, f \rangle := f(x)$ with $x \in X$ and $f \in C(X, \mathbb{R})$. For every open subset O of \mathbb{R} this map defines a relation $\Omega_O := \{(x, f) : f(x) \in O\}$. Accordingly, for each $A \in C(X, \$^*)$,

(4.1)
$$\Omega_O^* A = \left\{ f : A \subset f^-(O) \right\} = [A, O]$$

is the polar of A by Ω_O^* . On the other hand, Ω_O^* is a relation on $C(X, \mathbb{S}^*) \times C(X, \mathbb{R})$, so that if \mathcal{A} is a subset of $C(X, \mathbb{S}^*)$, then $\Omega_O^* \mathcal{A} = [\mathcal{A}, O]$. Hence for a filter (base) α on $C(X, \mathbb{S}^*)$,

$$\Omega_O^* \alpha \approx \{ [\mathcal{A}, O] : \mathcal{A} \in \alpha \}$$

Finally

$$\mathcal{N}_{\alpha(X,\mathbb{R})}(0) \approx \bigvee_{O \in \mathcal{N}_{\mathbb{R}}(0)} \Omega_{O}^{*} \alpha \approx \{ [\mathcal{A}, O] : \mathcal{A} \in \alpha, O \in \mathcal{N}_{\mathbb{R}}(0) \}.$$

Because of homogeneity, it is enough to establish a property of $\mathcal{N}_{\alpha(X,\mathbb{R})}(0)$ in order to prove that property for every neighborhood filter of $C_{\alpha}(X,\mathbb{R})$ (for a compact web α on a completely regular space X.

On the other hand, it follows from (1.2) that $f \in \lim_{\alpha(X,\mathbb{R})} \mathcal{F}$ implies, in particular, $0^{-}(C) \in \lim_{\alpha(X,\$)} \mathcal{F}^{-}(C)$ for each closed subset C of \mathbb{R} . If $0 \in C$ then $0^{-}(C) = X$, hence $0^{-}(C) \in \lim_{\alpha(X,\$)} \mathcal{F}^{-}(C)$ for every \mathcal{F} . Hence the only case to consider is that of $0 \notin C$ that is equivalent to $0^{-}(C) = \emptyset$.

This observation implies that properties of $\mathcal{N}_{\alpha(X,\$)}(\varnothing)$ are intimately related to properties of $\mathcal{N}_{\alpha(X,\mathbb{R})}(0)$, hence to local properties of $C_a(X,\mathbb{R})$, thanks to homogeneity (for a compact web α on a completely regular space X). As $\alpha(X,\$)$ and $\alpha(X,\$^*)$ are homeomorphic by complementation, the properties of $\mathcal{N}_{\alpha(X,\$)}(\varnothing)$ and $\mathcal{N}_{\alpha(X,\$^*)}(X)$ are the same. On the other hand, $\mathcal{N}_{\alpha(X,\$^*)}(X)$ is generated by α .

If $\Gamma \subset X_1 \times \ldots \times X_m$ is a relation, then for $1 \leq k \leq m$, let $\Gamma_k : \Gamma \to X_k$ be the restriction to Γ of the k-th projection. Consider the fundamental relation $\Gamma \subset C(X, \mathbb{R}) \times C(X, \mathbb{S}_*) \times C(\mathbb{R}, \mathbb{S}_*)$ defined by

$$\Gamma := \{ (f, A, O) : f \in [A, O] \}.$$

The last component of Γ is valued in (open) subsets of \mathbb{R} , and not in \mathbb{R} , because Γ is results from a polarity. Therefore, we need to define a filter on $\mathcal{O}_{\mathbb{R}}(0)$ such

that its projection on \mathbb{R} coincides with $\mathcal{N}_{\mathbb{R}}(0)$. A base for such filter (denoted by $\overline{\mathcal{N}}_{\mathbb{R}}(0)$) is given by $\{P \in \mathcal{O}_{\mathbb{R}}(0) : P \subset O\}$ with $O \in \mathcal{O}_{\mathbb{R}}(0)$.

Theorem 4.1. $\mathcal{N}_{\alpha(X,\mathbb{R})}(0) = \Gamma_1(\Gamma_2^- \alpha \vee \Gamma_3^- \bar{\mathcal{N}}_{\mathbb{R}}(0)).$

Proof. By definition, $\Gamma_2^- \mathcal{A} = \{(f, A, O) : f \in [A, O], A \in \mathcal{A}\}, \text{ and } \Gamma_3^- O = \{(f, A, O) : f \in [A, O]\},$ hence $\Gamma_1(\Gamma_2^- \mathcal{A} \vee \Gamma_3^- O) = [\mathcal{A}, O],$ so that $\mathcal{N}_{\alpha(X,\mathbb{R})}(0) = \Gamma_1(\Gamma_2^- \alpha \vee \Gamma_3^- \overline{\mathcal{N}}_{\mathbb{R}}(0)).$

Let Δ be the following subset of $C(X, \$_*) \times C(X, \mathbb{R})$:

$$\Delta := \{ (A, f) : f(A) \subset B(0, 1) \}.$$

In other words, $\Delta := \Gamma_3^- B(0, 1)$. Call its projections Δ_1 and Δ_2 .

