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Abstract. We study the one-dimensional shallow water equations with
arbitrary topography. We first verify that traditional discretizations of
the right-hand side of the equation of the balance of momentum give
unsatisfactory results. We then show that the equations can be written
in the divergence form for stationary waves. Motivated by the encourag-
ing results for the well-balanced scheme for fluid flows in a nozzle with
variable cross-section in [15], we construct a numerical scheme based
on stationary waves. This scheme is constructed so that it maintains
equilibrium states. Tests show that our scheme is both stable and fast.
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1. Introduction

We consider in this paper the numerical treatments for the following one-
dimensional shallow water equations

∂th + ∂x(hu) = 0,

∂t(hu) + ∂x(h(u2 + g
h

2
)) = −gh∂xa,

(1.1)

where h is the height of the water from the bottom to the surface, u is the
velocity, g is the gravity constant, and a is the height of the river bottom
from a given level.

Since the topography may admit discontinuity, the system (1.1) is of
nonconservative form. Introducing the trivial equation

∂ta = 0

produces another linearly degenerate characteristic field transforming the
nonconservative system to a non-strictly hyperbolic system. As shown in
[20], the system then lacks uniqueness as well as existence. Exact Riemann
solutions of the system were constructed in [20]. Related studies of the
system can be found in [21, 12, 13, 8, 19, 1, 19].

It has been shown that for nonconservative systems, or systems with
source terms, traditional discretizations of the right-hand side do not give
satisfactory results. In particular, oscillations may appear or the errors may
grow when the mesh size is reduced. This was observed in the scalar case,
see [5], and in the case of systems for the modeling of flows in a nozzle
with variable cross-section, see [15]. In the case of scalar conservation laws,
well-balanced schemes have been constructed, see [10, 11, 4, 9, 5, 6, 3, 14].

In this paper we will develop the idea of using stationary wave in the case
of system of balance laws [15] for the shallow water equations. We then
provide the tests which show the efficiency of our scheme.

2. Basic properties and stationary waves

In this section we recall basic properties of system (1.1) and stationary
waves, as well as the curve of stationary waves. This is the basic component
of the scheme constructed in the next section.

2.1. Basic properties of the system. Supplementing the system (1.1)
with the trivial equation

∂ta = 0

the system (1.1) becomes

∂th + u∂xh + h∂xu = 0,

∂tu + g∂xh + u∂xu + g∂xa = 0,

∂ta = 0
(2.1)
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Setting the variable U = (h, u, a), we can re-write the system (2.1) in the
the nonconservative form

∂tU + A(U)∂xU = 0, (2.2)

where the Jacobian matrix A(U) is given by

A(U) =




u u 0
g u g
0 0 0


 .

The eigenvalues of A(U) satisfy

|A(U)− λI| = 0

which gives

λ1(U) := u−
√

gh < λ2(U) := u +
√

gh, λ3(U) := 0, (2.3)

together with the corresponding eigenvectors

r1(U) := (h,−
√

gh, 0)t, r2(U) := (h,
√

gh, 0)t,

r3(U) := (gh,−gu, u2 − gh)t.
(2.4)

The first and the third characteristic fields may coincide. Indeed, letting

(λ1(U), r1(U)) = (l3(U), r3(U))

we obtain a hyper-surface of the space (h, u, a) on which the first and the
third characteristic fields coincide

C+ := {(h, u, a)| u =
√

gh}. (2.5)

Similarly, the second and the third characteristic fields may coincide:

(λ2(U), r2(U)) = (l3(U), r3(U))

on the hyper-surface of the space (h, u, a)

C− := {(h, u, a)| u = −
√

gh}. (2.6)

Therefore, the system lacks strict hyperbolicity.
On the other hand, the third characteristic field (λ3, r3) is linearly degen-

erate. We have

−∇λ1(U) · r1(U) = ∇λ2(U) · r2(U) =
3
2

√
gh 6= 0, h > 0.

The last conclusion implies that the first and the second characteristic fields
(λ1, r1), (λ2, r2) are genuinely nonlinear in the open half-space {(h, u, a)| h >
0}.

Now, it is convenient to set

C = C+ ∪ C− = {(h, u, a)| u2 − gh = 0},
which is the hyper-surface on which the system fails to be strictly hyperbolic.

