PROPERTIES TRANSFER BETWEEN TOPOLOGIES ON
FUNCTION SPACES, HYPERSPACES AND UNDERLYING
SPACES

SZYMON DOLECKI

ABSTRACT. Each collection « of families of subsets of X determines a topology
a(X, Z) on the space of continuous maps C(X, Z). Interrelations between local
properties of a(X,R) and of a(X,$) (on the hyperspace C(X,$)), and with
properties of a topological space X are studied in a general framework, which
allows to treat simultaneously several classical constructions, like pointwise
convergence, compact-open topology and the Isbell topology.

1. INTRODUCTION

The interrelation of properties of C,, (X, Z) with those of X and Z, is a fascinating
theme. Here « is a collection of (openly isotone !) families of subsets of X, that
defines a topology a(X, Z) on C(X, Z) by a subbase

(1.1) {[A,0] : A€ a,0e€ 0y},
where [A,0] .= {f: f~(0) € A}, f~(0O) := {z: f(x) € O}, and Oy is the set of

open subsets of Z.

Its very special case, that of C,(X,R) (the space of real-valued functions with
pointwise convergence) has attracted a lot of researchers, among whom A. V. Arhangel’skii
(e.g., [1]). Its intermediate case of

o = ap ::{OX(D)ZDED},

where D is a family of subsets of X, is the object of a book of McCoy and Ntantu
[15].
Actually the said interrelation corresponds to the upper side of a quadrilateral

X o Co(X,R)

) 1
Ca(X,8%) < Ca(X,$)

in which, of course, one can consider also other sides, as well as diagonals. Here
$,$* stand for the two homeomorphic variants of the Sierpinski topology on {0, 1},
so that C(X,$) can be identified with the hyperspace of X, and C(X, $*) with the
set of open subsets of X.
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1A family A of open sets is openly isotone if B € A provided that B is open and there is an
element A € A such that A C B.
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It turns out that it is fruitful to study the three other sides in order to better
grasp the interrelation of the upper side X < C,(X,R). Indeed,

(1) Cu(X,$) is homeomorphic to Cy (X, $*);

(2) One can establish a dictionary of easy translations of elementary properties
of Cy(X,$*) and a-properties of X;

(3) Under a separation condition (by real functions) one can evidence an inti-
mate relationship between C,(X,R) and C, (X, $).

More precisely, if X is completely regular and « is a compact web, then C,, (X, R)
is a Hausdorff topological vector space, hence the topology a(X,R) is homogeneous.
Roughly speaking 2, a web a on X is a collection of families of open subsets of X
such that for each open subset Y there is A € a that can be reconstructed from its
trace on Y. A web is compact if its every element A is a compact family *.

Therefore, if X is completely regular and « is a compact web, then to characterize
a local property of Cy(X,R), it is enough to study the neighborhood filter of the
function 0. As we shall see, in this case, the neighborhood filter of the function
0 in Co(X,R) and the neighborhood filter of the empty set & in the hyperspace
Co(X,$) belong to the same class.

Of course, in general, a hyperspace topology «(X,$) is not homogeneous. As
a(X,$) and a(X, $*) are homeomorphic (by complementation), a property of Ny(x,s)(4)
for A € C(X,$) is also a property of Ny(x $+)(X \ A) and, as a rule, can be char-
acterized in terms of the space X \ A with the induced topology. Therefore a local
property of Cy(X,$) can be characterized by a hereditary (with respect to open
subsets) property of X.

It follows from some more general facts (see [5]) that

(1.2) [ €limyxr) F <= [ (A4) € limy(x5) F (4)

for each closed subset A of R, where f~(A4) := {z: f(z) € A} and F(4) is a
filter generated by {{f~(A): f € F} : F € F}. Consequently, each a-topology on
C(X,R) can be, in principle, characterized in terms of the corresponding a-topology
on the hyperspace C'(X,$), actually on its subset consisting of functionally closed
subsets of X. Therefore the transfer between C,(X,R) and C, (X, $) requires, es-
sentially, the complete regularity of X. By the way, it is why Georgiou, Iliadis and
Papadopoulos studied properties of real-valued function spaces in terms of topolo-
gies on functionally open sets [7].

