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Abstract. Each collection � of families of subsets of X determines a topology
�(X;Z) on the space of continuous maps C(X;Z). Interrelations between local
properties of �(X;R) and of �(X; $) (on the hyperspace C(X; $)), and with
properties of a topological space X are studied in a general framework, which
allows to treat simultaneously several classical constructions, like pointwise
convergence, compact-open topology and the Isbell topology.

1. Introduction

The interrelation of properties of C�(X;Z) with those ofX and Z, is a fascinating
theme. Here � is a collection of (openly isotone 1) families of subsets of X, that
de�nes a topology �(X;Z) on C(X;Z) by a subbase

(1.1) f[A; O] : A 2 �;O 2 OZg ;

where [A; O] := ff : f�(O) 2 Ag, f�(O) := fx : f(x) 2 Og, and OZ is the set of
open subsets of Z.
Its very special case, that of Cp(X;R) (the space of real-valued functions with

pointwise convergence) has attracted a lot of researchers, among whom A. V. Arhangel�skii
(e.g., [1]). Its intermediate case of

� = �D := fOX(D) : D 2 Dg ;

where D is a family of subsets of X, is the object of a book of McCoy and Ntantu
[15].
Actually the said interrelation corresponds to the upper side of a quadrilateral

X $ C�(X;R)
l l

C�(X; $
�) $ C�(X; $)

in which, of course, one can consider also other sides, as well as diagonals. Here
$; $� stand for the two homeomorphic variants of the Sierpiński topology on f0; 1g,
so that C(X; $) can be identi�ed with the hyperspace of X, and C(X; $�) with the
set of open subsets of X.
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1A familyA of open sets is openly isotone if B 2 A provided that B is open and there is an

element A 2 A such that A � B.
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It turns out that it is fruitful to study the three other sides in order to better
grasp the interrelation of the upper side X $ C�(X;R). Indeed,

(1) C�(X; $) is homeomorphic to C�(X; $�);
(2) One can establish a dictionary of easy translations of elementary properties

of C�(X; $�) and �-properties of X;
(3) Under a separation condition (by real functions) one can evidence an inti-

mate relationship between C�(X;R) and C�(X; $).
More precisely, if X is completely regular and � is a compact web, then C�(X;R)

is a Hausdor¤ topological vector space, hence the topology �(X;R) is homogeneous.
Roughly speaking 2, a web � on X is a collection of families of open subsets of X
such that for each open subset Y there is A 2 � that can be reconstructed from its
trace on Y . A web is compact if its every element A is a compact family 3.
Therefore, ifX is completely regular and � is a compact web, then to characterize

a local property of C�(X;R), it is enough to study the neighborhood �lter of the
function 0. As we shall see, in this case, the neighborhood �lter of the function
0 in C�(X;R) and the neighborhood �lter of the empty set ? in the hyperspace
C�(X; $) belong to the same class.
Of course, in general, a hyperspace topology �(X; $) is not homogeneous. As

�(X; $) and �(X; $�) are homeomorphic (by complementation), a property ofN�(X;$)(A)
for A 2 C(X; $) is also a property of N�(X;$�)(X n A) and, as a rule, can be char-
acterized in terms of the space X nA with the induced topology. Therefore a local
property of C�(X; $) can be characterized by a hereditary (with respect to open
subsets) property of X.
It follows from some more general facts (see [5]) that

(1.2) f 2 lim�(X;R) F () f�(A) 2 lim�(X;$) F�(A)

for each closed subset A of R, where f�(A) := fx : f(x) 2 Ag and F�(A) is a
�lter generated by fff�(A) : f 2 Fg : F 2 Fg. Consequently, each �-topology on
C(X;R) can be, in principle, characterized in terms of the corresponding �-topology
on the hyperspace C(X; $), actually on its subset consisting of functionally closed
subsets of X: Therefore the transfer between C�(X;R) and C�(X; $) requires, es-
sentially, the complete regularity of X. By the way, it is why Georgiou, Iliadis and
Papadopoulos studied properties of real-valued function spaces in terms of topolo-
gies on functionally open sets [7].
The present paper restricts its scope to topologies on function spaces (almost

always real-valued) and to the corresponding hyperspace topologies. This is just
one aspect of a general theory of convergence function spaces and hyperspace con-
vergences that will be discussed in [5].