We have seen that the system lacks strict hyperbolicity only on the surface
C. However, this surface divides the phase domain into three sub-domains
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Figure 1. Projection of strictly hyperbolic areas in the
(h, u)-plane

which are disjoint regions, or areas, denoted by A1, A2 and A3, so that in
each region the system is strictly hyperbolic. More precisely,

A1 := {(h, u, a) ∈ RI + ×RI ×RI +| λ2(U) > λ1(U) > λ3(U)},
A2 := {(h, u, a) ∈ RI + ×RI ×RI +| λ2(U) > λ3(U) > λ1(U)},
A+

2 := {(h, u, a) ∈ A2| u > 0},
A−2 := {(h, u, a) ∈ A2| u < 0},
A3 := {(h, u, a) ∈ RI + ×RI ×RI +| λ3(U) > λ2(U) > λ1(U)}.

(2.7)

2.2. The curve of stationary waves. Stationary waves are time-independent
solutions. So stationary waves of (1.1) satisfy

(hu)′ = 0,

(u2

2
+ g(h + a)

)′ = 0,
(2.8)

where ”′” stands for the derivative with respect to x. Trajectories of the sys-
tem of two differential equations (2.8) passing through each point (h0, u0, a0)
can be obtained easily and satisfy

hu = h0u0,

u2

2
+ g(h + a) =

u2
0

2
+ g(h0 + a0).

(2.9)

The trajectories of (2.8) can be expressed in the form u = u(h), a = a(h).
Now, letting h → h± and setting u± = u(h±), a± = a(h±), we see that the
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states (h±, u±, a±) satisfy the jump conditions

[hu] = 0,

[
u2

2
+ g(h + a)] = 0,

(2.10)

From (2.10), we can define a curve parameterized in h:

W0(U0) : u = u(h) =
h0u0

h
,

a = a(h) = a0 +
u2 − u2

0

2g
+ h− h0.

(2.11)

Substitute for u in the second equation of (2.11), and re-arranging terms,
we obtain

u =
h0u0

h
,

a0 − a +
u2

0

2g

(h2
0

h2
− 1

)
+ h− h0 = 0.

Thus, to determine the the other state of a stationary wave, given one
state, we look for zeros of the function

ϕ(h) = a0 − a +
u2

0

2g

(h2
0

h2
− 1

)
+ h− h0. (2.12)

Set

hmin(U0) :=
(u2

0h
2
0

g

)1/3
,

amin(U0) := a0 +
u2

0

2g

( h2
0

h2
min

− 1
)

+ hmin − h0.

Properties of the function ϕ in (2.12) are observed in [20].

Lemma 2.1. (Lemma 3.1, [20]) Suppose u0 6= 0. The function ϕ(h), h > 0
is smooth, convex, is decreasing in the interval (−∞, hmin) and is increasing
in the interval (hmin,∞), and satisfies the limit conditions

lim
h→0

ϕ(h) = lim
h→∞

ϕ(h) = ∞.

Consequently, if a ≥ amin, the function ϕ has two zeros h∗(U0, a), h∗(U0, a)
such that h∗(U0, a) ≤ hmin(U0) ≤ h∗(U0, a). The inequalities are strict when-
ever a > amin(U0).

As shown in [20] the Riemann problem for (1.1) may admit up to a one-
parameter family of solutions. This phenomenon can be avoided by requiring
Riemann solutions to satisfy a monotone condition on the component a.

(MC) (Monotonicity Criterion) - Along any stationary curve W3(U0),
the bottom level a is monotone as a function of h.
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A similar criterion was used by Isaacson and Temple [12, 13], LeFloch
and Thanh [19, 20], and by Goatin and LeFloch [8].

It is not difficult to check that under the Monotonicity Criterion, a sta-
tionary wave from a given state U0 ∈ A1 ∪ A3 picks up the value h∗(U0, a)
given by Lemma 2.1 to arrive at a state (h, u, a), where h = h∗(U0, a) u is
given by (2.11), while a stationary wave from a given state U0 ∈ A2 picks up
the value h∗(U0, a) given by Lemma 2.1 to arrive at a state (h, u, a), where
h = h∗(U0, a) u is given by (2.11). See [20] for the proof.