The present paper restricts its scope to topologies on function spaces (almost
always real-valued) and to the corresponding hyperspace topologies. This is just
one aspect of a general theory of convergence function spaces and hyperspace con-
vergences that will be discussed in [5].

2. OPEN-SET TOPOLOGIES

We denote by Ox the set of open subsets of X, by Ox(z) :={0 € Ox : z € O},
and by Ox(4) := {O € Ox : A C O}. If now A is a family of subsets of X,
then Ox(A) = Ugeq Ox(A). A family A of subsets of X is openly isotone if
Ox(A) = A.

25 precise definition is given before Lemma 3.7
3A precise definition is given before Lemma 3.7
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If a is a non-empty collection of openly isotone families of subsets of X, then
(1.1) is a subbase of a topology on C(X, Z), denoted by a(X, Z). The corresponding
topological space is denoted by C, (X, Z).

In particular, for a non-empty family D of subsets of X, the collection o := ap
is defined by
(21) ap = {Ox(D) :D e D},

and the symbol C,, (X, Z) is abridged to Cp (X, Z). It is often required (e.g., [15])
that D be a (closed) network on X, that is, a family of closed sets such that for
each z € X and O € Ox(x) there is D € D for which z € D C O. However (1.1)
is a topology subbase for each o = ap provided that D # &.

If AC X and B C Z then [A,B] := {f € C(X,Z): f(A) C B}. Therefore,
[Ox(D),0] = [D, O] and thus

{[A4,0] : A€ ap,0 € Oz} ={[D,0]: D e D,0 € Oz}.
Example 2.1. If D = X<X0_ then
{[F,O]: F e X< 0 € 0z}
is a base of the topological space Cp(X, Z) of pointwise convergence (here p abridges
X <o),
Example 2.2. If D = Kx (the family of compact subsets of X ), then
{[K,0] : K€ Kx,0€ Oz}
is a base of the topological space C(X, Z) of compact-open topology (here k abridges
Kx).

We consider two complementary topologies on, respectively, the hyperspace
C(X,$) and the set C(X,$*) of open subsets of X. Here $ and $* are two homeo-
morphic avatars of the Sierpinski topology on {0,1}:

$:={2,{1},{0,1}} and $" :={2,{0},{0,1}}.
The indicator function ¢ 4 of a subset A of X is defined by to be 0 on A and 1 out
of A. If X is a topological space, then ¢4, € C(X,$) if and only if A is closed, and
Y, € C(X,8%) := Ox if and only if A is open.

The complementation © : 2% — 2% associates A° := X \ A with A C X. In order
to avoid ambiguity, we denote the image of A C 2% by the complementation by

Ao ={A°: Aec A}.

The topology a(X, $*) on the set C'(X,$*) (of all open subsets of X) has « for a
subbase, because, due to our convention, the subbase consists of {[A4,{0}] : A € a},
and [A,{0}] = {¢5 € C(X,$") : ¥5(0) € A} (by definition, ¢5(0) = B).

If « is stable for finite intersections, then « is a base of a(X,$*). Hence the
neighborhood filter Ny (x s (Y) of Y € C(X,$*) is generated by

{A€a:Y e A}.
In particular, for « = ap a subbase for open sets is of the form
{Ox(D): D e D},

and ap is stable for finite intersections provided that D is stable for finite unions,
so that
Non(x,59(Y) ~{Ox(D):Y > D € D}.
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The homeomorphic image of a(X, $*) by the complementation is a topology on
the hyperspace C(X, $) denoted by (X, $). Accordingly, {A. : A € o} is a subbase
of a(X,$)-open sets on the hyperspace C(X, $); the neighborhood of H € C(X, $)
with respect to a (X, $) is

Nax,s)(H) = {A.: H° € Ac a}.
In particular, a base of N, (x,¢)(Ao) consists of
{{A€eC(X,$): ANnD=0}:DeD, AyNnD =g}
This form of basic neighborhoods is at the origin of the term D-miss topology.

Remark 2.3. Gruenhage introduced the so-called y -connection [10]. In particular,
a filter T(Y, X), where Y is an open subset of X, is defined in a way equivalent to

LY, X):={Ox(F):Y DFe X%},
hence T'(Y, X) is a neighborhood base of Y with respect to ax<xy := {(’)X(F) :Fe X<N0}.