Theorem 4.2. If α is a compact web, and X is completely regular, then $\alpha = \Delta_1(\Delta_2^- \mathcal{N}_{\alpha(X,\mathbb{R})}(0)).$

Proof. If \mathcal{A} is a compact family and $A \in \mathcal{A}$, then by Lemma 3.3, there exist $H \in \mathcal{A}$ and $f_A \in C(X, [0, 1])$ such that $f_A(X \setminus A) = \{1\}$ and $f_A(H) = \{0\}$, consequently $f_A \in [A, B(0, 1)] \subset [\mathcal{A}, B(0, 1)]$. This shows that $\mathcal{A} \subset \Delta_1 \Delta_2^-[\mathcal{A}, B(0, 1)]$. Conversely, if $A \in \Delta_1 \Delta_2^-[\mathcal{A}, B(0, \frac{1}{n})]$, then $f \in [A, B(0, 1)] \subset [\mathcal{A}, B(0, 1)]$ for every $f \in [\mathcal{A}, B(0, \frac{1}{n})]$, and thus $\Delta_1 \Delta_2^-[\mathcal{A}, B(0, \frac{1}{n})] \subset \mathcal{A}$, for each natural n > 0. \Box

5. TRANSFER OF PROPERTIES

Let \mathbb{B} be a class of filters. A topology is \mathbb{B} -based if and only if each neighborhood filter is in \mathbb{B} . For each class \mathbb{B} , the \mathbb{B} -based topologies form a concretely coreflective subcategory. Several concretely coreflective subcategories of topologies can be represented in terms of \mathbb{B} -based topologies for some specific classes \mathbb{B} of filters, for example, character, tightness, sequentiality, Fréchetness, strong Fréchetness, productive Fréchetness, bisequentiality, and others (see, e.g., [3]).

Theorems 4.1 and 4.2 enable us transfer some coreflective properties from $C_{\alpha}(X, \mathbb{R})$ to $C_{\alpha}(X, \mathbb{S})$ and vice versa.

If $H \subset X \times Y$, then $Hx := \{y \in Y : (x, y) \in H\}$, and if $H \subset X$ then $HA := \bigcup_{x \in A} Hx$. If now \mathcal{F} and \mathcal{H} are families of subsets of X and Y respectively, then

$$\mathcal{HF}:=\{HF:F\in\mathcal{F},H\in\mathcal{H}\}$$
 .

If \mathcal{F} and \mathcal{H} are filters, then, by a handy abuse of notation, \mathcal{HF} stands also for the filter it generates.

Recall that \mathbb{F}_{λ} denotes the class of filters admitting a filter base of cardinality $\langle \aleph_{\lambda}$. In particular, \mathbb{F}_0 is the class of *principal* filters, and \mathbb{F}_1 is the class of *countably based* filters. The class of all filters is denoted by \mathbb{F} .

A class \mathbb{B} of filters is \mathbb{F}_{λ} -composable if $\mathcal{HF} \in \mathbb{B}$ for each $\mathcal{F} \in \mathbb{B}$ and every $\mathcal{H} \in \mathbb{F}_{\lambda}$ (see [6],[11],[14]). A class \mathbb{B} of filters is \mathbb{F}_{λ} -steady if $\mathcal{H} \vee \mathcal{F} \in \mathbb{B}$ for each $\mathcal{F} \in \mathbb{B}$ and each $\mathcal{H} \in \mathbb{F}_{\lambda}$ (see [11],[14]).

If \mathbb{H} is a class of filters and γ is a filter subbase, then $\gamma \in \mathbb{H}$ means that the filter generated by γ belongs to \mathbb{H} .

By Theorem 4.1,

Proposition 5.1. Let \mathbb{B} be \mathbb{F}_0 -composable and \mathbb{F}_1 -steady. If X is regular, α is a compact web, and $\alpha \in \mathbb{B}$, then $C_{\alpha}(X, \mathbb{R})$ is \mathbb{B} -based.