3. Numerical schemes

In this section we will present a new scheme for approximating solutions
of the system (1.1), relying on the arguments in the previous sections. Given
a uniform time step ∆t and a special mesh size ∆x, setting xj = j∆x, j ∈ Z,
and tn = n∆t, n ∈ N, we denote by Un

j in what follows as the approximation
of the values U(xj , tn) of the exact solution U = (h, hu) of (1.1).

Set

λ =
∆t

∆x
.

Let us take any standard finite difference scheme for gas dynamics equations
with the numerical flux gC. The classical scheme is of the form

Un+1
j = Un

j −λ
(
gC

(
Un

j , Un
j+1

)−gC
(
Un

j−1, U
n
j

))
+

λ

2
(
0,−ghn

j (aj+1−aj−1)
)T

,

(3.1)
where aj := a(xj). The modified Lax–Friedrichs scheme is of the form (3.1)
with the Lax–Friedrichs numerical flux:

gC(U, V ) :=
1
2
(f(U) + f(V ))− 1

2λ
(V − U),

U := (h, hu), f(U) := (hy, h(u2 + gh/2)).
(3.2)

The constant λ is also required to satisfy the so-called CFL stability condition

λ max
U
|f ′(U)| ≤ 1. (3.3)

The well-balanced scheme is defined by

Un+1
j = Un

j − λ
(
gN(Un

j , Un
j+1,−)− gN(Un

j−1,+, Un
j )

)
, (3.4)

where gN(U, V ) can be any standard numerical flux for gas dynamics equa-
tions, and Un

j+1,−, Un
j−1,+ are given below. In the next section devoted to

numerical tests, we take the Lax–Friedrichs numerical flux:

gN(U, V ) := gC(U, V ) =
1
2
(
f(U) + f(V )

)− 1
2λ

(V − U),

U := (h, hu), f(U) := (hy, h(u2 + gh/2)).

In the scheme (3.4), the states

Un
j+1,− = (h, hu)n

j+1,−, Un
j−1,+ = (h, hu)n

j−1,+
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are defined by observing that the entropy is constant across each stationary
jump, and by computing hn

j+1,−, un
j+1,− from the equations

hn
j+1u

n
j+1 = hn

j+1,−un
j+1,−,

(un
j+1)

2

2
+ g(hn

j+1 + an
j+1) =

(un
j+1,−)2

2
+ g(hn

j+1,− + an
j+1,−),

(3.5)

and computing hn
j−1,+, un

j−1,+ from the equations

hn
j−1u

n
j−1 = hn

j−1,+un
j−1,+,

(un
j−1)

2

2
+ g(hn

j−1 + an
j−1) =

(un
j−1,+)2

2
+ g(hn

j−1,+ + an
j−1,+),

(3.6)

4. Test cases

In this section we will provide some test cases to demonstrate the efficiency
of our new scheme (3.4) by using MATLAB. We compute solutions by using
the modified Lax–Friedrichs scheme (3.1)–(3.2) and the new scheme (3.4).
Then, we compare the numerical solutions with the corresponding exact
solutions, which were obtained in [20].

For all test cases, the exact solutions are available (see also [20]) and we
will compute the error and the corresponding CPU times. Let us denote
the unknown function to be U = (h, u). The notation UC

h , UN
h refer to

Lax–Friedrichs solutions obtained by (3.1)–(3.2) and the new scheme (3.4),
respectively.

Solutions U(x, t) of the Riemann problem for system (1.1) will be com-
puted for

x ∈ [−1, 1], t = 0.05.

We denote the left- and right-hand states of the Riemann problem by UL, UR,
respectively.

4.1. Approximate the exact solution. In this subsection, our new scheme
will be shown to maintain equilibrium states caused by stationary waves.
However, the classical scheme does not. Consequently, perturbations in the
classical scheme force the equilibrium state out of its equilibrium position
and produces new waves.