3. COMPACT FAMILIES

An openly isotone family A is compact if each family P of open sets such that
(UP € A has a finite subfamily Py of P such that |JPy € A. We denote by x(X)
the collection of all compact families on X. Here are fundamental examples:

K compact = Ox(K) € x(X);
z €limyx F = Ox(FA{z}) € v(X),
where FA{z} :={{F U{z}}: F € F}.
The collection of (openly isotone) compact families fulfill the following properties:
%] {Ox} € /i(X)
aCk(X)= U A€ k(X
Ao, A1 € k(X) = Ao NA; € K(X)
Therefore (see [9],[2])
Corollary 3.1. x(X) is the collection of open sets of a topology on Ox = C(X, $*).

Example 3.2. If k = k(X) is the collection of (openly isotone) compact families
on X, then

{[4,0]: A€ r(X),0 € Oy}

is a subbase of the Isbell topology on C(X, Z). in particular, k(X) is the collection
of open sets of C(X,$*).

Lemma 3.3. If A = O(A) is a compact family of subsets of a completely reqular
topological space X, and F is a closed subset of X with F¢ € A, then there is A € A
and h € C(X,[0,1]) such that h(A) = {0} and h(F) = {1}.

Proof. By complete regularity, for every « ¢ F, there is an open neighborhood O,
of z and f, € C(X,]0,1]) such that f,(O,) = {0} and f,(F) = {1}. Therefore F° =
Ua:gEF O, € A, so that by the compactness of A there is n < w and x1,...,2, ¢ F
such that A = (J,,<,, Ox; € A. The continuous function minj<;<y fy, is 0 on A
and 1 on F. - ]
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Lemma 3.4. If A is a compact openly isotone family on X and C' is a closed subset
of X, then O({ANC : A€ A}) is compact.

Proof. Indeed, if P is a family of open sets such that [JP € O ({ANC: A e A}),
then UP U (X \ C) € A, hence there exists a finite subfamily Py of P such that
UPoU(X\C)€ A, thus UPoc O{ANC: Ac A})2 O

The concept of network is well-known. Here we introduce a notion of web that
extends and weakens that of network. A collection « of openly isotone families is
a web in X if for every x € X and each O € Ox/(x) there is A € « such that A
is generated by a filter on O. In particular, ap (2.1) is a web if for each z € X
and every O € Ox (x) there is D € D such that D C O. This is a weaker property
than that of D being a network. A collection of openly isotone families is called a
compact web if it is a web consisting of compact families.

Proposition 3.5. If D is a compact network, then ap is a compact web.

Indeed, in this case, ap is a collection of compact families. It is a web, be-
cause it includes {Ox({z}):2 € X}. For instance, {Ox(F): F € X<®} and
{Ox(K) : K € K(X)} are compact webs. Therefore,

Corollary 3.6. x(X) is a compact web on X.

In fact, k(X)) is a web, because it includes a web, for example, {Ox (K) : K € K(X)}.
The following result extends [15, Theorem 1.1.5].

Lemma 3.7. If Z is Hausdorff and « is a web, then Co (X, Z) is Hausdorff.

Proof. It fy # f1 then there is © € X such that fo(x) # fi(z), and because
Z is Hausdorff, there exist disjoint open sets Op and O; such that fo(z) € Op
and f1(z) € O1. Therefore W := f;(Op) N f{ (0O1) € Ox(z), and since « is a
web, there exists A € « such that A is generated by a filter on W. Therefore
fo € [A,O¢l, f1 € [A,O4] and [A, O1] N [A, Op] is empty, for if f € [A, O1] N [A, Og]
then there exist W O Ag, A1 € A such that Ag C f~(0o), 41 C f~(01) and
A:=AoNA; € A hence f(A) COyNO; =2. O

Lemma 3.8. If X is completely regular, « is a compact web, and Z is a (real)
topological vector space, then Co (X, Z) is a Hausdorff topological vector space.

