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Abstract A weak τ -function as a generalized distance, a lower closedness of

transitive relation and definitions of (e,K)-lower semicontinuity and (e,K)-lower

semicontinuity from above are proposed to relax lower semicontinuity assump-

tions in Ekeland’s variational principle for vector-valued functions. The obtained

general results, when applied to particular cases, improve or coincide with many

recent results in the literature.
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1 Introduction

The famous Ekeland variational principle (EVP in short), a powerful tool in vari-

ous fields of nonlinear analysis and optimization, was published in [1]. In the past

three decades a great deal of efforts have been made to generalize this principle

and its equivalent formulations. Recently, many authors have used generalized
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distances together with the original metric of the space to weaken the lower semi-

continuity condition imposed by Ekeland [1]. The original principle of Ekeland in

[1] says that for a bounded from below and lower semicontinuous scalar function

f on a complete metric space X, a slightly perturbed function has a strictly min-

imum. Examining the assumptions we see that the completeness of X is crucial

since the principle relies on a convergence to a desired point. The boundedness

from below is inevitable since functions as regular as continuous linear functions

are far from having a point as desired, since they are unbounded from below.

So lower semicontinuity seems to be the only assumption which may be relaxed.

This idea motivates our commitment in this paper. w-distance was introduced

in Kada et al. [2] and used also in Park [3], Lin and Du [4]. Another generalized

distance was proposed in Tataru [5]. τ -distance was defined in Suzuki [6], which is

more general then both above-mentioned distances. In Lin and Du [7] τ -function,

which is incomparable with τ -distance, was introduced. All these distances are

used to weaken the mentioned lower semicontinuity assumption. In this paper

we propose a notion of a weak τ -function, which is more relaxed than all the en-

countered generalized distances. We weaken the lower semicontinuity assumption

by using this definition and also requiring this condition in fixed direction under

consideration (see Definition 2.4). Moreover, we prove also a more general EVP

by using a proposed general lower closed transitive relation (Theorems 2.4, 3.1).

We derive general equivalent forms of the EVP as well.

The organization of the paper is as follows. In the remainder of this section we

recall some preliminaries. In Section 2 we propose definitions of a weak τ -function,

generalized lower semicontinuities of a vector function and lower closedness of a

transitive relation. Section 3 is devoted to main results about the EVP and

equivalent formulations. In the final Section 4 we show that our results improve
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or include as special cases the ones in [4, 7, 8, 9, 10, 11, 12].

Let X be a quasimetric space (i.e its distance needs not be symmetric) and

Y be a topological vector space ordered by a convex cone K (containing zero).

Let f : X → Y be a vector function. f is said to be K-lower semicontinuous

(K-lsc) at x if for each e ∈ Y , each sequence xn → x such that f(xn) + e ≤K 0,

one has f(x) + e ≤K 0, where y ≤K z means that z ∈ y + K. f is called K-

lower semicontinuous from above (K-lsca) at x (see [13]) if, for each convergent

sequence xn → x such that f(xn+1) ≤K f(xn),∀n,, one has f(x) ≤K f(xn),∀n.

We always say that f has a property on A ⊆ X if f has this property at every

point of A. We omit ”on A” if A = domf := {x ∈ X : ∃y ∈ Y, y = f(x)}.

A subset B ⊆ Y is called K-bounded from below if there is a bounded subset

M ⊆ Y such that B ⊆ M +K and is called bounded from below if there is y ∈ Y

such that B ⊆ y+K. Note that boundedness from below implies K-boundedness

from below but not vice versa. For a transitive relation < in X, a subset A ⊆ X is

termed <-complete if any Cauchy sequence in A, which is <-decreasing, converges

to a point in A.

2 Weak τ-functions, generalized lower semicontinuity of a function

and lower closedness of a relation

Definition 2.1 ([7]) Let (X, d) be a quasimetric space. A function p : X×X →

R+ is called a τ -function if the following four conditions hold, for x, y, z ∈ X,

(τ1) (triangle inequality) p(x, z) ≤ p(x, y) + p(y, z);

(τ2) (lower semicontinuity) ∀x ∈ X, p(x, .) is R+-lsc;

(τ3) if xn, yn ∈ X satisfies limn→∞ p(xn, yn) = 0 and limn→∞ sup{p(xn, xm) :
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m > n} = 0, then limn→∞ d(xn, yn) = 0;

(τ4) p(x, y) = 0 and p(x, z) = 0 imply that y = z.

We propose a weaker notion as follows.

Definition 2.2 Let (X, d) be a quasimetric space. A function p : X ×X → R+

is said to be a weak τ -function if it satisfies three conditions (τ1), (τ3) and (τ4)

of Definition 2.1.