2. Open-set topologies

We denote by OX the set of open subsets of X, by OX(x) := fO 2 OX : x 2 Og,
and by OX(A) := fO 2 OX : A � Og. If now A is a family of subsets of X,
then OX(A) :=

S
A2AOX(A): A family A of subsets of X is openly isotone if

OX(A) = A.

2A precise de�nition is given before Lemma 3.7
3A precise de�nition is given before Lemma 3.7
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If � is a non-empty collection of openly isotone families of subsets of X, then
(1.1) is a subbase of a topology on C(X;Z), denoted by �(X;Z). The corresponding
topological space is denoted by C�(X;Z):
In particular, for a non-empty family D of subsets of X, the collection � := �D

is de�ned by

(2.1) �D := fOX(D) : D 2 Dg ;
and the symbol C�D (X;Z) is abridged to CD(X;Z). It is often required (e.g., [15])
that D be a (closed) network on X; that is, a family of closed sets such that for
each x 2 X and O 2 OX(x) there is D 2 D for which x 2 D � O. However (1.1)
is a topology subbase for each � = �D provided that D 6= ?.
If A � X and B � Z then [A;B] := ff 2 C(X;Z) : f(A) � Bg. Therefore,

[OX(D); O] = [D;O] and thus
f[A; O] : A 2 �D; O 2 OZg = f[D;O] : D 2 D; O 2 OZg :

Example 2.1. If D = X<@0 , then�
[F;O] : F 2 X<@0 ; O 2 OZ

	
is a base of the topological space Cp(X;Z) of pointwise convergence (here p abridges
X<@0).

Example 2.2. If D = KX (the family of compact subsets of X), then

f[K;O] : K 2 KX ; O 2 OZg
is a base of the topological space Ck(X;Z) of compact-open topology (here k abridges
KX).

We consider two complementary topologies on, respectively, the hyperspace
C(X; $) and the set C(X; $�) of open subsets of X. Here $ and $� are two homeo-
morphic avatars of the Sierpínski topology on f0; 1g:

$ := f?; f1g ; f0; 1gg and $� := f?; f0g ; f0; 1gg :
The indicator function  A of a subset A of X is de�ned by to be 0 on A and 1 out
of A. If X is a topological space, then  A 2 C(X; $) if and only if A is closed, and
 A 2 C(X; $�) := OX if and only if A is open.
The complementation c : 2X ! 2X associates Ac := X nA with A � X. In order

to avoid ambiguity, we denote the image of A � 2X by the complementation by

Ac := fAc : A 2 Ag :
The topology �(X; $�) on the set C(X; $�) (of all open subsets of X) has � for a

subbase, because, due to our convention, the subbase consists of f[A; f0g] : A 2 �g,
and [A; f0g] =

�
 B 2 C(X; $�) :  �B(0) 2 A

	
(by de�nition,  �B(0) = B).

If � is stable for �nite intersections, then � is a base of �(X; $�). Hence the
neighborhood �lter N�(X;$�)(Y ) of Y 2 C(X; $�) is generated by

fA 2 � : Y 2 Ag :
In particular, for � = �D a subbase for open sets is of the form

fOX(D) : D 2 Dg ;
and �D is stable for �nite intersections provided that D is stable for �nite unions,
so that

N�D(X;$�)(Y ) � fOX(D) : Y � D 2 Dg :



4 SZYMON DOLECKI

The homeomorphic image of �(X; $�) by the complementation is a topology on
the hyperspace C(X; $) denoted by �(X; $). Accordingly, fAc : A 2 �g is a subbase
of �(X; $)-open sets on the hyperspace C(X; $); the neighborhood of H 2 C(X; $)
with respect to �(X; $) is

N�(X;$)(H) � fAc : Hc 2 A 2 �g :
In particular, a base of N�D(X;$)(A0) consists of

ffA 2 C(X; $) : A \D = ?g : D 2 D; A0 \D = ?g
This form of basic neighborhoods is at the origin of the term D-miss topology.

Remark 2.3. Gruenhage introduced the so-called  -connection [10]. In particular,
a �lter �(Y;X), where Y is an open subset of X, is de�ned in a way equivalent to

�(Y;X) :=
�
OX(F ) : Y � F 2 X<@0

	
;

hence �(Y;X) is a neighborhood base of Y with respect to �X<@0 :=
�
OX(F ) : F 2 X<@0

	
.