Proof. Let O be open, A € o and f — g € [A, O], that is, there is A € A such that
f —g € [A,O]. By the assumptions on Z, for each « € A, there exist open sets P,
and @, such that f(z) € P,,g(z) € Q, and P, — Q, C O. Because f and g are
continuous, there exist an open neighborhood V,, and a closed neighborhood W, of
x such that W, C V, C A, f € [V, Py] C [Wy, P;] and g € [V, Q] C [Wa, Q). As
Uzea Ve € A, by the compactness of A, there is a finite subset F' of A such that
U.er Va € A. On the other hand, A, := O (AV W,) is compact, f € [AV W,, P,]
and g € [AV W,,Q,] for each x € A, a fortiori for z € F. Consequently,

Fge(), JAVWe Pl = () _ AV W Qu] C[AO).

4More generally, this holds for arbitrary compact (isotone) families in convergence spaces:
denote by AV C the isotone family generated by {ANC: A€ A}. If C is closed and A is
compact, then F# (AV C) implies that the filter F V F' meshes with A, hence adh (FV F) =
adh F Nadh F = adh F N F meshes with A, equivalently adh F meshes AV C.
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If now O is open, A € a and Af € [A, O] for a scalar A, then there is A € A such that
for each = € A there exist an open subsets P, and I, of Z such that A\f € I, P, C O.
By continuity, there exist an open neighborhood V. and a closed neighborhood W,
of x such that W, C V, C A, f € [V, P.] C [Wa, P.]. As | V. € A, by the
compactness of A, there is a finite subset F' of A such that |J,. V. € A. On the
other hand, A, := O (AV W,) is compact and f € [AV W,, P,] for each x € A, a
fortiori for x € F. Therefore

M, p e N, oAV Was Pl

z€A

O

It follows that if «v is a compact web, then C\, (X, R) is a topological vector space.

4. POLAR TOPOLOGIES

Recall that if Q@ C V x W, then the Q-polar Q*A of a subset A of V is the
greatest subset B of W such that A x B C Q. Dual topologies can be represented
in terms of polarity.

The canonical coupling is the map that associates (z, f) := f(z) with x € X
and f € C(X,R). For every open subset O of R this map defines a relation Qo :=
{(z, f) : f(z) € O}. Accordingly, for each A € C(X, $*),

(4.1) QA= {f:AC [ (0)} =[4,0]

is the polar of A by QF,. On the other hand, Q2 is a relation on C'(X, $*) x C(X,R),
so that if A is a subset of C(X,$*), then Q§.A = [A, O]. Hence for a filter (base)
aon C(X,$%),

Qpa~{[A0]: Aca}.
Finally

Nox.p)(0) ~ \/ sa~{[A4,0]:Aca0cNg0)}.

Because of homogeneity, it is enough to establish a property of Na( X’R)(O) in or-
der to prove that property for every neighborhood filter of C, (X, R) (for a compact
web «a on a completely regular space X.

On the other hand, it follows from (1.2) that f € lim,(xr)F implies, in par-
ticular, 07(C) € lim,(x,g) F (C) for each closed subset C' of R. If 0 € C then
07(C) = X, hence 07(C) € limy(x,) F~(C) for every F. Hence the only case to
consider is that of 0 ¢ C' that is equivalent to 0~ (C) = @.

This observation implies that properties of N,(x,¢)(@) are intimately related to
properties of Ny (x r)(0), hence to local properties of C,(X,R), thanks to homo-
geneity (for a compact web a on a completely regular space X). As a(X,$) and
a(X, $*) are homeomorphic by complementation, the properties of Ny, (x ¢)(@) and
Na(x,8+)(X) are the same. On the other hand, N, x ¢-)(X) is generated by a.

IfT" € X; x...x X, is a relation, then for 1 < k < m, let T’y : I' - X}
be the restriction to I' of the k-th projection. Consider the fundamental relation
I'c C(X,R) x C(X,$,) x C(R,$,) defined by

r:={(f,A,0): f€[AO]}.

The last component of T' is valued in (open) subsets of R, and not in R, because
I is results from a polarity. Therefore, we need to define a filter on Og(0) such

O€eNR(0)



FUNCTION SPACES AND HYPERSPACES 7

that its projection on R coincides with Ng(0). A base for such filter (denoted by
Nr(0)) is given by {P € Og(0) : P C O} with O € Og(0).