Definition 2.3 ([6]) Let (X, d) be a quasimetric space. A function p : X×X →

R+ is called a τ -distance on X if there is a function η : X ×R+ → R+ such that

the following conditions are satisfied, for x, y, z ∈ X and t ∈ R+,

(τ1) (triangle inequality) p(x, z) ≤ p(x, y) + p(y, z);

(τ ′2) (weak lower semicontinuity) if xn → x and limn→∞ sup{η(zn, p(zn, xm)) :

m ≥ n} = 0 for some zn ∈ X, then p(w, x) ≤ lim infn→∞ p(w, xn) for all

w ∈ X;

(τ ′3) if limn→∞ η(xn, tn) = 0 and limn→∞ sup{p(xn, ym) : m ≥ n} = 0, then

limn→∞ η(yn, tn) = 0;

(τ ′4) limn→∞ η(zn, p(zn, xn)) = 0 and limn→∞ η(zn, p(zn, yn)) = 0 imply that

limn→∞ d(xn, yn) = 0;

(τ ′5) η(x, 0) = 0, η(x, t) ≥ t and η(x, .) is concave.

It is known [6, 7] that both the τ -function and τ -distance are w-distances, but

the former two notions are incomparable. We show now that the weak τ -function

is a more relaxed property than all the three as follows.
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Lemma 2.1 Any τ -distance in a quasimetric space is a weak τ -function.

Proof If p is a τ -distance in a metric space, then p satisfies (τ3) by Lemma 3 of

[6] and also (τ4) by Lemma 2 of [6]. Moreover, the proofs of these lemmas in [6]

did not need the symmetry of the metric of the space and hence we are done. �

The following example gives a weak τ -function which is not a τ -function.

Example 2.1 Let (X, d) be a metric space, γ > 0 and p : X ×X → [0, +∞) be

defined by

p(x, y) =

{
d(x, y) + γ if x 6= y,
3
2
γ if x = y.

Then p is not a τ -function since p(x, .) is not lsc at x for any x ∈ X. To

check that p is a weak τ -function we have to prove only condition (τ1), since

p(x, y) > γ > 0 for any x, y ∈ X and hence (τ3) and (τ4) are satisfied. For

(τ1), direct verifications for each case of x, y, z: the three points are different, one

pair coincide and the three points coincide are easily carried out. So p is a weak

τ -function.

In the sequel we need also the following facts.

Lemma 2.2 ([7], Lemma 2.1) Let p be a weak τ -function on a quasimetric space

X. If a sequence xn satisfies the condition limn→∞ sup{p(xn, xm) : m > n} = 0,

then xn is a Cauchy sequence.

Notice that in Lemma 2.1 of [7] it is assumed that X is a metric space and p is

a τ -function. But the symmetry of the metric and condition (τ2) were not used in

the proof. ( In fact this proof in [7] is incomplete, since only limn→∞ d(xn, xn+1) =

0 is verified. However, one can show that limn, m→∞ d(xn, xm) = 0. )

Lemma 2.3 ([14], Lemma 3.4) Let p be a weak τ -function on a quasimetric
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space X, xn → x and Γ : X → 2X be a set-valued mapping such that the following

conditions hold:

(i) xn+1 ∈ Γ(xn) and Γ(xn+1) ⊆ Γ(xn), for all n ∈ N;

(ii) limn→∞ sup{p(xn, u) : u ∈ Γ(xn)} = 0;

(iii) x ∈ Γ(xn), for all n ∈ N.

Then
⋂

n∈N Γ(xn) = {x}.

If, in addition,

(iv) Γ(x) 6= ∅ and Γ(x) ⊆ Γ(xn), for all n ∈ N,

then x is an invariant point of Γ (i.e. Γ(x) = {x}). Conversely, if p(x, x) = 0 for

all x ∈ X, and x is an invariant point of Γ, then there is a sequence xn, which

converges to x and satisfies all conditions (i)-(iv).

Now we pass to generalizing lower semicontinuity.

Definition 2.4 Let X be a quasimetric space, Y be a vector space ordered by

a convex cone K, f : X → Y be a vector function and e ∈ Y .

(i) f is said to be (e,K)-lower semicontinuous ((e,K)-lsc in short) at x if

for each r ∈ R, each sequence xn → x with f(xn) + re ≤K 0, one has

f(x) + re ≤K 0.

(ii) f is called (e,K)-lower semicontinuous from above ((e, K)-lsca in short) at

x if for each r ∈ R, each sequence xn converging to x, from f(x0)+ re ≤K 0

and from f(xn+1) + tne ≤K f(xn), for all n ∈ N and for some sequence

tn ≥ 0, it follows that f(x) + re ≤K 0.

Note that these generalized semicontinuities are defined for a vector space Y

without any topological structure. Definition 2.4(i) is clear and shows that if f
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is K-lsc at x then f is (e,K)-lsc at x for every e ∈ K. To see clearer the relation

between K-lower semicontinuity from above and (e,K)-lower semicontinuity from

above, we observe that f is K-lsca at x if and only if for each e ∈ Y , each sequence

xn converging to x, from f(x0) + e ≤K 0 and f(xn+1) ≤K f(xn), ∀n, one has

f(x) + e ≤K 0. Indeed, for the ”if” assume that f(xn+1) ≤K f(xn), ∀n. For each

fixed n, the sequence {xn+p}p satisfies the conditions f(xn+p+1) ≤K f(xn+p).

Then by the assumption with e = −f(xn), one has f(x) − f(xn) ≤K 0, i.e.

f(x) ≤K f(xn), ∀n. The ”only if” is obvious.