3. Compact families

An openly isotone family A is compact if each family P of open sets such thatS
P 2 A has a �nite subfamily P0 of P such that

S
P0 2 A. We denote by �(X)

the collection of all compact families on X. Here are fundamental examples:

K compact ) OX(K) 2 �(X);
x 2 limX F ) OX(F^fxg) 2 �(X);

where F^fxg := ffF [ fxgg : F 2 Fg.
The collection of (openly isotone) compact families ful�ll the following properties:

?; fOXg 2 �(X);

� � �(X))
[

A2�
A 2 �(X);

A0;A1 2 �(X)) A0 \ A1 2 �(X):

Therefore (see [9],[2])

Corollary 3.1. �(X) is the collection of open sets of a topology on OX = C(X; $�).

Example 3.2. If � = �(X) is the collection of (openly isotone) compact families
on X; then

f[A; O] : A 2 �(X); O 2 OZg
is a subbase of the Isbell topology on C(X;Z). in particular, �(X) is the collection
of open sets of C�(X; $�).

Lemma 3.3. If A = O(A) is a compact family of subsets of a completely regular
topological space X, and F is a closed subset of X with F c 2 A, then there is A 2 A
and h 2 C(X; [0; 1]) such that h(A) = f0g and h(F ) = f1g.

Proof. By complete regularity, for every x =2 F , there is an open neighborhood Ox
of x and fx 2 C(X; [0; 1]) such that fx(Ox) = f0g and fx(F ) = f1g. Therefore F c =S
x=2F Ox 2 A, so that by the compactness of A there is n < ! and x1; : : : ; xn =2 F

such that A =
S
1�i�nOxi 2 A. The continuous function min1�i�n fxi is 0 on A

and 1 on F . �
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Lemma 3.4. If A is a compact openly isotone family on X and C is a closed subset
of X, then O (fA \ C : A 2 Ag) is compact.

Proof. Indeed, if P is a family of open sets such that
S
P 2 O (fA \ C : A 2 Ag),

then
S
P [ (X n C) 2 A, hence there exists a �nite subfamily P0 of P such thatS

P0 [ (X n C) 2 A, thus
S
P0 2 O (fA \ C : A 2 Ag).4 �

The concept of network is well-known. Here we introduce a notion of web that
extends and weakens that of network. A collection � of openly isotone families is
a web in X if for every x 2 X and each O 2 OX(x) there is A 2 � such that A
is generated by a �lter on O. In particular, �D (2.1) is a web if for each x 2 X
and every O 2 OX(x) there is D 2 D such that D � O. This is a weaker property
than that of D being a network. A collection of openly isotone families is called a
compact web if it is a web consisting of compact families.

Proposition 3.5. If D is a compact network, then �D is a compact web.

Indeed, in this case, �D is a collection of compact families. It is a web, be-
cause it includes fOX(fxg) : x 2 Xg. For instance,

�
OX(F ) : F 2 X<@0

	
and

fOX(K) : K 2 K(X)g are compact webs. Therefore,

Corollary 3.6. �(X) is a compact web on X.

In fact, �(X) is a web, because it includes a web, for example, fOX(K) : K 2 K(X)g.
The following result extends [15, Theorem 1.1.5].

Lemma 3.7. If Z is Hausdor¤ and � is a web, then C�(X;Z) is Hausdor¤.

Proof. If f0 6= f1 then there is x 2 X such that f0(x) 6= f1(x), and because
Z is Hausdor¤, there exist disjoint open sets O0 and O1 such that f0(x) 2 O0
and f1(x) 2 O1. Therefore W := f�0 (O0) \ f�1 (O1) 2 OX(x), and since � is a
web, there exists A 2 � such that A is generated by a �lter on W . Therefore
f0 2 [A; O0]; f1 2 [A; O1] and [A; O1]\ [A; O0] is empty, for if f 2 [A; O1]\ [A; O0]
then there exist W � A0; A1 2 A such that A0 � f�(O0); A1 � f�(O1) and
A := A0 \A1 2 A, hence f(A) � O0 \O1 = ?. �

Lemma 3.8. If X is completely regular, � is a compact web, and Z is a (real)
topological vector space, then C�(X;Z) is a Hausdor¤ topological vector space.

