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1 Introduction

The celebrated Ekeland’s variational principle (Ekeland 1974) (EVP, from now

on) is one of the most important results and cornerstones of nonlinear analysis

with applications in many fields of analysis, optimization and operations research.

Its importance is emphasized by the fact that there are a number of equivalent

formulations, all of which are well known with significant applications and many

of which were discovered independently, namely the Caristi-Kirk fixed-point the-

P. Q. Khanh
Department of Mathematics, International University of Hochiminh City, Linh Trung, Thu
Duc, Hochiminh City, Vietnam
e-mail: pqkhanh@hcmiu.edu.vn

D.N. Quy
Department of Mathematics, Cantho University, Cantho, Vietnam
e-mail: dnquy@ctu.edu.vn

1



orem (Caristi 1976), the drop theorem of Daneš (Daneš 1972), the Takahashi

theorem about the existence of minima (Takahashi 1991), the petal theorem of

Penot (Penot 1986), the Krasnoselski-Zabrejko theorem on solvability of operator

equations (Zabreiko and Krasnoselski 1971), Phelps’ lemma (Phelps 1974), etc.

Over more than three decades a good deal of effort has been made to look for

equivalent formulations or generalizations of the EVP.

The seminal EVP (Ekeland 1974) says roughly that, for a lower semicontin-

uous (lsc) and bounded from below function f on a complete metric space X, a

slightly perturbed function has a strictly minimum. Moreover, if X is a Banach

space and f is Gateaux differentiable, then its derivative can be made arbitrarily

small.

We can first observe generalizations of the EVP to vector minimization, i.e.

to the case where f is a mapping with a multidimensional range space Y , see e.g.

Khanh (1989), Loridan (1984), Valyi (1985). Here Y may be even an ordered

vector space. Extensions of X to the case of topological vector spaces, uniform

spaces or L-spaces are investigated e.g. in Hamel (2003, 2005, 2006), Khanh

(1989), Qui (2005). In this research direction, a general partial order is often

proposed and a minimal point with respect to (wrt) this order is proved to be

existence, leading to a type of the EVP, see also Göpfer et al. (2000), Hamel and

Tammer (in press). Smooth variants of the EVP are studied e.g. in Borwein and

Preiss (1987), Li and Shi (2000). The second conclusion of Ekeland in the seminal

work (Ekeland 1974) that the Gateaux derivative of f can be made arbitrarily

small has been attracted also much attentions, see e.g. Ha (2003, 2005, 2006),

Bao and Mordukhovich (in press). Here various kinds of generalized derivatives

are discussed: the Fre’chet, Clarke and Mordukhovich coderivatives; the Fre’chet,

Clarke and Mordukhovich subdifferentials. Fre’chet Hessians are also used to es-
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tablish the Ekeland principle for second-order optimality conditions (Arutyunov

1997). Stability results for the EVP are obtained e.g. in Attouch (1993), Huang

(2001, 2002). In connection with the EVP, existence conditions for optimal so-

lutions for problems with noncompact feasible sets are dealt with in Ha (2003,

2006), Bao and Mordukhovich (in press), El Amrouss (2006) using generalizations

of coercivity assumptions, the Palais-Smale condition or the Cerami condition.

One of the recent research interests is to consider the case where X is a

metric space but equipped with an additional generalized distance, based on

which the semicontinuity assumption of Ekeland can be weakened. w-distance was

introduced in Kada et al. (1996) and used also in Park (2000), Lin and Du (2007).

In Tataru (1992) another distance was proposed to obtain a generalization of the

EVP. In Suzuki (2001, 2005) τ -distance, which is more general then both afore-

mentioned distances, is introduced to improve the EVP. τ -function is introduced

and employed in Lin and Du (2006).

In this paper we propose a definition of weak τ -functions to investigate the

EVP and equivalent results for a multivalued mapping F from a quasimetric (that

is, not necessarily symmetric) space X into a Hausdorff topological vector space

Y ordered by a convex cone K. Here minx∈X F (x) is not understood in the usual

Pareto sense, but in a meaning recently employed in Hamel (2006), Ha (2005),

Kuroiwa (2001), see Definition 2.1. We improve recent existing results, e.g. in

Göpfert et al. (2000), Ha (2005), Park (2000), Lin and Du (2006, 2007), Dannes̆

et al. (1983), Bianchi et al. (2007). The layout of the paper is as follows. Section

2 is devoted to preliminaries needed in the sequel. In Section 3 we propose a

generalized distance called weak τ -function and discuss some properties. Our

main results are presented in Section 4. Some applications are given in the final

Section 5.
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2 Preliminaries

We discuss first minimizer notions for multivalued mappings.