4.1.1. Test case 1. Let us take the Riemann initial data
UL = (3.703475573136399,−0.209571952727429),

UR = (4.203977374422297,−0.184621499740394)

and aL = 1.0, aR = 1.5, CFL = 0.7. See Figure 2 and Figure 3.
It is easy to check that this two states UL, UR are the left-hand and the

right-hand of a stationary contact. Our scheme is shown to give quickly the
stationary contact. However, the modified Lax-Friedrich scheme approxi-
mates a visibly different function.
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−1 −0.5 0 0.5 1
1

1.5
Bottom Level

−1 −0.5 0 0.5 1
3.5

4

4.5
Exact solution: Water Height; Initial  Height = 3.7035  and  4.204

−1 −0.5 0 0.5 1
−0.25

−0.2

−0.15
Exact solution: Velocity ; Initial  velocity = −0.20957  and  −0.18462

−1 −0.5 0 0.5 1
1

1.5
Bottom;   Error=0.80575  CPU time = 3.7188

−1 −0.5 0 0.5 1
3.5

4

4.5
L−F: water height ; Initial  h =3.7035  and  4.204 Time =0.050172

−1 −0.5 0 0.5 1
−2

−1

0
L−F: Velocity ; Initial  velocity =−0.20957  and  −0.18462

Figure 2. Classical scheme does not approximate the sta-
tionary wave

−1 −0.5 0 0.5 1
1

1.5
Bottom Level

−1 −0.5 0 0.5 1
3.5

4

4.5
Exact solution: Water Height; Initial  Height = 3.7035  and  4.204

−1 −0.5 0 0.5 1
−0.25

−0.2

−0.15
Exact solution: Velocity ; Initial  velocity = −0.20957  and  −0.18462

−1 −0.5 0 0.5 1
1

1.5
Bottom;   Error=5.0505e−005  CPU time = 7.2344

−1 −0.5 0 0.5 1
3.5

4

4.5
New scheme: water height ; Initial  h =3.7035  and  4.204 Time =0.050036

−1 −0.5 0 0.5 1
−0.25

−0.2

−0.15
New scheme: Velocity ; Initial  velocity =−0.20957  and  −0.18462

Figure 3. Stationary wave and its approximation by the
well-balanced scheme

4.1.2. Test case 2. The Riemann initial data are
UL = (1, 0.2),

UR = (1.501135158120436, 0.133232506692082)

and aL = 1.0, aR = 1.5, CFL = 0.7. See Figure 4 and Figure 5.
It is easy to check that this two states UL, UR are the left-hand and the

right-hand of a stationary contact. Our scheme is shown to give quickly the
stationary contact. However, the modified Lax-Friedrich scheme approxi-
mates a visibly different function.

4.1.3. Test case 3. The Riemann initial data are
UL = (0.5, 2),

UR = (1.166592483776811, 0.857197362323583)

and aL = 1.0, aR = 1.5, CFL = 0.7. See Figure 6 and Figure 7.
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−1 −0.5 0 0.5 1
1

1.5
Bottom Level

−1 −0.5 0 0.5 1
1

1.5

2
Exact solution: Water Height; Initial  Height = 1  and  1.5011

−1 −0.5 0 0.5 1
0.1

0.15

0.2
Exact solution: Velocity ; Initial  velocity = 0.2  and  0.13323

−1 −0.5 0 0.5 1
1

1.5
Bottom;   Error=0.64968  CPU time = 7.125

−1 −0.5 0 0.5 1
0

1

2
L−F: water height ; Initial  h =1  and  1.5011 Time =0.050066

−1 −0.5 0 0.5 1
−2

0

2
L−F: Velocity ; Initial  velocity =0.2  and  0.13323

Figure 4. Classical scheme does not approximate the sta-
tionary wave

−1 −0.5 0 0.5 1
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1.5
Bottom Level

−1 −0.5 0 0.5 1
1

1.5

2
Exact solution: Water Height; Initial  Height = 1  and  1.5011

−1 −0.5 0 0.5 1
0.1

0.15

0.2
Exact solution: Velocity ; Initial  velocity = 0.2  and  0.13323

−1 −0.5 0 0.5 1
1

1.5
Bottom;   Error=3.7665e−005  CPU time = 15.2813

−1 −0.5 0 0.5 1
1

1.5

2
New scheme: water height ; Initial  h =1  and  1.5011 Time =0.050091

−1 −0.5 0 0.5 1
0

0.2

0.4
New scheme: Velocity ; Initial  velocity =0.2  and  0.13323

Figure 5. Stationary wave and its approximation by the
well-balanced scheme

It is easy to check that this two states UL, UR are the left-hand and the
right-hand of a stationary contact. Our scheme is shown to give quickly the
stationary contact. However, the modified Lax-Friedrich scheme approxi-
mates a visibly different function.