From this observation, it is evident that if f is K-lsca at x then f is (e, K)-lsca

at x for every e ∈ K. Furthermore, (e, K)-lower semicontinuity implies (e,K)-

lower semicontinuity from above.

Definition 2.5 A transitive relation < on quasimetric space X is called lower

closed if for any <-decreasing (i.e. ...<xn<...<x2<x1) sequence converging to x

one has x<xn,∀n ∈ N.

Theorem 2.4 (minimal elements for lower closed relations) Let < be a lower

closed transitive relation on a quasimetric space X with a weak τ -function p. For

x0 ∈ X assume the <-sector of x0, i.e. S<(x0) = {x ∈ X : x<x0}, is nonempty

and <-complete. Assume that any <-decreasing sequence xn ∈ X is asymptotic

by p ( i.e. limn→∞ p(xn, xn+1) = 0 ). Then, there exists x ∈ S<(x0) such that

S<(x) = ∅ or S<(x) = {x}.

Moreover, if < is reflexive, then S<(x) = {x}.

Proof Starting by x0 we construct a sequence xn ∈ S<(x0) as follows: having

xn ∈ S<(xn−1), we choose xn+1 ∈ S<(xn) by the following rule:
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(a) if pn := sup{p(xn, x) : x ∈ S<(xn)} < +∞, xn+1 is taken so that

p(xn, xn+1) ≥
1

2
pn; (1)

(b) if pn = +∞, xn+1 is taken so that p(xn, xn+1) ≥ 1.

There is then n0 ∈ N such that, ∀n ≥ n0, pn < +∞. Indeed, otherwise we

would have an <-decreasing sequence xn with p(xn, xn+1) 6→ 0, a contradiction.

Now, we check the assumptions of Lemma 2.3 for Γ = S<. By the transitivity

of <, (i) holds. By (1) and the asymptoticity of the sequence xn, (ii) is satisfied.

Lemma 2.2 implies that xn is a Cauchy sequence and hence converges to some x.

Since < is lower closed, x ∈ S<(xn),∀n, i.e. (iii) is fulfilled. Lemma 2.3 yields

that
⋂

n∈N S<(xn) = {x}, i.e. S<(x) = ∅ or S<(x) = {x}.

If < is reflexive, then (iv) is also satisfied and x is an invariant of S<. �

Now we discuss some particular cases, which will be considered in details later

in connections with the EVP. From now on, unless otherwise specified, let X be

a quasimetric space, Y be a Hausdorff locally convex space, K ⊆ Y be a convex

cone containing zero, k0 ∈ K \−clK, Y ∗ be the topological dual of Y , K+ be the

positive polar of K, i.e.

K+ := {y∗ ∈ Y ∗ : < y∗, k >≥ 0,∀k ∈ K},

and z∗ ∈ K+ such that z∗(k0) = 1 (the existence of z∗ is guaranteed by the

separation theorem). We extend Y similarly as for the one-dimensional case

by an additional element, denoted by +∞, with the usual rules for addition

of elements and multiplication with reals. We adopt that y ≤K +∞,∀y ∈ Y ,

and avoid indeterminate expressions like 0.(+∞). We consider a vector function

Ψ : X ×X → Y ∪ {+∞} and impose the condition
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(H) if Ψ(x, y) ∈ −K and Ψ(y, z) ∈ −K, then

Ψ(x, z) ≤K Ψ(x, y)+Ψ(y, z).

Let p be a weak τ -function on X. We define a relation ≤k0 on X by setting

y ≤k0 x ⇔ Ψ(x, y)+p(x, y)k0 ∈ −K. (2)

Note that the relation ≤k0 is transitive. Indeed, if z ≤k0 y and y ≤k0 x, then

(2) implies that Ψ(x, y) ∈ −K and Ψ(y, z) ∈ −K. By conditions (H) and (τ1)

one obtains the transitivity, since

Ψ(x, z) + p(x, z)k0 ∈ (Ψ(x, y) + Ψ(y, z)) + (p(x, y) + p(y, z))k0 −K

∈ −K.

For ≤k0 we denote the sector of x, i.e. {x′ ∈ X : x′ ≤k0 x}, by Sk0(x).

Lemma 2.5 Let X, Y, K, p, k0 and Ψ be as above.

(i) If Sk0(x) is closed for each x ∈ X, then ≤k0 is lower closed.

(ii) If K is closed, p satisfies (τ2) and Ψ(x, .) is (k0, K)-lsc, then Sk0(x) is

closed. Hence, if this is satisfied for all x ∈ X then ≤k0 is lower closed.

(iii) If K is closed, p satisfies (τ2) and Ψ(x, .) is (k0, K)-lsca for all x ∈ X, then

≤k0 is lower closed.

Proof (i) It is clear that each transitive relation < has this property.

(ii) For a fixed x ∈ X, assume that xn ∈ Sk0(x) and xn → x. We show that x ∈

Sk0(x). By the lower semicontinuity of p(x, .), ∀i ∈ N (large enough), ∃Q(i) ∈ N,

∀n > Q(i),

p(x, xn) ≥ p(x, x)− 1

i
.
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Therefore, one has

Ψ(x, xn) + (p(x, x)− 1/i)k0 ∈ −K.