Theorem 4.1. N, (x ) (0) =1(T3 VI3 NR(0)).

Proof. By definition, I'; A= {(f,A,0) : f € [A,0],A€ A},and 50 ={(f,A,0) : f € [A,0]},
hence I'1(I'; AV I'50) = [A, 0], so that N, (xr)(0) =T1(T5 vV I'5 Nr(0)). 0

Let A be the following subset of C(X, $.) x C(X,R):

A:={(4,f): f(A) C B(0,1)}.
In other words, A :=T5 B(0,1). Call its projections A and A,.

Theorem 4.2. If a is a compact web, and X is completely reqular, then o =
A1 (Ay Noix ) (0)).

Proof. If A is a compact family and A € A, then by Lemma 3.3, there exist H € A
and fa € C(X,][0,1]) such that fa(X \ A) = {1} and fa(H) = {0}, consequently
fa € [A,B(0,1)] C [A,B(0,1)]. This shows that A C A1A;[A,B(0,1)]. Con-
versely, if A € A1A;[A, B(0,1)], then f € [A,B(0,1)] C [4, B(0,1)] for every f
€ [A,B(0,1)], and thus A;A; [A, B(0,1)] C A, for each natural n > 0. O

n

5. TRANSFER OF PROPERTIES

Let B be a class of filters. A topology is B-based if and only if each neighborhood
filter is in B. For each class B, the B-based topologies form a concretely coreflec-
tive subcategory. Several concretely coreflective subcategories of topologies can be
represented in terms of B-based topologies for some specific classes B of filters, for
example, character, tightness, sequentiality, Fréchetness, strong Fréchetness, pro-
ductive Fréchetness, bisequentiality, and others (see, e.g., [3]).

Theorems 4.1 and 4.2 enable us transfer some coreflective properties from C,, (X, R)
to Co (X, $) and vice versa.

If HC X xY, then Hr := {y €Y :(z,y) € H}, and if H C X then HA :=
Uzea Hz. If now F and ‘H are families of subsets of X and Y respectively, then

HF:={HF:F e F,HecH}.

If 7 and ‘H are filters, then, by a handy abuse of notation, HF stands also for the
filter it generates.

Recall that F) denotes the class of filters admitting a filter base of cardinality
< Ny. In particular, Fy is the class of principal filters, and F; is the class of
countably based filters. The class of all filters is denoted by F.

A class B of filters is Fy-composable if HF € B for each F € B and every H € ),
(see [6],[11],[14]). A class B of filters is Fy-steady if H V F € B for each F € B and
each H € Fy (see [11],[14]).

If H is a class of filters and 7 is a filter subbase, then v € H means that the filter
generated by v belongs to H.

By Theorem 4.1,

Proposition 5.1. Let B be Fy-composable and Fq-steady. If X is reqular, « is a
compact web, and o € B, then Co(X,R) is B-based.
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Proof. If o € B then I'; a € B, because B is Fyo-composable. On the other hand,
['; Ng(0) is a countably based filter, because Nk (0) is countably based. Therefore,
I';a VI3 Ng(0) € B, because B is Fi-steady. Finally, N x r)(0) € B as the image
by a map of a filter from B. Therefore C,(X,R) is B-based because C,(X,R) is
homogeneous by Lemma 3.8. ]

Proposition 5.2. Let B be Fo-composable. If a is a compact web, X is completely
reqular, and Co(X,R) is B-based, then o € B.

Proof. If Co(X,R) is B-based, N,(xr)(0) € B hence by Theorem 4.2, a € B,
because B is Fp-composable. O

Theorem 5.3. Let B be Fg-composable and Fq-steady, and let o be a compact web
on a completely reqular space X. Then Cy(X,R) is B-based if and only if o € B.

F. Jordan established in [11, Theorem 3] a special case of Theorem 5.3 for
a = {O(D): D e X<X}, hence concerning Cp(X,R), in terms of y-connection
(see Remark 2.3). It is enough to replace in his proofs X <N by any (addi-
tively stable) family D of compact sets, in order that the proofs remain valid for
a={0(D):D e X<®} and Cp(X,R).