Definition 2.1 (Kuroiwa 2001) Let X be a set, Y be a vector space, K ⊆ Y

be a nonempty convex cone and F : X → 2Y be a multivalued mapping. Then

x ∈ X is called a minimizer of F if F (x) ⊆ F (x) + K, for some x ∈ X, implies

F (x) ⊆ F (x) + K.

Recall that x is a Pareto minimizer of F if there is y ∈ F (x) such that

F (X)∩(y−K) ⊆ y+K∩−K. Hence, if F is single-valued, x is a Pareto minimizer

of F if and only if F (x) ∈ F (x) + K, for some x ∈ X, implies F (x) ∈ F (x) + K.

Therefore, the minimizer defined in Definition 2.1 may be roughly understood as

a Pareto minimizer of F consider as a single-valued mapping from X into the

space of all subsets of Y , i.e. each F (x) is now dealt with rougher as a point

in this space. However, the relation of the two above-mentioned minimizers is

more interesting, and in fact the minimizer notion we adopt in this paper is not

rougher, as illustrated by the Examples 2.1 and 2.2 below.

A notion stronger than minimizer is defined in the following natural way.

Definition 2.2 (Ha 2005) Let X, Y and K be as in Definition 2.1 . Then x ∈ X

is a strict minimizer of a multivalued map F if F (x) 6⊆ F (x) + K, ∀x 6= x.

A strict minimizer of a multivalued mapping F is also corresponding to a

Pareto strict minimizer of a single-valued mapping, characterized by F (x) 6∈

F (x) + K, ∀x 6= x.

Example 2.1 Let X = R, Y = R2, K = R2
+ and F be defined by, for x ∈ X,

F (x) = {(x, y) ∈ R2 : y = λ(x, 1) + (1− λ)(0, 0), 0 ≤ λ ≤ 1}.

Then, there is no minimizer of F (in the sense of Definition 2.1), but each x ∈ X
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is a Pareto minimizer.

Example 2.2 Let X, Y and K be as in Example 2.1. Let F be defined by, for

x ∈ X,

F (x) = {(x, y) ∈ R2 : y > −x}.

Then no Pareto minimizer exists, but each x ∈ X is a minimizer and also a strict

minimizer of F .

Now we pass to lower-semicontinuity definitions. Let X be a topological space,

Y be a topological vector space, K ⊆ Y be a convex cone and F : X → 2Y . F is

said to K-lower semicontinuous (K-lsc) if, ∀e ∈ Y , the set {x ∈ X : F (x) ∩ (e−

K) 6= ∅} is closed. From the equality, for A ⊆ X,

{x ∈ X : A ⊆ F (x) + K} = ∩a∈A{x ∈ X : F (x) ∩ (a−K) 6= ∅}

it follows that F is K-lsc on X if and only if, ∀A ⊆ Y , the set {x ∈ X : A ⊆

F (x) + K} is closed.

F is called K-lower semicontinuous from above (K-lsca) at x ∈ X if for each

convergent sequence xn → x with F (xn) ⊆ F (xn+1) + K, ∀n ∈ N (the set of

natural numbers), one has F (xn) ⊆ F (x) + K. As any definition for a point is

extended to a set, F is called K-lsca on A ⊆ X if F is K-lsca at all x ∈ A. If

A = domF := {x ∈ X : F (x) 6= ∅} we omit ”on A” in the statement. This notion

was proposed in Chen et al. (2002). Of course if domF = X then being K-lsc

implies being K-lsca. The converse is not true as shown by

Example 2.3 Let X = Y = R, K = R+ and f be the (single-valued) function

f(x) =


3− x, if x < 0,

2, if x = 0,

(1 + x)−1, if x > 0.
Then f is R+-lsca, but f is not R+-lsc at x = 0.
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We propose to extend the K-lower semicontinuity from above to the case of

a transitive relation on a topological space X as follows.

Definition 2.3 A transitive relation < on X (i.e. z<y and y<x imply z<x) is

said to be lower closed if for any <-monotone (i.e. ...<xn<...<x2<x1) convergent

sequence xn → x one has x<xn,∀n ∈ N.

Remark 2.1

(i) If S(x) := {z ∈ X : z<x} (called <-sector of x) is closed for all x ∈ X then

< is lower closed (this motivates the term ”lower closed”). But clearly the

closedness of S(x) for all x ∈ X is stronger than the lower closedness of <

(see (ii)).