SZYMON DOLECKI

Proof. If $\alpha \in \mathbb{B}$ then $\Gamma_2^- \alpha \in \mathbb{B}$, because \mathbb{B} is \mathbb{F}_0 -composable. On the other hand, $\Gamma_3^- \overline{\mathcal{N}}_{\mathbb{R}}(0)$ is a countably based filter, because $\mathcal{N}_{\mathbb{R}}(0)$ is countably based. Therefore, $\Gamma_2^- \alpha \vee \Gamma_3^- \overline{\mathcal{N}}_{\mathbb{R}}(0) \in \mathbb{B}$, because \mathbb{B} is \mathbb{F}_1 -steady. Finally, $\mathcal{N}_{\alpha(X,\mathbb{R})}(0) \in \mathbb{B}$ as the image by a map of a filter from \mathbb{B} . Therefore $C_{\alpha}(X,\mathbb{R})$ is \mathbb{B} -based because $C_{\alpha}(X,\mathbb{R})$ is homogeneous by Lemma 3.8.

Proposition 5.2. Let \mathbb{B} be \mathbb{F}_0 -composable. If α is a compact web, X is completely regular, and $C_{\alpha}(X,\mathbb{R})$ is \mathbb{B} -based, then $\alpha \in \mathbb{B}$.

Proof. If $C_{\alpha}(X, \mathbb{R})$ is \mathbb{B} -based, $\mathcal{N}_{\alpha(X,\mathbb{R})}(0) \in \mathbb{B}$ hence by Theorem 4.2, $\alpha \in \mathbb{B}$, because \mathbb{B} is \mathbb{F}_0 -composable.

Theorem 5.3. Let \mathbb{B} be \mathbb{F}_0 -composable and \mathbb{F}_1 -steady, and let α be a compact web on a completely regular space X. Then $C_{\alpha}(X, \mathbb{R})$ is \mathbb{B} -based if and only if $\alpha \in \mathbb{B}$.

F. Jordan established in [11, Theorem 3] a special case of Theorem 5.3 for $\alpha = \{\mathcal{O}(D) : D \in X^{<\aleph_0}\}$, hence concerning $C_p(X, \mathbb{R})$, in terms of γ -connection (see Remark 2.3). It is enough to replace in his proofs $X^{<\aleph_0}$ by any (additively stable) family \mathcal{D} of compact sets, in order that the proofs remain valid for $\alpha = \{\mathcal{O}(D) : D \in X^{<\aleph_0}\}$ and $C_{\mathcal{D}}(X, \mathbb{R})$.

Since α is a filter subbase of $\mathcal{N}_{\alpha(X,\$^*)}(X)$, and $\alpha(X,\$^*)$ is homeomorphic to $\alpha(X,\$)$ by complementation, we have

Corollary 5.4. Let \mathbb{B} be \mathbb{F}_0 -composable and \mathbb{F}_1 -steady, and let α be a compact web on a completely regular space X. Then $C_{\alpha}(X,\mathbb{R})$ is \mathbb{B} -based if and only if $\mathcal{N}_{\alpha(X,\$)}(\emptyset) \in \mathbb{B}$.

6. TRANSFERABLE PROPERTIES

We shall discuss several \mathbb{F}_0 -composable \mathbb{F}_1 -steady classes of filters, in other words, of trasferable local properties. Several results on composability and steadiness can be found in [11],[14].

We say that a property of topological spaces is *local* if there is a class \mathbb{P} of filters ⁵ such that a topology has the property whenever each neighborhood filter belongs to \mathbb{P} . Character and tightness are local properties.

The character $\chi(\mathcal{F})$ of a filter \mathcal{F} is the least cardinal τ such that \mathcal{F} has a base of cardinality $\leq \tau$. The tightness $t(\mathcal{F})$ of a filter \mathcal{F} is the least cardinal τ for which if $A \in \mathcal{F}^{\#}$ then there is $B \subset A$ with card $B \leq \tau$ such that $B \in \mathcal{F}^{\#}$.

Proposition 6.1. (Infinite) character and tightness are \mathbb{F}_0 -composable and \mathbb{F}_1 -steady.

Proof. If \mathcal{B} is a filter base of a filter \mathcal{F} on X and $A \subset X \times Y$, then $\{AB : B \in \mathcal{B}\}$ is a base of $A\mathcal{F}$. Indeed, if $H \in A\mathcal{F}$ then there exists $F \in \mathcal{F}$ such that $AF \subset H$, hence there is $B \in \mathcal{B}$ with $B \subset F$, so that $AB \subset AF$. Therefore $\chi(A\mathcal{F}) \leq \chi(\mathcal{F})$, because card $\{AB : B \in \mathcal{B}\} \leq \text{card } \mathcal{B}$.