Since Ψ(x, .) is (k0, K)-lsc at x, one obtains

Ψ(x, x) + (p(x, x)− 1/i)k0 ∈ −K.

By the closedness of K, passing i →∞ one sees that x ≤k0 x, i.e. x ∈ Sk0(x).

(iii) Assume that xn+1 ≤k0 xn,∀n ∈ N, and xn → x. Fix n. For each sufficiently

large i ∈ N, by the lower semicontinuity of p(xn, .) one has Q(i) ∈ N such that,

∀q > Q(i),

Ψ(xn, xn+q) + (p(xn, x)− 1/i)k0 ∈ Ψ(xn, xn+q) + p(xn, xn+q)k0 −K.

Hence, as xn+q ≤k0 xn,

Ψ(xn, xn+q) + (p(xn, x)− 1/i)k0 ∈ −K. (3)

We claim that, for x, y ∈ Sk0(xn) with y ≤k0 x, one has

Ψ(x, y) ≥K Ψ(xn, y)−Ψ(xn, x). (4)

Indeed, as Ψ(x, y) ∈ −K and Ψ(xn, x) ∈ −K, by condition (H) one has

Ψ(xn, x) + Ψ(x, y) ≥K Ψ(xn, y),

which is (4). For q ∈ N, we have xn+q+1 ≤k0 xn+q, i.e.

Ψ(xn+q, xn+q+1) + p(xn+q, xn+q+1)k0 ∈ −K.

Applying (4) to this inclusion we get

Ψ(xn, xn+q+1)−Ψ(xn, xn+q) + p(xn+q, xn+q+1)k0 ∈ −K,

which is rewritten as

Ψ(xn, xn+q+1) + p(xn+q, xn+q+1)k0 ≤K Ψ(xn, xn+q). (5)
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Since Ψ(xn, .) is (k0, K)-lsca at x and by (3), (5), we have

Ψ(xn, x) + (p(xn, x)− 1/i)k0 ∈ −K.

Passing to the limit as i →∞ we obtain x ≤k0 xn, by the closedness of K. �

3 Main results

We continue to assume that X, Y, K, k0, p, z
∗, Ψ and ≤k0 are defined as by the

end of the previous section. The following result is a generalization of the EVP.

Theorem 3.1 Let X, Y, K, k0, p, Ψ and ≤k0 be as above. Assume that ≤k0 is

lower closed and that, for x0 ∈ X, Sk0(x0) is nonempty and ≤k0-complete, and

Ψ(x0, Sk0(x0)) is K-bounded from below.

Then there is v ∈ Sk0(x0) such that, for each x 6= v,

Ψ(v, x) + p(v, x)k0 6∈ −K. (6)

Proof To apply Theorem 2.4 it suffices to check that any ≤k0-decreasing sequence

xn in X is asymptotic by p. Suppose to the contrary the existence of δ > 0 such

that, ∀n ∈ N, p(xn, xn+1) ≥ δ. Since this sequence decreases, one has

δk0 ≤K k0p(xn, xn+1) ≤K −Ψ(xn, xn+1).

Since Ψ(x0, xn) ∈ −K and Ψ(xn, xn+1) ∈ −K, by condition (H) one also has

−Ψ(xn, xn+1) ≤K Ψ(x0, xn)−Ψ(x0, xn+1).

Therefore

δ ≤ z∗(−Ψ(xn, xn+1) ≤ z∗(Ψ(x0, xn))− z∗(Ψ(x0, xn+1)).

Adding these inequalities from 0 to n− 1, one obtains

nδ ≤ z∗(Ψ(x0, x0))− z∗(Ψ(x0, xn)) ≤ z∗(Ψ(x0, x0))− inf
x∈Sk0

(x0)
z∗(Ψ(x0, x)).
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Taking the K-boundedness of Ψ(x0, Sk0(x0)) into account we get a contradiction.

Theorem 2.4 gives a point v ∈ Sk0(x0) such that Sk0(v) = ∅ or Sk0(v) = {v},

which is the same as (6). �

The following form of the EVP is more traditional.

Theorem 3.2 Assume, additionally to the assumptions of Theorem 3.1, that

Ψ(x0, x) + εk0 6∈ −K, for some ε > 0 and all x ∈ X. Then, for each λ > 0, there

is v ∈ Sk0(x0) such that, for all x 6= v,

(i) p(x0, v) ≤ λ;

(ii) Ψ(x0, v) +
ε

λ
p(x0, v)k0 ∈ −K;

(iii) Ψ(v, x) +
ε

λ
p(v, x)k0 6∈ −K.

Proof Applying Theorem 3.1 with εk0 in the place of k0 and
1

λ
p in the place of

p we obtain (ii) and (iii). Suppose p(x0, v) > λ. Then we would have

Ψ(x0, v) + εk0 ∈ Ψ(x0, v) +
ε

λ
p(x0, v)k0 −K ⊆ −K,

contradicting the property of ε. �

We collect some equivalent formulation of the EVP, mainly concerning fixed

points, in the following result.

Theorem 3.3 Let the assumptions of Theorem 3.1 hold. Then we have the

following equivalent assertions, for any index set I.