(ii) Assume that F : X → 2Y , where X is a topological space, Y is a topological

vector space and K ⊆ Y is convex. We define a relation < on X by

y<x ⇔ F (x) ⊆ F (y)+K. (1)

Then < is obviously transitive. < is lower closed if and only if F is K-lsca.

On the other hand with < defined by (1), one has

S(x) = {z ∈ X : z<x} = {z ∈ X : F (x) ⊆ F (z) + K}

= {z ∈ X : F (z) ∩ (e−K) 6= ∅,∀e ∈ F (x)}.

Since ∅ is also closed, S(x) is closed for all x ∈ X means that F is K-lsc.

The following example shows a case where < defined by (1) is lower closed

but F is not K-lsc.

Example 2.4 Let X = Y = R and K = R+ and F be defined by

F (x) =


(1, 1 + x), if x > 0,

{0}, if x = 0,

{−2 + (1− x)−1}, if x < 0.
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Then it is easy to see that < defined by (1) is lower closed. But F is not R+-lsc,

since the set {x ∈ A : (−1, 0) ⊆ F (x) + R+} = (−∞, 0) is not closed.

Let Y be a topological vector space ordered by a nonempty convex cone K.

A subset A ⊆ Y is said to be K-bounded from below if there is a bounded subset

M ⊆ Y such that A ⊆ M +K. A is called K-closed if A+K is closed. A is called

bounded from below if there is y ∈ Y such that A ⊆ y + K. So K-boundedness

(from below) implies boundedness (from below) but not vice versa as one can

easily find an counterexample.

For a transitive relation < in a complete metric space X, a subset A ⊆ X is

called <-complete if any Cauchy sequence in A, which is <-monotone, converges

to a point of A.

3 Weak τ-functions

We first recall the notion of τ -functions.

Definition 3.1 (Lin and Du 2006) Let (X, d) be a quasi-metric space. A function

p : X ×X → R+ is said to be a τ -function if the following conditions hold:

(τ1) for all x, y, z ∈ X, p(x, z) ≤ p(x, y) + p(y, z);

(τ2) if x ∈ X and {yn} ⊆ X with limn→∞ yn = y and p(x, yn) ≤ M for some

M = M(x) > 0, then p(x, y) ≤ M ;

(τ3) for any sequences {xn} and {yn} in X with limn→∞ sup{p(xn, xm) : m >

n} = 0 and limn→∞ p(xn, yn) = 0, one has limn→∞ d(xn, yn) = 0;

(τ4) for x, y, z ∈ X, p(x, y) = 0 and p(x, z) = 0 imply y = z.

It is known Lin and Du (2006) that a w-distance is a τ -function.
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We propose a weaker notion as follows.

Definition 3.2 Let (X, d) be a quasi-metric space. A function p : X ×X → R+

is called a weak τ -function if the conditions (τ1), (τ3) and (τ4) hold.

Recall now the definition of τ -distance.

Definition 3.3 (Suzuki 2001) Let (X, d) be a quasi-metric space, a function

p : X×X → R+ is called a τ -distance on X if there is a function η : X×R+ → R+

such that the following conditions are satisfied.

(τ1) for all x, y, z ∈ X, p(x, z) ≤ p(x, y) + p(y, z);

(τ ′2) η(x, 0) = 0, η(x, t) ≥ t and η(x, .) is concave for all x ∈ X and t ∈ R+;

(τ ′3) limn→∞ xn = x and limn→∞ sup{η(zn, p(zn, xm)) : m ≥ n} = 0 imply

p(w, x) ≤ lim infn→∞ p(w, xn) for all w ∈ X;

(τ ′4) limn→∞ sup{p(xn, ym) : m ≥ n} = 0 and limn→∞ η(xn, tn) = 0 imply

limn→∞ η(yn, tn) = 0;

(τ ′5) limn→∞ η(zn, p(zn, xn)) = 0 and limn→∞ η(zn, p(zn, yn)) = 0 imply

limn→∞ d(xn, yn) = 0.

It is known that the definitions of a τ -function and a τ -distance are incom-

parable. We now show that the definition of a weak τ -function is more general

than both of τ -function and τ -distance.

We need the following

Lemma 3.1 Assume that X is a quasimetric space with quasimetric d and p is

a τ -distance on X. Then
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(i) p satisfies (τ3);

(ii) p satisfies (τ4).

Proof If d is a metric, assertion (i) is Lemma 3 in Suzuki (2001) and (ii) is a

part of Lemma 2 in Suzuki 2001. Moreover, the proofs of these lemmas in Suzuki

(2001) do not use the symmetry d. Hence Lemma 3.1 holds. �

Lemma 3.2 Any τ -distance in a quasimetric space is a weak τ -function.