Proof. Let O be open, A 2 � and f � g 2 [A; O], that is, there is A 2 A such that
f � g 2 [A;O]. By the assumptions on Z, for each x 2 A, there exist open sets Px
and Qx such that f(x) 2 Px; g(x) 2 Qx and Px � Qx � O. Because f and g are
continuous, there exist an open neighborhood Vx and a closed neighborhood Wx of
x such that Wx � Vx � A; f 2 [Vx; Px] � [Wx; Px] and g 2 [Vx; Qx] � [Wx; Qx]. AsS
x2A Vx 2 A, by the compactness of A, there is a �nite subset F of A such thatS
x2F Vx 2 A. On the other hand, Ax := O (A _Wx) is compact, f 2 [A_Wx; Px]

and g 2 [A _Wx; Qx] for each x 2 A, a fortiori for x 2 F . Consequently,

f � g 2
\

x2F
[A _Wx; Px]�

\
x2F

[A _Wx; Qx] � [A; O]:

4More generally, this holds for arbitrary compact (isotone) families in convergence spaces:
denote by A _ C the isotone family generated by fA \ C : A 2 Ag. If C is closed and A is
compact, then F#(A _ C) implies that the �lter F _ F meshes with A, hence adh (F _ F ) =
adhF \ adhF = adhF \ F meshes with A, equivalently adhF meshes A _ C.
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If now O is open, A 2 � and �f 2 [A; O] for a scalar �, then there is A 2 A such that
for each x 2 A there exist an open subsets Px and Ix of Z such that �f 2 IxPx � O.
By continuity, there exist an open neighborhood Vx and a closed neighborhood Wx

of x such that Wx � Vx � A; f 2 [Vx; Px] � [Wx; Px]. As
S
x2A Vx 2 A, by the

compactness of A, there is a �nite subset F of A such that
S
x2F Vx 2 A. On the

other hand, Ax := O (A _Wx) is compact and f 2 [A _Wx; Px] for each x 2 A, a
fortiori for x 2 F . Therefore

�f 2
\

x2F
Ix \

\
x2F

[A _Wx; Px]:

�

It follows that if � is a compact web, then C�(X;R) is a topological vector space.

4. Polar topologies

Recall that if 
 � V � W , then the 
-polar 
�A of a subset A of V is the
greatest subset B of W such that A� B � 
. Dual topologies can be represented
in terms of polarity.
The canonical coupling is the map that associates hx; fi := f(x) with x 2 X

and f 2 C(X;R). For every open subset O of R this map de�nes a relation 
O :=
f(x; f) : f(x) 2 Og. Accordingly, for each A 2 C(X; $�),
(4.1) 
�OA =

�
f : A � f�(O)

	
= [A;O]

is the polar of A by 
�O. On the other hand, 

�
O is a relation on C(X; $

�)�C(X;R),
so that if A is a subset of C(X; $�), then 
�OA = [A; O]. Hence for a �lter (base)
� on C(X; $�),


�O� � f[A; O] : A 2 �g :
Finally

N�(X;R)(0) �
_

O2NR(0)

�O� � f[A; O] : A 2 �;O 2 NR(0)g :

Because of homogeneity, it is enough to establish a property of N�(X;R)(0) in or-
der to prove that property for every neighborhood �lter of C�(X;R) (for a compact
web � on a completely regular space X.
On the other hand, it follows from (1.2) that f 2 lim�(X;R) F implies, in par-

ticular, 0�(C) 2 lim�(X;$) F�(C) for each closed subset C of R. If 0 2 C then
0�(C) = X; hence 0�(C) 2 lim�(X;$) F�(C) for every F . Hence the only case to
consider is that of 0 =2 C that is equivalent to 0�(C) = ?:
This observation implies that properties of N�(X;$)(?) are intimately related to

properties of N�(X;R)(0), hence to local properties of Ca(X;R), thanks to homo-
geneity (for a compact web � on a completely regular space X). As �(X; $) and
�(X; $�) are homeomorphic by complementation, the properties of N�(X;$)(?) and
N�(X;$�)(X) are the same. On the other hand, N�(X;$�)(X) is generated by �.
If � � X1 � : : : � Xm is a relation, then for 1 � k � m, let �k : � ! Xk

be the restriction to � of the k-th projection. Consider the fundamental relation
� � C(X;R)� C(X; $�)� C(R; $�) de�ned by

� := f(f;A;O) : f 2 [A;O]g :
The last component of � is valued in (open) subsets of R, and not in R, because

� is results from a polarity. Therefore, we need to de�ne a �lter on OR(0) such
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that its projection on R coincides with NR(0). A base for such �lter (denoted by
�NR(0)) is given by fP 2 OR(0) : P � Og with O 2 OR(0).