4.1.4. Test case 4.

UL = (0.5, 2), UR = (1, 0.2), aL = 1, aR = 1.5, CFL = 0.7.

The solution is a 1-shock followed by a stationary wave and then followed
by a 2-shock. See Figure 8 and Figure 9, and Table 4.1.

N ||UN
h − U ||L1 CPU time (s)

500 0.014021 4.6406
1000 0.0081575 16.4219
2000 0.0046675 91.375

(4.1)
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−1 −0.5 0 0.5 1
1

1.5
Bottom Level

−1 −0.5 0 0.5 1
0.5

1

1.5
Exact solution: Water Height; Initial  Height = 0.5  and  1.1666

−1 −0.5 0 0.5 1
0

1

2
Exact solution: Velocity ; Initial  velocity = 2  and  0.8572

−1 −0.5 0 0.5 1
1

1.5
Bottom;   Error=3.2333  CPU time = 5.7813

−1 −0.5 0 0.5 1
0.5

1

1.5
L−F: water height ; Initial  h =0.5  and  1.1666 Time =0.050207

−1 −0.5 0 0.5 1
−2

0

2
L−F: Velocity ; Initial  velocity =2  and  0.8572

Figure 6. Classical scheme does not approximate the sta-
tionary wave
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1

1.5
Exact solution: Water Height; Initial  Height = 0.5  and  1.1666

−1 −0.5 0 0.5 1
0

1

2
Exact solution: Velocity ; Initial  velocity = 2  and  0.8572

−1 −0.5 0 0.5 1
1

1.5
Bottom;   Error=1.0154e−005  CPU time = 4.5938

−1 −0.5 0 0.5 1
0.5

1

1.5
New scheme: water height ; Initial  h =0.5  and  1.1666 Time =0.050207

−1 −0.5 0 0.5 1
0

1

2
New scheme: Velocity ; Initial  velocity =2  and  0.8572

Figure 7. Stationary wave and its approximation by the
well-balanced scheme
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0.5

1

1.5
Exact solution: Water Height; Initial  Height = 0.5  and  1

−1 −0.5 0 0.5 1
0

1

2
Exact solution: Velocity ; Initial  velocity = 2  and  0.2

−1 −0.5 0 0.5 1
1

1.5
Bottom;   Error=0.70736  CPU time = 6.1094

−1 −0.5 0 0.5 1
0.5

1

1.5
L−F: water height ; Initial  h =0.5  and  1 Time =0.050157

−1 −0.5 0 0.5 1
−2

0

2
L−F: Velocity ; Initial  velocity =2  and  0.2

Figure 8. Classical scheme does not approximate the exact solution

4.2. Better Approximations.



WELL-BALANCED SCHEME FOR SHALLOW WATER EQUATIONS 11

−1 −0.5 0 0.5 1
1

1.5
Bottom Level

−1 −0.5 0 0.5 1
0.5

1

1.5
Exact solution: Water Height; Initial  Height = 0.5  and  1

−1 −0.5 0 0.5 1
0

1

2
Exact solution: Velocity ; Initial  velocity = 2  and  0.2

−1 −0.5 0 0.5 1
1

1.5
Bottom;   Error=0.0046675  CPU time = 91.375

−1 −0.5 0 0.5 1
0.5

1

1.5
New scheme: water height ; Initial  h =0.5  and  1 Time =0.050088

−1 −0.5 0 0.5 1
0

1

2
New scheme: Velocity ; Initial  velocity =2  and  0.2

Figure 9. Exact solution and its approximation by the well-
balanced scheme with 2000 mesh-points.

4.2.1. Test case 1.

UL = (1, 4), UR = (2, 5), aL = 1.2, aR = 1.3, CFL = 0.7.

The solution is a stationary wave followed by a 1-shock wave, and then
followed by a 2-rarefaction wave. See Figure 10 and Figure 11, Tables 4.2
and 4.3.