If \mathcal{B} is a base of \mathcal{F} , and \mathcal{D} is a base of \mathcal{E} , then $\{B \cap D : B \in \mathcal{B}, D \in \mathcal{D}\}$ is a base of $\mathcal{F} \vee \mathcal{E}$. As card $\{B \cap D : B \in \mathcal{B}, D \in \mathcal{D}\} \leq \operatorname{card} \mathcal{B} \times \operatorname{card} \mathcal{D}$. Therefore if $\chi(\mathcal{F})$ is infinite and $\chi(\mathcal{E}) \leq \aleph_0$ then $\chi(\mathcal{F} \vee \mathcal{E}) = \chi(\mathcal{F})$.

The tightness is \mathbb{F}_0 -composable, because $H \# A \mathcal{F}$ if and only if $A^- H \in \mathcal{F}$. The (infinite) tightness is \mathbb{F}_1 -steady, for if $\mathcal{E} \approx \{E_n : n < \omega\}$ and $H \in (\mathcal{F} \vee \mathcal{E})^{\#}$ then

8

⁵possibly depending on topology.

 $H \in (\mathcal{F} \vee E_n)^{\#}$ for each $n < \omega$. Hence there exists $B_n \subset H$ with card $B_n \leq \chi(\mathcal{F})$ and such that $B_n \in (\mathcal{F} \vee E_n)^{\#}$. Consequently $\bigcup_{n < \omega} B_n \in (\mathcal{F} \vee \mathcal{E})^{\#}$ and card $(\bigcup_{n < \omega} B_n) \leq \chi(\mathcal{F})$ if $\chi(\mathcal{F}) \geq \aleph_0$.

A filter \mathcal{F} is \mathbb{G} to \mathbb{E} refinable [12] $(\mathcal{F} \in (\mathbb{G}/\mathbb{E})_{\geq})$ if for each filter $\mathcal{G} \in \mathbb{G}$ with $\mathcal{G}\#\mathcal{F}$ there exists a filter $\mathcal{E} \in \mathbb{E}$ such that $\mathcal{E} \geq \mathcal{F} \lor \mathcal{G}$; a filter \mathcal{F} is \mathbb{G} to \mathbb{E} me-refinable [12] $(\mathcal{F} \in (\mathbb{G}/\mathbb{E}) \#_{\geq})$ if for each filter $\mathcal{G} \in \mathbb{G}$ with $\mathcal{G}\#\mathcal{F}$ there exists a filter $\mathcal{E} \in \mathbb{E}$ such that $\mathcal{E} \geq \mathcal{F}$ and $\mathcal{E}\#\mathcal{G}$.

Lemma 6.2. The property $(\mathbb{F}_{\kappa}/\mathbb{F}_{\lambda})_{>}$ is \mathbb{F}_{μ} -steady if $\mu \leq \kappa$.

Proof. Let $\mathcal{F} \in (\mathbb{F}_{\kappa}/\mathbb{F}_{\lambda})_{\geq}, \mathcal{E} \in \mathbb{F}_{\kappa}$ and $\mathcal{D} \in \mathbb{F}_{\mu}$ be such that $\mathcal{D}\#(\mathcal{E} \vee \mathcal{F})$. Then $(\mathcal{D} \vee \mathcal{E}) \# \mathcal{F}$ and $\mathcal{D} \vee \mathcal{E} \in \mathbb{F}_{\kappa}$, because $\mu \leq \kappa$; thus there is $\mathcal{G} \in \mathbb{F}_{\lambda}$ such that $\mathcal{G} \geq \mathcal{D} \vee \mathcal{E} \vee \mathcal{F}$.

Lemma 6.3. The property $(\mathbb{F}_{\kappa}/\mathbb{F}_{\lambda})_{>}$ is \mathbb{F}_{μ} -composable if $\mu \leq \kappa \wedge \lambda$.

Proof. If $\mathcal{F} \in (\mathbb{F}_{\kappa}/\mathbb{F}_{\lambda})_{\geq}, \mathcal{E} \in \mathbb{F}_{\kappa}$ and $\mathcal{M} \in \mathbb{F}_{\mu}$ be such that $\mathcal{E}\#(\mathcal{MF})$. Then $\mathcal{M}^{-}\mathcal{E}\#\mathcal{F}$ and $\mathcal{M}^{-}\mathcal{E} \in \mathbb{F}_{\kappa}$ provided that $\mu \leq \kappa$. As $\mathcal{F} \in (\mathbb{F}_{\kappa}/\mathbb{F}_{\lambda})_{\geq}$ there is $\mathcal{G} \in \mathbb{F}_{\lambda}$ such that $\mathcal{G} \geq \mathcal{M}^{-}\mathcal{E} \vee \mathcal{F}$. Thus $\mathcal{MG} \geq \mathcal{M}(\mathcal{M}^{-}\mathcal{E} \vee \mathcal{F}) \geq \mathcal{E} \vee \mathcal{MF}$ and $\mathcal{MG} \in \mathbb{F}_{\lambda}$ provided that $\mu \leq \lambda$.