(i) (The EVP) There exists v ∈ Sk0(x0) such that, for x 6= v,

Ψ(v, x) + p(v, x)k0 6∈ −K.
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(ii) (Common fixed-point theorem for a family of multivalued maps) Let Ti:

Sk0(x0) → 2X , i ∈ I, be such that Ti(x) 6= ∅,∀x ∈ X, and for each x ∈

Sk0(x0) \ Ti(x) one has y ∈ Sk0(x) \ {x}. Then there exists a common fixed

point for Ti, i ∈ I, in Sk0(x0).

(iii) (Caristi’s common fixed-point theorem for a family of multivalued maps)

Let Ti: Sk0(x0) → 2X , i ∈ I, be with nonempty values and such that for each

x ∈ Sk0(x0) one has y ∈ Sk0(x). Then the family {Ti}i∈I has a common

fixed point in Sk0(x0).

(iv) (Caristi’s common fixed-point theorem for a family of single-valued maps)

Let Ti: Sk0(x0) → X, i ∈ I, be such that Ti(x) ∈ Sk0(x) for all x ∈ Sk0(x0).

Then {Ti}i∈I has a common fixed point in Sk0(x0).

(v) (Common invariant-point theorem) Let Ti: Sk0(x0) → 2X , i ∈ I, be with

nonempty values and such that Ti(x) ⊆ Sk0(x) for each x ∈ Sk0(x0). Then

{Ti}i∈I has a common invariant point in Sk0(x0).

(vi) (Maximal element theorem) Let Ti: Sk0(x0) → 2X , i ∈ I, be such that for

each x ∈ Sk0(x0) with Ti(x) 6= ∅, there exists y ∈ Sk0(x) \ {x}. Then there

exists x ∈ Sk0(x0) such that Ti(x) = ∅ for each i ∈ I.

Proof (i) holds by Theorem 3.1. Now we show the equivalences. Note first that

(i) is equivalent to saying that there exists v ∈ Sk0(x0) such that Sk0(v) = ∅ or

Sk0(v) = {v}.

“(i)⇒ (ii)” Suppose, for the above-mentioned v, v 6∈ Ti0(v) for some i0 ∈ I.

Then by the assumption, there is y ∈ Sk0(v) \ {v}, a contradiction.

“(ii)⇒ (iii)” Suppose ∀x ∈ Sk0(x0), ∃i ∈ I, x 6∈ Ti(x). By the assumption,

there is y ∈ Sk0(x). If all such y are equal to x, i.e. Sk0(x) = {x} for all
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x ∈ Sk0(x0), we are done. If there is y ∈ Sk0(x) \ {x}, by (ii) we also arrive at

the conclusion.

“(iii)⇒ (iv)” It is clear.

“(iv)⇒ (v)” Suppose that for each x ∈ Sk0(x0) there are i and y with y ∈

Ti(x)\{x}. By the assumption, y ∈ Ti(x) ⊆ Sk0(x). We define a family of single-

valued maps T
′
i , i ∈ I, as follows. For i ∈ I, if there are x, y as above we put

T
′
i (x) = y for any such an y. Otherwise we set T

′
i (x) = x

′
for any x

′ ∈ Sk0(x). By

(iv) applied to the family of maps T
′
i one has x ∈ Sk0(x0) such that x = T

′
i (x).

By the contradiction assumption there is i ∈ I with T
′
i (x) ∈ Ti(x) \ {x}, a

contradiction.

“(v)⇒(vi)” Suppose to the contrary that ∀x ∈ Sk0(x0), ∃i ∈ I, Ti(x) 6= ∅.

By the assumption, there is y ∈ Sk0(x) \ {x}. We define a family of multivalued

maps T
′
i as follows. For each i ∈ I, if there are x, y as above, for each such an x

we put T
′
i (x) to be the set of all such y. Otherwise we put T

′
i (x) = Sk0(x). Then

by (v) there is x ∈ Sk0(x0) such that T
′
i (x) = {x}, ∀i ∈ I. This contradicts the

case where i satisfies the contradiction assumption.

“(vi)⇒ (i)” Suppose, ab absurdo, that ∀x ∈ Sk0(x0), ∃y ∈ Sk0(x) \ {x}. We

define a multivalued map T : Sk0(x0) → 2X by setting T (x) = {x}, ∀x ∈ Sk0(x0).

Applying (vi) to this family of one map one has x ∈ Sk0(x0) with T (x) = ∅, a

contradiction. �

Notice that Theorem 3.3 includes Theorem 1 of [3], where p is a w-distance

and Ψ(x, .) is assumed to be K-lsca for all x ∈ X.

Remark 3.1

(a) Lemma 2.5 provides sufficient conditions for the relation ≤k0 to be lower

closed in terms of generalized lower semicontinuity of Ψ(x, .) for all x ∈ X. These
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conditions may be easier to be checked, but they are less relaxed than the lower

closedness of ≤k0 as shown by the following example.

Example 3.1 Let f : R → R ∪ {+∞} be defined by

f(x) =

{
x2 if x 6= 0,

+∞ if x = 0,

K = R+, k0 = 1, Ψ(x, y) = f(y)− f(x), p(x, y) = |y − x| and ≤k0 be defined by

y ≤k0 x ⇔ f(y)− f(x) + |y − x| ≤ 0.