Theorem 4.1. N�(X;R)(0) = �1(��2 � _ ��3 �NR(0)):

Proof. By de�nition, ��2 A = f(f;A;O) : f 2 [A;O]; A 2 Ag, and ��3 O = f(f;A;O) : f 2 [A;O]g,
hence �1(�

�
2 A _ ��3 O) = [A; O], so that N�(X;R)(0) = �1(��2 � _ ��3 �NR(0)): �

Let � be the following subset of C(X; $�)� C(X;R):

� := f(A; f) : f(A) � B(0; 1)g :

In other words, � := ��3 B(0; 1). Call its projections �1 and �2.

Theorem 4.2. If � is a compact web, and X is completely regular, then � =
�1(�

�
2 N�(X;R)(0)):

Proof. If A is a compact family and A 2 A, then by Lemma 3.3, there exist H 2 A
and fA 2 C(X; [0; 1]) such that fA(X n A) = f1g and fA(H) = f0g, consequently
fA 2 [A;B(0; 1)] � [A; B(0; 1)]. This shows that A � �1�

�
2 [A; B(0; 1)]. Con-

versely, if A 2 �1��2 [A; B(0; 1n )], then f 2 [A;B(0; 1)] � [A; B(0; 1)] for every f
2 [A; B(0; 1n )], and thus �1�

�
2 [A; B(0; 1n )] � A, for each natural n > 0. �

5. Transfer of properties

Let B be a class of �lters. A topology is B-based if and only if each neighborhood
�lter is in B. For each class B, the B-based topologies form a concretely core�ec-
tive subcategory. Several concretely core�ective subcategories of topologies can be
represented in terms of B-based topologies for some speci�c classes B of �lters, for
example, character, tightness, sequentiality, Fréchetness, strong Fréchetness, pro-
ductive Fréchetness, bisequentiality, and others (see, e.g., [3]).
Theorems 4.1 and 4.2 enable us transfer some core�ective properties from C�(X;R)

to C�(X; $) and vice versa.
If H � X � Y , then Hx := fy 2 Y : (x; y) 2 Hg, and if H � X then HA :=S
x2AHx. If now F and H are families of subsets of X and Y respectively, then

HF := fHF : F 2 F ;H 2 Hg :

If F and H are �lters, then, by a handy abuse of notation, HF stands also for the
�lter it generates.
Recall that F� denotes the class of �lters admitting a �lter base of cardinality

< @�. In particular, F0 is the class of principal �lters, and F1 is the class of
countably based �lters. The class of all �lters is denoted by F.
A class B of �lters is F�-composable if HF 2 B for each F 2 B and every H 2 F�

(see [6],[11],[14]). A class B of �lters is F�-steady if H_F 2 B for each F 2 B and
each H 2 F� (see [11],[14]).
If H is a class of �lters and  is a �lter subbase, then  2 H means that the �lter

generated by  belongs to H.
By Theorem 4.1,

Proposition 5.1. Let B be F0-composable and F1-steady. If X is regular, � is a
compact web, and � 2 B, then C�(X;R) is B-based.
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Proof. If � 2 B then ��2 � 2 B, because B is F0-composable. On the other hand,
��3

�NR(0) is a countably based �lter, because NR(0) is countably based. Therefore,
��2 � _ ��3 �NR(0) 2 B, because B is F1-steady. Finally, N�(X;R)(0) 2 B as the image
by a map of a �lter from B. Therefore C�(X;R) is B-based because C�(X;R) is
homogeneous by Lemma 3.8. �
Proposition 5.2. Let B be F0-composable. If � is a compact web, X is completely
regular, and C�(X;R) is B-based, then � 2 B.

Proof. If C�(X;R) is B-based, N�(X;R)(0) 2 B hence by Theorem 4.2, � 2 B,
because B is F0-composable. �
Theorem 5.3. Let B be F0-composable and F1-steady, and let � be a compact web
on a completely regular space X. Then C�(X;R) is B-based if and only if � 2 B.

F. Jordan established in [11, Theorem 3] a special case of Theorem 5.3 for
� =

�
O(D) : D 2 X<@0

	
, hence concerning Cp(X;R), in terms of -connection

(see Remark 2.3). It is enough to replace in his proofs X<@0 by any (addi-
tively stable) family D of compact sets, in order that the proofs remain valid for
� =

�
O(D) : D 2 X<@0

	
and CD(X;R).