Fréchetness, strong Fréchetness, productive Fréchetness and bisequentiality are other examples of local properties that can be expressed in terms of refinable and me-refinable filters with respect to various classes (see [13] and a pioneering paper [4]). A filter \mathcal{F} is

- (1) Fréchet $\iff \mathcal{F} \in (\mathbb{F}_0/\mathbb{F}_1)_{\geq}$: A filter \mathcal{F} is Fréchet if for each set A such that $A \# \mathcal{F}$ there exists a countably based filter \mathcal{E} such that $A \in \mathcal{E} \geq \mathcal{F}$.
- (2) strongly Fréchet $\iff \mathcal{F} \in (\mathbb{F}_1/\mathbb{F}_1)_{\geq}$: A filter \mathcal{F} is strongly Fréchet if for each countably filter \mathcal{G} such that $\mathcal{G} \# \mathcal{F}$ there exists a countably based filter \mathcal{E} such that $\mathcal{E} \geq \mathcal{F} \lor \mathcal{G}$.
- (3) productively Fréchet $\iff \mathcal{F} \in \left((\mathbb{F}_1/\mathbb{F}_1)_{\geq} / \mathbb{F}_1 \right)_{\geq}$: A filter \mathcal{F} is productively Fréchet if for each Fréchet filter \mathcal{G} such that $\mathcal{G} \# \mathcal{F}$ there exists a countably based filter \mathcal{E} such that $\mathcal{E} \geq \mathcal{F} \vee \mathcal{G}$.
- (4) bisequential $\iff \mathcal{F} \in (\mathbb{F}/\mathbb{F}_1)_{\#\geq}$: A filter \mathcal{F} is bisequential if for each filter \mathcal{G} such that $\mathcal{G}\#\mathcal{F}$ there exists a countably based filter \mathcal{E} such that $\mathcal{E} \geq \mathcal{F}$ and $\mathcal{E}\#\mathcal{G}$.

Of course, in the first three conditions (but not in the fourth) the existence of a countably based filter \mathcal{E} is equivalent to the existence of a sequential filter ⁶ \mathcal{E} . All these properties are \mathbb{F}_0 -composable. Not all are \mathbb{F}_1 -steady.

Proposition 6.4. Classes of strongly Fréchet, productively Fréchet and bisequential filters are \mathbb{F}_1 -steady; the class of Fréchet filters is not \mathbb{F}_1 -steady. All the listed properties are \mathbb{F}_0 -composable.

Proof. All the cases are proved in [14] except for bisequential filters. Let \mathcal{F} be bisequential and $\mathcal{E} \in \mathbb{F}_1$. If \mathcal{D} is any filter such that $\mathcal{D}\#(\mathcal{E} \vee \mathcal{F})$, then $(\mathcal{D} \vee \mathcal{E}) \# \mathcal{F}$, hence there is $\mathcal{G} \in \mathbb{F}_1$ such that $\mathcal{G} \geq \mathcal{F}$ and $\mathcal{G}\#(\mathcal{D} \vee \mathcal{E})$. The filter $\mathcal{G} \vee \mathcal{E} \in \mathbb{F}_1$ and $\mathcal{G} \vee \mathcal{E}$ meshes \mathcal{D} and $\mathcal{G} \vee \mathcal{E} \geq \mathcal{G} \geq \mathcal{F}$. Let \mathcal{F} be bisequential and \mathcal{A} a relation.

⁶A filter is *sequential* if it is generated by the queues of a sequence.

If \mathcal{D} is a filter such that $\mathcal{D}#A\mathcal{F}$, then $A^{-}\mathcal{D}#\mathcal{F}$, hence there is $\mathcal{H} \in \mathbb{F}_{1}$ such that $\mathcal{H}#A^{-}\mathcal{D}$ and $\mathcal{H} \geq \mathcal{F}$. Thus $A\mathcal{H}#\mathcal{D}$ and $A\mathcal{H} \geq A\mathcal{F}$.

If \mathcal{F} is Fréchet but not strongly Fréchet, then there is $\mathcal{E} \in \mathbb{F}_1$ such that $\mathcal{G} \geq \mathcal{E} \lor \mathcal{F}$ for no $\mathcal{G} \in \mathbb{F}_1$. Hence $\mathcal{E} \lor \mathcal{F}$ is not Fréchet.

7. DICTIONARY
$$X \longleftrightarrow \mathcal{O}_X$$

Here there is a list of elementary equivalences that will be used to establish equivalences of more convoluted equivalences between properties of $C_{\alpha}(X, \$^*)$ and X. We consider only those collections α that are *finitely stable*, that is, $\mathcal{A}_0, \mathcal{A}_1 \in \alpha$ implies that $\mathcal{A}_0 \cap \mathcal{A}_1 \in \alpha$.