Then Ψ(x, .) is not (k0, K)-lsca at 0 and Sk0(x) = {y ∈ X : f(y)−f(x)+ |y−x| ≤

0} is not closed for each x 6= 0. However, in this case it is easy to check that ≤k0

is lower closed. Therefore, Theorem 3.1 shows the existence of a strict minimizer

v of f(.)+ |.−v|. It is easy to see directly that for each v ∈ [−1
2
, 1

2
]\{0} and each

x 6= v, one has f(x) + |x− v| 6≤ f(v), i.e. v is a strict minimizer of f(.) + |.− v|.

The following example supplies a case where p is a true weak τ -function (not

τ -function) and Theorem 3.1 can be applied but (k0, K)-lsca assumptions are not

satisfied.

Example 3.2 Let f , K, k0 and Ψ be as in Example 3.1. Let

p(x, y) =

{
|y − x|+ 1 if y 6= x,

3
2

if y = x,

y ≤k0 x ⇔ f(y)− f(x) + p(x, y) ≤ 0.

Then it is easy to check that Ψ(x, .) is not (k0, K)-lsca and Sk0(x) is not closed

for each x 6= 0, but ≤k0 is lower closed. Thus a strict minimizer v of f(.) + p(v, .)

is guaranteed by Theorem 3.1. Now we verify directly that each v ∈ (−3
2
, 3

2
)\{0}

is such a strict minimizer, i.e. for each x 6= v,

f(x) + |x− v|+ 1 > v2. (7)
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For x = 0, any v ∈ R \ {0} satisfies this inequality. With x 6= 0, v 6= 0 and

x 6= v (7) is equivalent to{
x2 − x− v2 + v + 1 > 0 if x < v,

x2 + x− v2 − v + 1 > 0 if x > v.

By considering three subcases v ≤ −1
2
, −1

2
≤ v ≤ 1

2
and v ≥ 1

2
one easily sees

that each v ∈ (−3
2
, 3

2
) \ {0} satisfies (7).

(b) To the best of our knowledge all the papers in the literature about the EVP

for a two-variable function Ψ : X ×X → Y impose the condition

(H ′) Ψ(x, z) ≤K Ψ(x, y) + Ψ(y, z) for all x, y, z ∈ X,

which is stronger than (H). They often conclude that the results include the

corresponding ones for one-variable function f : X → Y , since to prove the

latter results one simply sets Ψ(x, y) = f(y) − f(x) and applies the results for

Ψ. In fact, the two cases are equivalent under condition (H’), if we impose K-

boundedness and K-lower semicontinuity (or K-lower semicontinuity from above)

assumptions. Indeed, to derive a result for Ψ from the corresponding one for f ,

one can set f(.) = Ψ(x0, .), where x0 is a given point such that Ψ(x0, .) is K-

bounded from below. Then the K-boundedness and K-lower semicontinuity (or

K-lower semicontinuity from above) of Ψ(x0, .) clearly imply the same properties

of f(.). Hence we can derive from a result for f a corresponding one for Ψ (see

also [14, 15]). However, if we impose a general and relaxed assumption about

the lower closedness of the transitive relation ≤k0 defined by Ψ as in Theorems

3.1-3.3, these results are stronger than the corresponding ones for the relation

≤∗k0
defined by function f : X → Y as follows

y ≤∗k0
x ⇐⇒ f(y)− f(x) + p(x, y)k0 ∈ −K.

Namely, Theorem 3.1 implies the following
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Theorem 3.1’ Let X, Y, K, k0, p be as in Theorem 3.1 and f : X → Y . Assume,

for x0 ∈ X, that S∗k0
(x0) := {x ∈ X : x ≤∗k0

x0} is nonempty and ≤∗k0
complete.

Assume further that f(S∗k0
(x0)) is K-bounded from below and ≤∗k0

is lower closed.

Then there exists v ∈ S∗k0
(x0) such that, for all x 6= v,

f(x)− f(v) + p(v, x)k0 6∈ −K. (8)

To prove this theorem we simply set Ψ(x, y) = f(y) − f(x) to see that the

assumptions of Theorem 3.1 are satisfied and then we can apply this theorem to

derive (8).

By setting f(.) = Ψ(x0, .) we show now that Theorem 3.1’ does not imply

Theorem 3.1. By condition (H’) it is clear that y ≤k0 x implies y ≤∗k0
x. But the

converse is not true in general. Indeed, the relation y ≤∗k0
x means that

f(y)− f(x) + p(x, y)k0 ∈ −K,

i.e.

Ψ(x0, y)−Ψ(x0, x) + p(x, y)k0 ∈ −K.

This and condition (H’), i.e. Ψ(x0, y)−Ψ(x0, x) ≤K Ψ(x, y), do not imply

Ψ(x, y) + p(x, y)k0 ∈ −K,

which means that y ≤k0 x. Hence from the lower closedness of ≤k0 we still do

not have the lower closedness of ≤∗k0
in order to apply Theorem 3.1’.

By Lemma 2.5, Theorem 3.1 implies the corresponding results for the cases,

where (k0, K)-lower semicontinuity or (k0, K)-lower semicontinuity from above

assumptions are imposed instead of the more general lower closedness assumption.