Since a is a filter subbase of N,(x,¢+)(X), and «(X,$*) is homeomorphic to
(X, $) by complementation, we have

Corollary 5.4. Let B be Fy-composable and Fi-steady, and let o be a compact
web on a completely regular space X. Then Co(X,R) is B-based if and only if
Na(x)(2) € B.

6. TRANSFERABLE PROPERTIES

We shall discuss several Fp-composable F;-steady classes of filters, in other words,
of trasferable local properties. Several results on composability and steadiness can
be found in [11],[14].

We say that a property of topological spaces is local if there is a class IP of filters
® such that a topology has the property whenever each neighborhood filter belongs
to P. Character and tightness are local properties.

The character x(F) of a filter F is the least cardinal 7 such that F has a base
of cardinality < 7. The tightness t(F) of a filter F is the least cardinal 7 for which
if A € F# then there is B C A with card B < 7 such that B € F#.

Proposition 6.1. (Infinite) character and tightness are Fo-composable and Fi-
steady.

Proof. If B is a filter base of a filter F on X and A C X x Y, then {AB : B € B}
is a base of AF. Indeed, if H € AF then there exists F' € F such that AF C H,
hence there is B € B with B C F, so that AB C AF. Therefore x(AF) < x(F),
because card{AB : B € B} < card B.

If B is a base of F, and D is a base of £, then {BN D : B € B,D € D} is a base
of FVE. Ascard{BND: B e B,D e D} < card B x card D. Therefore if y (F) is
infinite and x (€) < Ng then x(F V E) = x(F).

The tightness is Fg-composable, because H#AF if and only if A—H € F. The
(infinite) tightness is F;-steady, for if £ ~ {E, :n <w} and H € (FV E)* then

5possibly depending on topology.
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H ¢ (]-'\/En)# for each n < w. Hence there exists B,, C H with card B,, <
X (F) and such that B, € (FV E,)”. Consequently Un<w Bn € (FvE)¥ and
card (Un<an) < x(F)if x (F) > No. O

A filter F is G to E refinable [12] (F € (G/E) ) if for each filter G € G with
G#F there exists a filter £ € E such that £ > FVG; afilter Fis G to E me-refinable
[12] (F € (G/E) #>) if for each filter G € G with G#F there exists a filter £ € E
such that & > F and E#G.

Lemma 6.2. The property (IF‘,{/IE‘)\)Z is F,-steady if p < k.

Proof. Let F € (Fy/Fy)s,€ € Fy and D € F,, be such that D#(£ V F). Then
(DVE)#F and DV E € F,, because u < k; thus there is G € F) such that
G>DVEVEF. O

Lemma 6.3. The property (Fy/Fy)s is Fy-composable if i < kAN

Proof. If F € (F./Fx)s,€ € F, and M € F, be such that E#(MF). Then
M—EH#F and M~ E € F,, provided that uw<k. AsF e (F,/Fy)s thereis G € Fy
such that G > M~EV F. Thus MG > M(M~EV F) > £V MF and MG € F)
provided that pu < A. (]

Fréchetness, strong Fréchetness, productive Fréchetness and bisequentiality are
other examples of local properties that can be expressed in terms of refinable and
me-refinable filters with respect to various classes (see [13] and a pioneering paper
[4]). A filter F is

(1) Fréchet <= F € (Fo/F1)~: A filter F is Fréchet if for each set A such that
A#F there exists a countably based filter £ such that 4 € £ > F.

(2) strongly Fréchet <= F € (F1/F1)s: A filter F is strongly Fréchet if for
each countably filter G such that G#F there exists a countably based filter
& such that £ > F Vv G.

(3) productively Fréchet <= F € ((]Fl/IF'l)2 /]Fl) % A filter F is productively

Fréchet if for each Fréchet filter G such that G#F there exists a countably
based filter £ such that £ > FV G.

(4) bisequential <= F € (F/F1),-: A filter F is bisequential if for each filter
G such that G#F there exists a countably based filter £ such that £ > F
and E#G.

Of course, in the first three conditions (but not in the fourth) the existence of a
countably based filter £ is equivalent to the existence of a sequential filter ¢ €. All
these properties are Fy-composable. Not all are F1-steady.