Since � is a �lter subbase of N�(X;$�)(X), and �(X; $�) is homeomorphic to
�(X; $) by complementation, we have

Corollary 5.4. Let B be F0-composable and F1-steady, and let � be a compact
web on a completely regular space X. Then C�(X;R) is B-based if and only if
N�(X;$)(?) 2 B.

6. Transferable properties

We shall discuss several F0-composable F1-steady classes of �lters, in other words,
of trasferable local properties. Several results on composability and steadiness can
be found in [11],[14].
We say that a property of topological spaces is local if there is a class P of �lters

5 such that a topology has the property whenever each neighborhood �lter belongs
to P. Character and tightness are local properties.
The character �(F) of a �lter F is the least cardinal � such that F has a base

of cardinality � � . The tightness t(F) of a �lter F is the least cardinal � for which
if A 2 F# then there is B � A with cardB � � such that B 2 F#.

Proposition 6.1. (In�nite) character and tightness are F0-composable and F1-
steady.

Proof. If B is a �lter base of a �lter F on X and A � X � Y , then fAB : B 2 Bg
is a base of AF . Indeed, if H 2 AF then there exists F 2 F such that AF � H,
hence there is B 2 B with B � F , so that AB � AF . Therefore �(AF) � �(F),
because cardfAB : B 2 Bg � cardB.
If B is a base of F , and D is a base of E , then fB \D : B 2 B; D 2 Dg is a base

of F _E . As card fB \D : B 2 B; D 2 Dg � cardB� cardD. Therefore if � (F) is
in�nite and � (E) � @0 then �(F _ E) = �(F).
The tightness is F0-composable, because H#AF if and only if A�H 2 F . The

(in�nite) tightness is F1-steady, for if E � fEn : n < !g and H 2 (F _ E)# then

5possibly depending on topology.
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H 2 (F _ En)# for each n < !. Hence there exists Bn � H with cardBn �
� (F) and such that Bn 2 (F _ En)#. Consequently

S
n<! Bn 2 (F _ E)

# and
card

�S
n<! Bn

�
� � (F) if � (F) � @0. �

A �lter F is G to E re�nable [12] (F 2 (G/E)�) if for each �lter G 2 G with
G#F there exists a �lter E 2 E such that E � F_G; a �lter F is G to E me-re�nable
[12] (F 2 (G/E)#�) if for each �lter G 2 G with G#F there exists a �lter E 2 E
such that E � F and E#G.

Lemma 6.2. The property (F�/F�)� is F�-steady if � � �.

Proof. Let F 2 (F�/F�)� ; E 2 F� and D 2 F� be such that D#(E _ F). Then
(D _ E)#F and D _ E 2 F�, because � � �; thus there is G 2 F� such that
G � D _ E _ F . �

Lemma 6.3. The property (F�/F�)� is F�-composable if � � � ^ �.

Proof. If F 2 (F�/F�)� ; E 2 F� and M 2 F� be such that E#(MF). Then
M�E#F andM�E 2 F� provided that � � �. As F 2 (F�/F�)� there is G 2 F�
such that G � M�E _ F . ThusMG � M (M�E _ F) � E _MF andMG 2 F�
provided that � � �. �

Fréchetness, strong Fréchetness, productive Fréchetness and bisequentiality are
other examples of local properties that can be expressed in terms of re�nable and
me-re�nable �lters with respect to various classes (see [13] and a pioneering paper
[4]). A �lter F is

(1) Fréchet () F 2 (F0/F1)�: A �lter F is Fréchet if for each set A such that
A#F there exists a countably based �lter E such that A 2 E � F .

(2) strongly Fréchet () F 2 (F1/F1)�: A �lter F is strongly Fréchet if for
each countably �lter G such that G#F there exists a countably based �lter
E such that E � F _ G.

(3) productively Fréchet () F 2
�
(F1/F1)� =F1

�
�
: A �lter F is productively

Fréchet if for each Fréchet �lter G such that G#F there exists a countably
based �lter E such that E � F _ G.

(4) bisequential () F 2 (F=F1)#�: A �lter F is bisequential if for each �lter
G such that G#F there exists a countably based �lter E such that E � F
and E#G.

Of course, in the �rst three conditions (but not in the fourth) the existence of a
countably based �lter E is equivalent to the existence of a sequential �lter 6 E . All
these properties are F0-composable. Not all are F1-steady.