Let $Y \subset X$. A family \mathcal{B} of (open) subsets of X is called an α -cover of Y if $\mathcal{B} \cap \mathcal{A} \neq \emptyset$ for every $\mathcal{A} \in \alpha$ such that $Y \in \mathcal{A}$. In particular, if $\alpha = \{\mathcal{O}(D) : D \in X^{<\aleph_0}\}$, then an α -cover is an ω -cover, that is, for each finite set D there is $B \in \mathcal{B}$ such that $D \subset B$.

Lemma 7.1. A family \mathcal{B} meshes $\mathcal{N}_{\alpha(X,\$^*)}(Y)$ if and only if \mathcal{B} is an α -cover of Y.

Proof. \mathcal{B} meshes $\mathcal{N}_{\alpha(X,\$^*)}(Y)$ if and only if $\mathcal{B} \cap \mathcal{A} \neq \emptyset$ for each $\mathcal{A} \in \alpha$ such that $Y \in \mathcal{A}$. This means exactly that \mathcal{B} is an α -cover of Y.

Let \mathcal{A}, \mathcal{B} be families of subsets of a given set. We say that \mathcal{A} is *coarser* than \mathcal{B} (equivalently, \mathcal{B} is *finer* than \mathcal{A})

 $\mathcal{A} \leq \mathcal{B}$

if for every $A \in \mathcal{A}$ there is $B \in \mathcal{B}$ such that $B \subset A$. A collection of families of subsets of X can be considered as a family of subsets of 2^X . In this sense, we say that a collection is *finer* (*coarser*) than another collection. The following facts are just rewording of definitions, but we formulate them as lemmas for easy reference.

Lemma 7.2. A collection γ is finer than $\mathcal{N}_{\alpha(X,\$^*)}(Y)$ if and only if for each $\mathcal{A} \in \alpha$ such that $Y \in \mathcal{A}$ there is $\mathcal{G} \in \gamma$ such that $\mathcal{A} \subset \mathcal{G}$.

Lemma 7.3. A collection γ is coarser than $\mathcal{N}_{\alpha(X,\$^*)}(Y)$ if and only if for each $\mathcal{G} \in \gamma$ there is $\mathcal{A} \in \alpha$ such that $Y \in \mathcal{A} \subset \mathcal{G}$.

In particular, a sequence $(\mathcal{G}_n)_n$ is finer than $\mathcal{N}_{\alpha(X,\$^*)}(Y)$ if for every $\mathcal{A} \in \alpha$ there is $n_{\mathcal{A}} < \omega$ such that $\mathcal{G}_n \subset \mathcal{A}$ for each $n \geq n_{\mathcal{A}}$.

7.1. **Tightness.** Recall that (see e.g., [15]) the α -Lindelöf number of a topological space X is the least cardinal τ such that for each α -cover there exists an α -subcover of cardinality less than or equal to τ .⁷

By Lemma 7.1,⁸

Theorem 7.4. The tightness of $C_{\alpha}(X, \$)$ is τ if and only if the the supremum of the α -Lindelöf numbers of open subsets of X is τ .

Hence, by Theorem 5.3,

⁷More generally, if $\kappa \leq \lambda$ are cardinals, then we say that X is $\lambda/\kappa[\alpha]$ -compact if for every open α -cover of X of cardinality $< \lambda$ there is an α -subcover of cardinality $< \kappa$ of X. In particular, a topological space is $[\alpha]$ -compact if it is $\lambda/\aleph_0[\alpha]$ -compact for each cardinal λ , countably $[\alpha]$ -compact if it is $\aleph_1/\aleph_0[\alpha]$ -compact, $[\alpha]$ -Lindelöf if it is $\lambda/\aleph_1[\alpha]$ -compact for every λ .

⁸Similar characterizations can be formulated for λ/κ -tightnes with $\kappa \geq \aleph_0$. We say that a filter \mathcal{F} is λ/κ -tight if for each $H \in \mathcal{F}^{\#}$ with card $H < \lambda$ there is $B \subset H$ such that card $B < \kappa$ and $B \in \mathcal{F}^{\#}$. A topological space is λ/κ -tight if its every neighborhood filter is λ/κ -tight.

Theorem 7.5. If X is completely regular and α is a compact web, then $C_{\alpha}(X, \mathbb{R})$ is τ -tight if and only if the α -Lindelöf number of X is τ .

These facts specialize, in an obvious way, to *compact-open* topologies $C_k(X, Z)$, when $\alpha = \{\mathcal{O}(K) : K \in \mathcal{K}\}$ where \mathcal{K} is the family of compact subsets of X, to *Isbell* topologies $C_{\kappa}(X, Z)$, when $\alpha = \kappa(X)$ is the collection of compact families. The case of $\alpha = \{\mathcal{O}_X(D) : D \in X^{<\aleph_0}\}$ has non-obvious interpretations. Corollary 7.5 specializes in this case with $\tau = \aleph_0$ to

Proposition 7.6. If X is completely regular, then $C_p(X, \mathbb{R})$ is countably tight if and only if each ω -cover of X has a countable ω -cover of X.