Proposition 6.4. Classes of strongly Fréchet, productively Fréchet and bisequential
filters are Fy-steady; the class of Fréchet filters is mot Fy-steady. All the listed
properties are Fg-composable.

Proof. All the cases are proved in [14] except for bisequential filters. Let F be
bisequential and & € Fy. If D is any filter such that D#(E V F), then (D V E) #F,
hence there is G € F; such that G > F and G# (D V E). The filter GV E € Fy
and GV & meshes D and GV E > G > F. Let F be bisequential and A a relation.

6A filter is sequential if it is generated by the queues of a sequence.
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If D is a filter such that D#AF, then A~ D#F, hence there is H € F; such that
H#AD and H > F. Thus AH#D and AH > AF.

If F is Fréchet but not strongly Fréchet, then there is £ € Fy such that G > EVF
for no G € F,. Hence £ V F is not Fréchet. O

7. DICTIONARY X «—— Ox

Here there is a list of elementary equivalences that will be used to establish
equivalences of more convoluted equivalences between properties of C,, (X, $*) and
X. We consider only those collections « that are finitely stable, that is, Ag, A1 € «
implies that Ay N A; € a.

Let Y C X. A family B of (open) subsets of X is called an a-cover of Y if BNA #
@ for every A € o such that Y € A. In particular, if a = {O(D): D € X<Ro},
then an a-cover is an w-cover, that is, for each finite set D there is B € B such that
D CB.

Lemma 7.1. A family B meshes Ny(x,5+)(Y) if and only if B is an a-cover of Y.

Proof. B meshes N,(x,+)(Y) if and only if BN A # @ for each A € a such that
Y € A. This means exactly that B is an a-cover of Y. O

Let A, B be families of subsets of a given set. We say that A is coarser than B
(equivalently, B is finer than A)
A<B
if for every A € A there is B € B such that B C A. A collection of families of
subsets of X can be considered as a family of subsets of 2%. In this sense, we say
that a collection is finer (coarser) than another collection. The following facts are
just rewording of definitions, but we formulate them as lemmas for easy reference.

Lemma 7.2. A collection vy is finer than Ny(x,3+)(Y) if and only if for each A € a
such that Y € A there is G € v such that A C G.

Lemma 7.3. A collection vy is coarser than Na(xﬁ*)(Y) if and only if for each
G € v there is A € a such thatY € A C G.

In particular, a sequence (G, ), is finer than N (x,¢-)(Y) if for every A € o there
is n4 < w such that G,, C A for each n > n 4.

7.1. Tightness. Recall that (see e.g., [15]) the a-Lindeldf number of a topological
space X is the least cardinal 7 such that for each a-cover there exists an a-subcover
of cardinality less than or equal to 7.7

By Lemma 7.1, ®

Theorem 7.4. The tightness of Co(X,$) is 7 if and only if the the supremum of
the a-Lindeldf numbers of open subsets of X is T.

Hence, by Theorem 5.3,

"More generally, if kK < X are cardinals, then we say that X is A/k[a]-compact if for every open
a-cover of X of cardinality < A there is an a-subcover of cardinality < x of X. In particular, a
topological space is [a]-compact if it is A/Rg[a]-compact for each cardinal A, countably [a]-compact
if it is Ny /Ro[a]-compact, [a]-Lindeldf if it is A/R1[a]-compact for every A.

8Similar characterizations can be formulated for A/k-tightnes with = > Ro. We say that a filter
F is M/ k-tight if for each H € F# with card H < X there is B C H such that card B < x and
B € F#. A topological space is \/k-tight if its every neighborhood filter is A/s-tight.
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Theorem 7.5. If X is completely reqular and « is a compact web, then Cq(X,R)
is T-tight if and only if the a-Lindeldf number of X is T.

These facts specialize, in an obvious way, to compact-open topologies Cy(X, Z),
when oo = {O(K) : K € K} where K is the family of compact subsets od X, to
Isbell topologies Cy (X, Z), when a = (X) is the collection of compact families.
The case of a = {(’)X(D) :D e X<N°} has non-obvious interpretations. Corollary
7.5 specializes in this case with 7 = N to
Proposition 7.6. If X is completely reqular, then Cp(X,R) is countably tight if
and only if each w-cover of X has a countable w-cover of X.