Proposition 6.4. Classes of strongly Fréchet, productively Fréchet and bisequential
�lters are F1-steady; the class of Fréchet �lters is not F1-steady. All the listed
properties are F0-composable.

Proof. All the cases are proved in [14] except for bisequential �lters. Let F be
bisequential and E 2 F1. If D is any �lter such that D#(E _ F), then (D _ E)#F ,
hence there is G 2 F1 such that G � F and G#(D _ E). The �lter G _ E 2 F1
and G _ E meshes D and G _ E � G � F . Let F be bisequential and A a relation.

6A �lter is sequential if it is generated by the queues of a sequence.
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If D is a �lter such that D#AF , then A�D#F , hence there is H 2 F1 such that
H#A�D and H � F . Thus AH#D and AH � AF .
If F is Fréchet but not strongly Fréchet, then there is E 2 F1 such that G � E_F

for no G 2 F1. Hence E _ F is not Fréchet. �

7. Dictionary X  ! OX
Here there is a list of elementary equivalences that will be used to establish

equivalences of more convoluted equivalences between properties of C�(X; $�) and
X. We consider only those collections � that are �nitely stable, that is, A0;A1 2 �
implies that A0 \ A1 2 �.
Let Y � X. A family B of (open) subsets ofX is called an �-cover of Y if B\A 6=

? for every A 2 � such that Y 2 A. In particular, if � =
�
O(D) : D 2 X<@0

	
,

then an �-cover is an !-cover, that is, for each �nite set D there is B 2 B such that
D � B.

Lemma 7.1. A family B meshes N�(X;$�)(Y ) if and only if B is an �-cover of Y .

Proof. B meshes N�(X;$�)(Y ) if and only if B \ A 6= ? for each A 2 � such that
Y 2 A. This means exactly that B is an �-cover of Y . �
Let A;B be families of subsets of a given set. We say that A is coarser than B

(equivalently, B is �ner than A)
A � B

if for every A 2 A there is B 2 B such that B � A. A collection of families of
subsets of X can be considered as a family of subsets of 2X . In this sense, we say
that a collection is �ner (coarser) than another collection. The following facts are
just rewording of de�nitions, but we formulate them as lemmas for easy reference.

Lemma 7.2. A collection  is �ner than N�(X;$�)(Y ) if and only if for each A 2 �
such that Y 2 A there is G 2  such that A � G.

Lemma 7.3. A collection  is coarser than N�(X;$�)(Y ) if and only if for each
G 2  there is A 2 � such that Y 2 A � G.

In particular, a sequence (Gn)n is �ner than N�(X;$�)(Y ) if for every A 2 � there
is nA < ! such that Gn � A for each n � nA.

7.1. Tightness. Recall that (see e.g., [15]) the �-Lindelöf number of a topological
space X is the least cardinal � such that for each �-cover there exists an �-subcover
of cardinality less than or equal to � .7

By Lemma 7.1, 8

Theorem 7.4. The tightness of C�(X; $) is � if and only if the the supremum of
the �-Lindelöf numbers of open subsets of X is � .

Hence, by Theorem 5.3,

7More generally, if � � � are cardinals, then we say that X is �=�[�]-compact if for every open
�-cover of X of cardinality < � there is an �-subcover of cardinality < � of X. In particular, a
topological space is [�]-compact if it is �=@0[�]-compact for each cardinal �, countably [�]-compact
if it is @1=@0[�]-compact, [�]-Lindelöf if it is �=@1[�]-compact for every �.

8Similar characterizations can be formulated for �=�-tightnes with � � @0. We say that a �lter
F is �=�-tight if for each H 2 F# with cardH < � there is B � H such that cardB < � and
B 2 F#. A topological space is �=�-tight if its every neighborhood �lter is �=�-tight.
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Theorem 7.5. If X is completely regular and � is a compact web, then C�(X;R)
is � -tight if and only if the �-Lindelöf number of X is � .

These facts specialize, in an obvious way, to compact-open topologies Ck(X;Z),
when � = fO(K) : K 2 Kg where K is the family of compact subsets od X, to
Isbell topologies C�(X;Z), when � = �(X) is the collection of compact families.
The case of � =

�
OX(D) : D 2 X<@0

	
has non-obvious interpretations. Corollary

7.5 specializes in this case with � = @0 to
Proposition 7.6. If X is completely regular, then Cp(X;R) is countably tight if
and only if each !-cover of X has a countable !-cover of X.