The following theorem is due to Arhangel'skii [1] and Pytkeev [17]:

Theorem 7.7. If X is completely regular, then $C_p(X, \mathbb{R})$ is countably tight if and only if X^n is Lindelöf for every $n < \omega$.

7.2. Character. As an immediate consequence of Lemma 7.2,

Theorem 7.8. The character of $C_{\alpha}(X, \mathbb{S})$ is τ if and only if for every open subset Y of X there exists a subcollection γ of α such that $\operatorname{card} \gamma \leq \tau$ and for each $\mathcal{A} \in \alpha$ there is $\mathcal{G} \in \gamma$ such that $\mathcal{G} \subset \mathcal{A}$.

Corollary 7.9. If X is T_1 , then $C_p(X, \$)$ is of countable character if and only if X is countable.

Proof. By Theorem 7.8, the character of $C_p(X, \$)$ is countable, if and only if for every open subset Y of X there is a sequence $(y_n)_n \subset Y$ such that $\{\mathcal{O}_X(\{x_1, \ldots, x_n\}) : n < \omega\}$ is finer than $\{\mathcal{O}_X(F) : F \in X^{<\aleph_0}\}$, that is, for every finite subset F of Y there is $n < \omega$ such that $\{x_1, \ldots, x_n\} \subset O$ implies $F \subset O$ for each open set O. Since X is T_1 , this means that $F \subset \{x_1, \ldots, x_n\}$.

Corollary 7.10. If X is T_1 , then $C_k(X, \$)$ is of countable character if and only if X is hereditarily hemicompact.

Proof. Let Y be an open subset of X. The neighborhood filter $\mathcal{N}_{\mathcal{K}(X,\$^*)}(Y)$ is countably based if and only if there exists a sequence $(K_n)_n$ of compact subsets of Y such that for every $K \in \mathcal{K}_Y$ there exists n such that $\mathcal{O}_X(K_n) \subset \mathcal{O}_X(K)$, which, for a T_1 -topology, is equivalent $K \subset K_n$.

It is well-known that a (Hausdorff) topological vector space is metrizable if and only if it is of countable character. Therefore, we recover [15, p. 60]

Corollary 7.11. If X is completely regular, then $C_p(X, \mathbb{R})$ is metrizable if and only if it is of countable character if and only if X is countable.

Corollary 7.12. If X is completely regular, then $C_k(X, \mathbb{R})$ is metrizable if and only if it is of countable character if and only if X is hemicompact.

7.3. Variants of Fréchetness. Here we characterize some of the properties $(\mathbb{H}/\mathbb{E})_{\geq}$ of hyperspaces in terms of their underlying spaces.

Proposition 7.13. $C_{\alpha}(X, \mathbb{S})$ is $(\mathbb{F}_{\kappa}/\mathbb{F}_{\lambda})_{\geq}$ -based if and only if X enjoys the following property: For each open subset Y of X, for every collection γ of α -covers of Y with $\operatorname{card}(\gamma) \leq \kappa$, there exists a collection ζ of families of open sets with $\operatorname{card}(\zeta) \leq \lambda$ such that for every $\mathcal{A} \in \alpha$ with $Y \in \mathcal{A}$, and each $\mathcal{G} \in \gamma$ there exists $\mathcal{Z} \in \zeta$ such that $\mathcal{Z} \subset \mathcal{A} \cap \mathcal{G}$.

As we have observed in a preliminary analysis, this property is (necessarily) hereditary for open sets.

Let $\kappa = 0$ and $\lambda = 1$ and $\alpha = \{\mathcal{O}_X(D) : D \in \mathcal{D}\}$, where \mathcal{D} is finitely additive. Proposition 7.13 specializes as follows⁹:

Proposition 7.14. $C_{\alpha}(X, \$)$ is Fréchet if and only if \mathcal{G} is a family of open sets and for each $D \in \mathcal{D}$ with $D \subset Y$, there exists $G \in \mathcal{G}$ with $D \subset G$, then there exists a sequence $(G_n)_n \subset \mathcal{G}$ such that for each $D \in \mathcal{D}$ with $Y \subset D$, there is $n_D < \omega$, for which $D \subset G_n$ for every $n \ge n_D$.