Proof It is clear from Lemma 3.1. �

The following assertion, modified from Lemma 2.1 of Lin and Du (2006), will also

be in use later

Lemma 3.3 Let (X, d) be a quasimetric space and p be a weak τ -function on

X ×X. If a sequence {xn} in X with limn→∞ sup{p(xn, xm) : m > n} = 0, then

{xn} is a Cauchy sequence in X.

Notice that in Lemma 2.1 of Lin and Du (2006) it is assumed that d is a

metric and p is a τ -function. However, the symmetry of d and condition (τ2)

for p are not used in the proof. (The proof in Lin and Du (2006) is incom-

plete, since only limn→∞ d(xn, xn+1) = 0 is checked. However, one can show that

limn, q→∞ d(xn, xn+q) = 0.)

The following lemma is crucial for our proof of the main results.

Lemma 3.4 Let (X, d) be a quasimetric space and p be a weak τ -function on X.

Let Γ : X → 2X be a set-valued mapping and {xn} ⊆ X converge to x ∈ X such

that the following conditions be satisfied:

(i) xn+1 ∈ Γ(xn) and Γ(xn+1) ⊆ Γ(xn),∀n ∈ N;
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(ii) limn→∞ sup{p(xn, u) : u ∈ Γ(xn)} = 0;

(iii) x ∈ Γ(xn),∀n ∈ N.

Then
⋂

n∈N Γ(xn) = {x}.

If, in addition,

(iv) Γ(x) 6= ∅ and Γ(x) ⊆ Γ(xn),∀n ∈ N,

then x is invariant point of Γ (i.e. Γ(x) = {x}). Conversely, if p(x, x) = 0, ∀x ∈

X, and x is an invariant point of Γ, then there is a sequence {xn} which converges

to x and satisfies all conditions (i)-(iv).

Proof By (iii), x ∈ ∩n∈NΓ(xn). If w ∈ ∩n∈NΓ(xn), then limn→∞ p(xn, w) = 0

by (ii). Because of (i), limn→∞ sup{p(xn, xm) : m > n} = 0. Putting now

yn ≡ w,∀n ∈ N, in (τ3) we see that limn→∞ d(xn, w) = 0. By the uniqueness of

the limit we obtain that w = x. If (iv) also holds then

∅ 6= Γ(x) ⊆ ∩n∈NΓ(xn) = {x},

i.e. Γ(x) = {x}.

To see the ”converse part” we take xn = x, ∀n ∈ N. Then (i), (iii) and (iv)

are fulfilled clearly. Since p(x, x) = 0, (ii) is also satisfied. �

Remark 3.1 Lemma 3.4 strictly contains the following result of Daneš et al.

(1983), which is applied in Ha (2005).

Lemma 3.5 (Daneš et al. 1983) Let (X, d) be a complete metric space and

Γ : X → 2X satisfy the following conditions

(a) ∀x ∈ X, Γ(x) is closed and x ∈ Γ(x);
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(b) Γ(y) ⊆ Γ(x),∀y ∈ Γ(x);

(c) limn→∞ d(xn, xn+1) = 0, if xn+1 ∈ Γ(xn),∀n.

Then Γ has an invariant poit x.

Proof Indeed, we check (i)-(iv) under assumptions (a)-(c). By (c) we can take a

sequence {xn} such that xn ∈ Γ(xn) with d(xn, xn+1) ≤ 1
2n . Then (i) is fulfilled

by (b). Put p(x, y) = d(x, y),∀x, y ∈ X. (ii) is satisfied by (c). We have, ∀q ∈ N,

d(xn, xn+q) ≤ 1
2n + ... + 1

2n+q−1 ≤ 1
2n−1

and then xn converges to some x ∈ X. To see (iii) suppose x 6∈ Γ(xn0) for some

n0. Since Γ(xn0) is closed there is a ball B(x, r) such that B(x, r) ∩ Γ(xn0) = ∅.

Then by (b) and by the construction of {xn}, xn0+q ∈ Γ(xn),∀q ∈ N, contradicts

the fact that xn → x. Finally, (iv) is satisfied by (a) and (iii). �

The following example gives a case all (i)-(iv) of Lemma 3.4 are satisfied but

we cannot apply Lemma 3.5.

Example 3.1 Let X = R, p(x, y) = d(x, y) = |x− y| and Γ be defined by

Γ(x) =

{
[0, x), if x > 0,

{0}, if x = 0.