The following theorem is due to Arhangel�skii [1] and Pytkeev [17]:

Theorem 7.7. If X is completely regular, then Cp(X;R) is countably tight if and
only if Xn is Lindelöf for every n < !.

7.2. Character. As an immediate consequence of Lemma 7.2,

Theorem 7.8. The character of C�(X; $) is � if and only if for every open subset
Y of X there exists a subcollection  of � such that card  � � and for each A 2 �
there is G 2  such that G � A.
Corollary 7.9. If X is T1; then Cp(X; $) is of countable character if and only if
X is countable.

Proof. By Theorem 7.8, the character of Cp(X; $) is countable, if and only if for
every open subset Y ofX there is a sequence (yn)n � Y such that fOX(fx1; : : : ; xng) : n < !g
is �ner than

�
OX(F ) : F 2 X<@0

	
, that is, for every �nite subset F of Y there is

n < ! such that fx1; : : : ; xng � O implies F � O for each open set O. Since X is
T1, this means that F � fx1; : : : ; xng. �
Corollary 7.10. If X is T1; then Ck(X,$) is of countable character if and only if
X is hereditarily hemicompact.

Proof. Let Y be an open subset of X. The neighborhood �lter NK(X;$�)(Y ) is
countably based if and only if there exists a sequence (Kn)n of compact subsets of
Y such that for every K 2 KY there exists n such that OX(Kn) � OX(K), which,
for a T1-topology, is equivalent K � Kn. �
It is well-known that a (Hausdor¤) topological vector space is metrizable if and

only if it is of countable character. Therefore, we recover [15, p. 60]

Corollary 7.11. If X is completely regular, then Cp(X;R) is metrizable if and
only if it is of countable character if and only if X is countable.

Corollary 7.12. If X is completely regular, then Ck(X;R) is metrizable if and
only if it is of countable character if and only if X is hemicompact.

7.3. Variants of Fréchetness. Here we characterize some of the properties (H=E)�
of hyperspaces in terms of their underlying spaces.

Proposition 7.13. C�(X; $) is (F�=F�)�-based if and only if X enjoys the fol-
lowing property: For each open subset Y of X, for every collection  of �-covers
of Y with card() � �, there exists a collection � of families of open sets with
card(�) � � such that for every A 2 � with Y 2 A, and each G 2  there exists
Z 2 � such that Z � A \ G.
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As we have observed in a preliminary analysis, this property is (necessarily)
hereditary for open sets.
Let � = 0 and � = 1 and � = fOX(D) : D 2 Dg, where D is �nitely additive.

Proposition 7.13 specializes as follows9:

Proposition 7.14. C�(X; $) is Fréchet if and only if G is a family of open sets
and for each D 2 D with D � Y , there exists G 2 G with D � G, then there exists
a sequence (Gn)n � G such that for each D 2 D with Y � D, there is nD < !, for
which D � Gn for every n � nD.

Of course, the sequence (Gn)n ful�lls the condition above if and only if it
converges to Y in CD(X; $

�). In the case of D = X<@0 , it is equivalent to
Y �LimnGn :=

S
n<!

T
k>nGk (the set-theoretic lower limit). In particular, for

Y = X the condition above is the condition () of Gerlits and Nagy [8]: if G is an
!-cover of X, then there is a sequence Gn 2 G with LimnGn = X.
Let � = � = 1 and � = fOX(D) : D 2 Dg, where D is �nitely additive.
Then Proposition 7.13 specializes as follows10:

Proposition 7.15. C�(X; $) is strongly Fréchet if and only if Gk � Gk+1 is se-
quence of families of open sets and for every k and each D 2 D with D � Y , there
exists G 2 Gk with D � G, then there exists a sequence Gn 2 Gn such that for each
D 2 D with Y � D, there is nD < !, for which D � Gn for every n � nD.

As we have seen in proposition 6.4, Fréchetness is not F1-steady. Nevertheless, it
is known that a Fréchet topological group is strongly Fréchet (see [16]). Therefore

Theorem 7.16. If � is a compact web on a completely regular space X, then
C�(X;R) is Fréchet if and only if it is strongly Fréchet if and only if for every
�-cover P of X there is a sequence (Pn)n � P such that for each A 2 � there is
nA < ! such that Pn 2 A for each n � nA.
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