Of course, the sequence $(G_n)_n$ fulfills the condition above if and only if it converges to Y in $C_{\mathcal{D}}(X, \$^*)$. In the case of $\mathcal{D} = X^{<\aleph_0}$, it is equivalent to $Y \subset \underline{\lim}_n G_n := \bigcup_{n < \omega} \bigcap_{k > n} G_k$ (the set-theoretic lower limit). In particular, for Y = X the condition above is the condition (γ) of Gerlits and Nagy [8]: if \mathcal{G} is an ω -cover of X, then there is a sequence $G_n \in \mathcal{G}$ with $\underline{\lim}_n G_n = X$.

Let $\kappa = \lambda = 1$ and $\alpha = \{\mathcal{O}_X(D) : D \in \mathcal{D}\}$, where \mathcal{D} is finitely additive.

Then Proposition 7.13 specializes as follows¹⁰:

Proposition 7.15. $C_{\alpha}(X, \$)$ is strongly Fréchet if and only if $\mathcal{G}_k \supset \mathcal{G}_{k+1}$ is sequence of families of open sets and for every k and each $D \in \mathcal{D}$ with $D \subset Y$, there exists $G \in \mathcal{G}_k$ with $D \subset G$, then there exists a sequence $G_n \in \mathcal{G}_n$ such that for each $D \in \mathcal{D}$ with $Y \subset D$, there is $n_D < \omega$, for which $D \subset G_n$ for every $n \ge n_D$.

As we have seen in proposition 6.4, Fréchetness is not \mathbb{F}_1 -steady. Nevertheless, it is known that a Fréchet topological group is strongly Fréchet (see [16]). Therefore

Theorem 7.16. If α is a compact web on a completely regular space X, then $C_{\alpha}(X, \mathbb{R})$ is Fréchet if and only if it is strongly Fréchet if and only if for every α -cover \mathcal{P} of X there is a sequence $(P_n)_n \subset \mathcal{P}$ such that for each $\mathcal{A} \in \alpha$ there is $n_{\mathcal{A}} < \omega$ such that $P_n \in \mathcal{A}$ for each $n \geq n_{\mathcal{A}}$.

References

- A. V. Arhangel'skii. Construction and classification of topological spaces and cardinal invariants. Uspehi Mat. Nauk, 33:29–84, 1978.
- [2] B. J. Day and G. M. Kelly. On topological quotient maps preserved by pullbacks or products. Proc. Camb. Phil. Soc., 67:553-558, 1970.
- [3] S. Dolecki. Convergence-theoretic methods in quotient quest. Topology Appl., 73:1–21, 1996.
- [4] S. Dolecki. Active boundaries of upper semicontinuous and compactoid relations; closed and inductively perfect maps. *Rostock. Math. Coll.*, 54:51–68, 2000.
- [5] S. Dolecki and F. Mynard. Interrelations between convergence function spaces, hyperspaces and underlying spaces. to appear.
- [6] S. Dolecki and F. Mynard. Convergence-theoretic mechanisms behind product theorems. *Topology Appl.*, 104:67–99, 2000.
- [7] D. N. Georgiou, S. D. Iliadis, and B. K. Papadopouplos. On dual topologies. *Topology Appl.*, 140:57–68, 2004.
- [8] J. Gerlits and Zs. Nagy. Some properties of $C_p(X)$. Topology Appl., 14:151–161, 1982.
- [9] G. Gierz, K.H. Hofmann, K. Keimel, J.D. Lawson, M.W. Mislove, and D.S. Scott. Continuous lattices and domains. Cambridge Univ. Press, 2003.
- [10] G. Gruenhage. Products of Fréchet spaces. to appear.
- [11] F. Jordan. Productive local properties of function spaces. Topology Appl., 154:870–883, 2007.
- [12] F. Jordan, I. Labuda, and F. Mynard. Finite products of filters that are compact relative to a class of filters. to appear in Applied General Topology, 2002.

⁹We use the definition in terms of sequences.

¹⁰We use the definition in terms of sequences.

- [13] F. Jordan and F. Mynard. Productively Fréchet spaces. Czechoslovak Math. J., 54 (129):981– 990, 2004.
- [14] F. Jordan and F. Mynard. Compatible relations of filters and stability of local topological properties under supremum and product. *Topology Appl.*, 153:2386-2412, 2006.
- [15] R. A. McCoy and I. Ntantu. Topological Properties of Spaces of Continuous Functions. Springer-Verlag, 1988.
- [16] P. Nyikos. Metrizability and the Fréchet-Urysohn property in topological groups. Proc. Amer. Math. Soc., 83(4):793-801, 1981.
- [17] E. G. Pytkeev. On sequentiality of spaces of continuous functions. Communications Moscow Math. Society, 1982.

Burgundy University, Mathematical Institute of Burgundy, CNRS UMR 5584, B.P. 47870, 21078 Dijon, France

E-mail address: dolecki@u-bourgogne.fr