−1 −0.5 0 0.5 1
1.1

1.2

1.3
Bottom Level

−1 −0.5 0 0.5 1
0

1

2
Exact solution: Water Height; Initial  Height = 1  and  2

−1 −0.5 0 0.5 1
3

4

5
Exact solution: Velocity ; Initial  velocity = 4  and  5

−1 −0.5 0 0.5 1
1.1

1.2

1.3
Bottom;   Error=0.14695  CPU time = 74.0156

−1 −0.5 0 0.5 1
1

1.5

2
L−F: water height ; Initial  h =1  and  2 Time =0.050047

−1 −0.5 0 0.5 1
2

4

6
L−F: Velocity ; Initial  velocity =4  and  5

Figure 10. Numerical solutions by the classical scheme with
2000 mesh-points.

N ||UC
h − U ||L1 CPU time (s)

500 0.14645 4.6406
1000 0.14454 15.2969
2000 0.14695 74.0156

(4.2)
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−1 −0.5 0 0.5 1
1.1

1.2

1.3
Bottom Level

−1 −0.5 0 0.5 1
0

1

2
Exact solution: Water Height; Initial  Height = 1  and  2

−1 −0.5 0 0.5 1
3

4

5
Exact solution: Velocity ; Initial  velocity = 4  and  5

−1 −0.5 0 0.5 1
0

1

2
New scheme: water height ; Initial  h =1  and  2 Time =0.050047

−1 −0.5 0 0.5 1
3

4

5
New scheme: Velocity ; Initial  velocity =4  and  5

−1 −0.5 0 0.5 1
1.1

1.2

1.3
Bottom;   Error=0.017993  CPU time = 223.2656

Figure 11. Numerical solutions by the well-balanced
scheme with 2000 mesh-points.

N ||UN
h − U ||L1 CPU time (s)

500 0.057558 9.9063
1000 0.034264 38.1875
2000 0.017993 223.2656

(4.3)

4.2.2. Test case 2.

UL = (1,−0.2), UR = (2, 0.5), aL = 1.2, aR = 1.3, CFL = 0.7.

The solution is a 1-shock wave followed by a stationary wave, and then
followed by a 2-rarefaction wave. See Figure 12 and Figure 13, Tables 4.4
and 4.5.
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Exact solution: Water Height; Initial  Height = 1  and  2
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2
Exact solution: Velocity ; Initial  velocity = −0.2  and  0.5

−1 −0.5 0 0.5 1
1
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2
L−F: water height ; Initial  h =1  and  2 Time =0.050073

−1 −0.5 0 0.5 1
−2

0

2
L−F: Velocity ; Initial  velocity =−0.2  and  0.5

−1 −0.5 0 0.5 1
1.1

1.2

1.3
Bottom;   Error=0.14641  CPU time = 25.2656

Figure 12. Exact solution and its approximation by the
classical scheme with 2000 mesh-points.
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Exact solution: Water Height; Initial  Height = 1  and  2

−1 −0.5 0 0.5 1
−2

0

2
Exact solution: Velocity ; Initial  velocity = −0.2  and  0.5

−1 −0.5 0 0.5 1
1

1.5

2
New scheme: water height ; Initial  h =1  and  2 Time =0.050008

−1 −0.5 0 0.5 1
−2

0

2
New scheme: Velocity ; Initial  velocity =−0.2  and  0.5

−1 −0.5 0 0.5 1
1.1

1.2

1.3
Bottom;   Error=0.0075387  CPU time = 123.2031

Figure 13. Exact solution and its approximation by the
well-balanced scheme with 2000 mesh-points.

N ||UC
h − U ||L1 CPU time (s)

500 0.44157 2.125
1000 0.15393 6.9844
2000 0.15178 36.3906

(4.4)

N ||UN
h − U ||L1 CPU time (s)

500 0.022488 5.4688
1000 0.013109 19.3594
2000 0.0075387 123.2031

(4.5)

4.2.3. Test case 3.

UL = (0.5, 2), UR = (1, 0.2), aL = 1, aR = 1.5, CFL = 0.7.

The solution is a 1-shock wave followed by a stationary wave, and then
followed by a 2-shock wave. See Figure 14 and Figure 15, Tables 4.6 and
4.7.