The following theorem is due to Arhangel’skii [1] and Pytkeev [17]:

Theorem 7.7. If X is completely regular, then C,(X,R) is countably tight if and
only if X™ is Lindeldf for every n < w.

7.2. Character. As an immediate consequence of Lemma 7.2,

Theorem 7.8. The character of Co(X,$) is 7 if and only if for every open subset
Y of X there exists a subcollection v of o such that cardy < 7 and for each A € «
there is G € 7y such that G C A.

Corollary 7.9. If X is Ty, then C,(X,8$) is of countable character if and only if
X is countable.

Proof. By Theorem 7.8, the character of C,(X,$) is countable, if and only if for
every open subset Y of X there is a sequence (yy, ), C Y such that {Ox({z1,...,2z,})
is finer than {OX(F) cF e X<N°}, that is, for every finite subset I’ of Y there is
n < w such that {z1,...,2,} C O implies F C O for each open set O. Since X is
T}, this means that F' C {x1,...,2,}. ]

Corollary 7.10. If X is Ty, then Cy(X,3) is of countable character if and only if
X is hereditarily hemicompact.

Proof. Let Y be an open subset of X. The neighborhood filter Nic(x g+)(Y) is
countably based if and only if there exists a sequence (K,,), of compact subsets of
Y such that for every K € Ky there exists n such that Ox (K,) C Ox(K), which,
for a Ti-topology, is equivalent K C K,,. (]

It is well-known that a (Hausdorff) topological vector space is metrizable if and
only if it is of countable character. Therefore, we recover [15, p. 60]

Corollary 7.11. If X is completely regular, then Cp(X,R) is metrizable if and
only if it is of countable character if and only if X is countable.

Corollary 7.12. If X is completely regular, then Ci(X,R) is metrizable if and
only if it is of countable character if and only if X is hemicompact.

7.3. Variants of Fréchetness. Here we characterize some of the properties (H/E)-
of hyperspaces in terms of their underlying spaces.

Proposition 7.13. C,(X,$) is (F./Fx)s-based if and only if X enjoys the fol-
lowing property: For each open subset Y of X, for every collection v of a-covers
of Y with card(y) < k, there exists a collection ¢ of families of open sets with
card({) < A such that for every A € a with' Y € A, and each G € ~ there exists
Z € ( such that Z C ANG.

‘n<w}
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As we have observed in a preliminary analysis, this property is (necessarily)
hereditary for open sets.

Let kK =0and A =1 and a = {Ox(D) : D € D}, where D is finitely additive.
Proposition 7.13 specializes as follows:

Proposition 7.14. C,(X,$) is Fréchet if and only if G is a family of open sets
and for each D € D with D C Y, there exists G € G with D C G, then there exists
a sequence (Gy)n C G such that for each D € D with'Y C D, there is np < w, for
which D C G, for every n > np.

Of course, the sequence (G,,), fulfills the condition above if and only if it
converges to Y in Cp(X,$*). In the case of D = X<No it is equivalent to
Y CLim,Gy := U,y ks, Gr (the set-theoretic lower limit). In particular, for
Y = X the condition above is the condition () of Gerlits and Nagy [8]: if G is an
w-cover of X, then there is a sequence G,, € G with Lim,,G,, = X.

Let k =A=1and a = {Ox(D) : D € D}, where D is finitely additive.

Then Proposition 7.13 specializes as follows'":

Proposition 7.15. C,(X,$) is strongly Fréchet if and only if G, D Gri1 is se-
quence of families of open sets and for every k and each D € D with D C Y, there
exists G € Gy with D C G, then there exists a sequence G,, € G,, such that for each
D €D withY C D, there is np < w, for which D C G,, for every n > np.

As we have seen in proposition 6.4, Fréchetness is not Fi-steady. Nevertheless, it
is known that a Fréchet topological group is strongly Fréchet (see [16]). Therefore

Theorem 7.16. If « is a compact web on a completely reqular space X, then
Co(X,R) is Fréchet if and only if it is strongly Fréchet if and only if for every
a-cover P of X there is a sequence (Py,), C P such that for each A € « there is
ng < w such that P, € A for each n > n4.
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