The following example, shows however that the two afore mentioned cases of a

two-variable setting and of an one-variable setting are not equivalent.
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Example 3.3 Let f : R2 → R2 ∪ {+∞} be defined by

f(x1, x2) =

{
(x1, x2) if x1 < 0, x2 > x2

1 or x1 ≥ 0, x2 ≥ x2
1,

+∞ otherwise,

K = {(x1, x2) : x1 ≥ 0, x2 ≥ x1}, k0 = (1, 1)T and x0 = (0, 1)T , where +∞ is the

additional element of R2 (mentioned in Section 2) and we admit the conversion

that +∞− (+∞) = +∞. Then f is (k0, K)-lsc, since for each r the set

{(x1, x2) : f(x1, x2) + rk0 ∈ −K}

is closed. However Ψ(x0, .) = f(.)− (0, 1)T is neither (k0, K)-lsc nor (k0, K)-lsca.

(c) The assumption that Ψ(x0, Sk0(x0)) is K-bounded is weaker than the K-

boundedness of Ψ(x0, X) as shown by the following example (we write f(.) instead

of Ψ(x0, .) and take f(x0) = 0 for the sake of simplicity).

Example 3.4 Let f : R2 → R2 ∪ {+∞} be defined by

f(x1, x2) =

{
(x1, x2) if x2 ≤ −x2

1,

+∞ otherwise,

K = {(x1, x2) : x2 ≥ 0, x1 ≥ x2}, k0 = (1, 1)T and x0 = (0, 0)T . Then f(Sk0(x
0))

is K-bounded from below, since f(Sk0(x
0)) ⊆ {f(x) : f(x) ≤K f(x0)} and the

set {f(x) : f(x) ≤K f(x0)} is K-bounded from below. However f(R2) is not

K-bounded from below.

4 Particular cases

Corollary 4.1 (Lin and Du 2006, Theorem 2.1) Let X be a complete quasimetric

space and p be a τ -function. Let f : X → R ∪ {+∞} be proper, R+-lsca and

bounded from below. Let ϕ: R → (0,∞) be nondecreasing. Then there exists

v ∈ X such that, for all x 6= v,

p(v, x) > ϕ(f(v))(f(v)− f(x)).
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Proof Setting Ψ(x, y) = ϕ(f(x))(f(y) − f(x)) we see that, ∀x ∈ X, Ψ(x, .) is

proper, R+-lsca, bounded from below. To prove that Ψ satisfies condition (H) we

see that if Ψ(x, z) ≤ 0 and Ψ(z, y) ≤ 0 then

f(y) ≤ f(z) ≤ f(x).

Hence

Ψ(x, z) + Ψ(z, y) ≥ ϕ(f(x))(f(z)− f(x)) + ϕ(f(x))(f(y)− f(z))

= Ψ(x, y).

Now applying Lemma 2.5(iii) and Theorem 3.1 with k0 = 1 one obtains v ∈ X

such that, for x 6= v,

Ψ(v, x) + p(v, x) > 0.

Therefore

p(v, x) > ϕ(f(v))(f(v)− f(x)). �

Remark 4.1 As Theorem 3.1 is more general than Theorem 2.1 of Lin and Du

(2006), Theorems 2.2-2.3 and Corollary 2.1 of Lin and Du (2006) are special cases

of Theorem 3.3(iii ), (iv), (vi).

Corollary 4.2 Assume that X is a complete quasimetric space, p is a τ -function,

f : X → R ∪ {+∞} is a proper, R+-lsca and bounded from below function, ϕ:

R → (0,∞) is a nondecreasing function, ε > 0 and x0 ∈ X satisfies f(x0) ≤

infx∈X f(x) + ε. Then v ∈ X exists such that, for each x 6= v,

(i) 0 ≤ f(x0)− f(v) ≤ ε, if p(x0, x0) = 0;

(ii) εp(v, x) > ϕ(f(v))(f(v)− f(x)).
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Proof Setting Ψ(x, y) = ϕ(f(x))(f(y) − f(x)) and k0 = 1. By Corollary 4.1 we

have (ii) (taking εp for p in Corollary 4.1). Looking at the proof of Theorem 3.1

we see that v ∈ Sk0(x0), which implies Ψ(x0, v) ≤ 0. Hence, f(x0) − f(v) ≥ 0.

Since f(x0) ≤ infx∈X f(x) + ε ≤ f(v) + ε, we obtain (i). �

If X is a metric space and p is a w-distance, Corollary 4.2 coincides with

Theorem 2.4, a main result, of Lin and Du (2007).

Corollary 4.3 Let X, Y, K and k0 be as in Theorem 3.1, with the additional

completeness of X and closedness of K, and let p be a τ -function. Let x0 ∈ X,

ε > 0 and Ψ: X ×X → Y satisfy condition (H’) and the following conditions

(i) Ψ(x0, x0) = 0 and z∗(Ψ(x0, .)) is bounded from below, where z∗ ∈ K+ with

z∗(k0) = 1;

(ii) Ψ(x, .) is (k0, K)-lsca for all x ∈ X.

Then there exists v ∈ X such that, for all x 6= v,

(a) Ψ(x0, v) + εp(x0, v)k0 ∈ −K, if p(x0, x0) = 0;

(b) Ψ(v, x) + εp(v, x)k0 6∈ −K.