N ||UC
h − U ||L1 CPU time (s)

500 0.44157 2.125
1000 0.15393 6.9844
2000 0.15178 36.3906

(4.6)

N ||UN
h − U ||L1 CPU time (s)

500 0.016451 4.5
1000 0.0086137 18.4531
2000 0.0045576 109.7969

(4.7)
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Exact solution: Water Height; Initial  Height = 0.5  and  1

−1 −0.5 0 0.5 1
0

1

2
Exact solution: Velocity ; Initial  velocity = 2  and  0.2

−1 −0.5 0 0.5 1
1

1.1

1.2
Bottom;   Error=0.15178  CPU time = 36.3906

−1 −0.5 0 0.5 1
0.5

1

1.5
L−F: water height ; Initial  h =0.5  and  1 Time =0.050005

−1 −0.5 0 0.5 1
−2

0

2
L−F: Velocity ; Initial  velocity =2  and  0.2

Figure 14. Exact solution and its approximation by the
classical scheme with 2000 mesh-points.
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1.5
Exact solution: Water Height; Initial  Height = 0.5  and  1

−1 −0.5 0 0.5 1
0

1

2
Exact solution: Velocity ; Initial  velocity = 2  and  0.2

−1 −0.5 0 0.5 1
1

1.1

1.2
Bottom;   Error=0.0045576  CPU time = 109.7969

−1 −0.5 0 0.5 1
0.5

1

1.5
New scheme: water height ; Initial  h =0.5  and  1 Time =0.050005

−1 −0.5 0 0.5 1
0

1

2
New scheme: Velocity ; Initial  velocity =2  and  0.2

Figure 15. Exact solution and its approximation by the
well-balanced scheme with 2000 mesh-points.

5. Conclusions

As expected, classical schemes with traditional discretizations of the right-
hand side of conservation laws with source terms, and in this case the shallow
water equations, give unsatisfactory results. The errors may grow when
reducing the mesh size. Our scheme (3.4) is shown, by tests, to be stable and
to capture stationary wave. In our scheme, errors are reduced when mesh
size is reduced, and when there is a stationary wave, our scheme quickly
gives that stationary wave.

Furthermore, classical schemes do not give the right solutions in many
cases. Since it does not conserve the equilibrium states, it would probably
force these states out of their equilibrium positions. In this situations, new
waves will be formed. So classical schemes may give approximations to
functions that are completely different from the exact solution (by the wave
structure inside the those functions and the exact solutions). Our scheme is
shown to give an appropriate approximations of the exact solutions.
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[16] D. Kröner and M.D. Thanh, On the Model of Compressible Flows in a Nozzle: Math-
ematical Analysis and Numerical Methods. Proc. Tenth. Intern. Conf. Hyp. Prob.
(HYP04), Osaka, Yokohama Publishers, pages 117–124, 2006.

[17] P.D. Lax, Shock waves and entropy, in: E.H. Zarantonello, Ed.,. Contributions to
Nonlinear Functional Analysis, pages 603–634, 1971.

[18] P.G. LeFloch, Shock waves for nonlinear hyperbolic systems in nonconservative form.
Institute for Math. and its Appl., Minneapolis, Preprint, 593, 1989.

[19] P.G. LeFloch and M.D. Thanh, The Riemann problem for fluid flows in a nozzle with
discontinuous cross-section. Comm. Math. Sci., 1(4):763–797, 2003.

[20] P.G. LeFloch and M.D. Thanh, The Riemann problem for shallow water equations
with discontinuous topography. Comm. Math. Sci., (accepted).

[21] D. Marchesin and P.J. Paes-Leme, A Riemann problem in gas dynamics with bifur-
cation. Hyperbolic partial differential equations III. Comput. Math. Appl. (Part A),
12:433–455, 1986.



16 THANH, FAZLUL, AND IZANI

Mai Duc Thanh
Department of Mathematics, International University, Quarter 6, Linh Trung
Ward, Thu Duc District, Ho Chi Minh City, Vietnam

E-mail address: mdthanh@hcmiu.edu.vn

Md. Fazlul Karim
School of Mathematical Sciences, Universiti Sains Malaysia, 11800 USM, Pu-
lau Pinang, Malaysia.

E-mail address: mdfazlulk@yahoo.com

Ahmad Izani Md. Ismail
School of Mathematical Sciences, Universiti Sains Malaysia, 11800 USM, Pu-
lau Pinang, Malaysia.

E-mail address: izani@cs.usm.my