Proof If Ψ(x, .) is (k0, K)-lsca for all x ∈ X, then by Lemma 2.5(iii), the relation

≤k0 is lower closed. Examining the proof of Theorem 3.1 we see that we can

replace the assumed K-boundedness of Ψ(x0, .) by the weaker assumption that

z∗(Ψ(x0, .)) is bounded from below. In view of Theorem 3.1, we are done. �

Remark 4.6 Corollary 4.3 contains properly Theorem 3.1 of Ansari (2007) since in

this theorem X is a complete metric space, p is a w-distance, and (i) is required

to be fulfilled for all x ∈ X; Theorem 1 of Bianchi et al. (2007) since in this
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theorem X is a complete metric space, p = d, (i) is required to be fulfilled for all

x ∈ X and (ii) is replaced by the condition that Ψ(x, .) is K-lsc for all x ∈ X;

Theorem 2.1 of Bianchi et al. (2005), which is the special case with Y = R of the

preceding Theorem 1.

Corollary 4.4 Let X, Y, K, p and k0 be as in Corollary 4.3. Let Ψ: X×X → Y

satisfy conditions (H’) and (ii) of Corollary 4.3.

Define a binary relation ≤′k0
on X by

y ≤′k0
x ⇔ y = x or y ≤k0 x.

Assume that there exists a nonempty subset M of X such that

(i) M is ≤′k0
complete;

(ii) there exists x0 ∈ M such that Ψ(x0, x0) = 0 and z∗(Ψ(x0, .)) is bounded

from below, where z∗ ∈ K+ with z∗(k0) = 1.

Then ≤′k0
is a quasi-order and there exists v ∈ X such that, for all x 6= v,

(1) {y ∈ M : y ≤′k0
v} = {v};

(2) Ψ(x0, v) + εp(x0, v)k0 ∈ −K, if p(x0, x0) = 0;

(3) Ψ(v, x) + εp(v, x)k0 6∈ −K.

This corollary is derived directly from Corollary 4.3 and properly includes

Theorems 2.1-2.2 of Lin and Du (in press, 2007). Furthermore applying Theorem

3.3 we obtain also Theorem 3.1 of this paper.

The following corollary is a direct consequence of Theorem 3.1, by Lemma
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2.5(i) and by replacing Ψ(x, y) = f(y)− f(x). Note that the relation ≤k0 defined

by (2) now becomes

y ≤k0 x ⇔ f(y) + p(x, y)k0 ≤K f(x).

Corollary 4.5 Let X, Y, p, K and k0 be as in Corollary 4.3. Assume that f :

X → Y ∪ {+∞} be proper and K-bounded from below. Let S(x):={x′ ∈ X :

f(x′)+p(x, x′)k0 ≤K f(x)} be closed for every x ∈ X. Then for every x0 ∈ domf

there exists v ∈ X such that, ∀x 6= v,

f(v) + p(x0, v)k0 ≤K f(x0), (9)

f(x)+p(v, x)k0 6≤K f(v). (10)

This corollary properly includes Corollary 2 of Göpfert et al. (2000).

Corollary 4.6 Let X, Y, p, K and k0 be as in Corollary 4.3. Let f : X → Y ∪

{+∞} be proper and K-bounded from below. Assume that if xn ∈ domf, xn → x

and f(xn) is ≤K-decreasing, then f(x) ≤K f(xn),∀n ∈ N. Assume that K is

closed in the direction k0, i.e. K ∩ (y − R+k0) is closed for all y ∈ Y . Assume

further that x0 ∈ domf with p(x0, x0) = 0. Then there exists v ∈ X such that,

(9) and (10) hold for all x 6= v.

Proof Since Ψ(x, x) = f(x) − f(x) = 0 and p(x0, x0) = 0, Sk0(x0) 6= ∅. To

apply Theorem 4.3 we show the ≤k0-completeness of Sk0(x0). If {xn} ⊆ Sk0(x0)

is ≤k0-decreasing and Cauchy then xn → x, for some x ∈ X, and f(xn) is clearly

≤K-decreasing, and hence f(x) ≤K f(xn),∀n ∈ N.

Now, fix n. For i ∈ N, by (τ2) there exists Q(i) ∈ N such that, ∀q > Q(i),

p(xn, xn+q) ≥ p(xn, x)− 1

i
.
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Consequently,

f(x) + p(xn, x)k0 ≤K f(x) + (p(xn, xn+q) + 1
i
)k0

≤K f(xn+q) + (p(xn, xn+q) + 1
i
)k0

≤K f(xn) + 1
i
k0.

Passing i → ∞, by the closedness of K in the direction k0, we obtain that

f(x) + k0p(xn, x) ≤K f(xn), i.e. x ≤k0 xn,∀n ∈ N. Hence x ≤k0 x0, i.e. x ∈

Sk0(x0) and Sk0(x0) is ≤k0-complete. Finally, (9) and (10) follow directly from

the conclusion of Theorem 3.1. �

If f is not only K-bounded from below but also bounded from below and

p = d, this corollary coincides with Corollary 3 of Göpfert et al. (2000).
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