Then xn = 1
n

satisfies (i)-(iv) and x = 0 is an invariant point of Γ(0) but, for

x > 0, x 6∈ Γ(x) and Γ(x) is not closed. Note that, since Γ(x) is not closed, one

cannot apply the Cantor theorem, which is often applied when proving variants

of the EVP.

The following example show the essentialness of condition (iv).

Example 3.2 Let X = R and p(x, y) = d(x, y) = |x− y|.

(a) Let Γ be defined by Γ(x) = [0, x) for x > 0. Take a sequence {xn} such

that xn+1 ∈ Γ(xn) and d(xn, xn+1) ≤ 1
2n , then xn → 0. We see that (i)-(iii)
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are satisfied but Γ does not have any invariant point. The reason is that

Γ(0) = ∅.

(b) Let Γ be defined by

Γ(x) =

{
[0, x), if x > 0,

{−1}, if x = 0.

We take the same {xn} as in (a) to see that (i)-(iii) are satisfied but Γ has

no invariant point. The reason in this case is that Γ(0) 6⊆ Γ(xn),∀n ∈ N.

4 Main Result

From now on, unless specified otherwise, let (X, d) be a complete quasimetric

space, p be a weak τ -function on X, Y be a Hausdorff locally convex space,

K ⊆ Y be a convex cone and k0 ∈ K \ −clK. Let Y ∗ stand for the topological

dual of Y and K+ is the positive polar of K, i.e.

K+ := {y∗ ∈ Y ∗ : < y∗, y >≥ 0,∀y ∈ K}.

Take z∗ ∈ K+ such that z∗(k0) = 1 (the existence of such a z∗ is seen by using a

separation theorem for k0 and −clK). K determines a relation ≤K on Y by

y2 ≤K y1 ⇔ y1 − y2 ∈ K.

The convexity of K implies the transitive of ≤K . If 0 ∈ K then ≤K is reflexive and

if K is pointed, i.e. K ∩ (−K) = {0} then ≤K is antisymmetric. Let F : X → 2Y

be given. We define a relation ≤k0 on X by

x2 ≤k0 x1 ⇔ F (x1) ⊆ F (x2)+k0p(x1, x2)+K. (2)

It is easy to see that ≤k0 is transitive. If 0 ∈ K and p(x, x) = 0,∀x ∈ X, then

≤k0 is reflexive. For x ∈ X let from now on S(x) = {x′ ∈ X : x′ ≤k0 x}. The
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first result below is a generalization of the EVP.

Theorem 4.1 Let X, Y, p, K and k0 be as specified at the beginning of Section

4. Assume that F : X → 2Y has F (X) being K-bounded from below and the

transitive relation ≤k0 (defined by (2)) is lower closed. Then there exists v ∈ X

such that, ∀x 6= v,

F (v) * F (x) + k0p(v, x) + K,

i.e. v is a strict minimizer of F (.) + k0p(v, .) if p(x, x) = 0, ∀x ∈ X.

Proof. Reasoning ab absurdo, suppose for each x ∈ X the existence of x
′ 6= x

such that x ≤k0 x′. Then for each x ∈ X, S(x) is nonempty and different from

{x}.

Let z∗ ∈ K+ be taken so that z∗(k0) = 1. If x
′ ∈ S(x) then for any fixed

y ∈ F (x), ∃y′ ∈ F (x
′
),∃k ∈ K such that y = y

′
+ k0p(x, x

′
) + k. Since F (X) ⊆

M + K with M being bounded, we have

p(x, x
′
) ≤ z∗(y)− z∗(y

′
) ≤ z∗(y)− inf z∗(M).

Thus, ∀x ∈ X,

sup{p(x, x′) : x′ ∈ S(x)} < +∞. (3)

Fix any x0 ∈ domF and y0 ∈ F (x0). We construct a sequence {(xn, yn)} ⊆

S(x0)× Y in the following way: having xn ∈ S(xn−1) and yn ∈ F (xn), by (3) we

can choose xn+1 ∈ S(xn) such that

p(xn, xn+1) ≥
1

2
sup {p(xn, x) : x ∈ S(xn)}. (4)

As xn+1 ∈ S(xn), there is yn+1 ∈ F (xn+1) with

yn ∈ yn+1+k0p(xn, xn+1)+K. (5)
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So we obtain a sequence {xn} ⊆ S(x0) such that S(xn+1) ⊆ S(xn), ∀n ∈ N, and

... ≤k0 xn ≤k0 ... ≤k0 x1 ≤k0 x0.

Suppose the existence of δ > 0 such that, ∀n ∈ N,

δ ≤ sup {p(xn, x) : x ∈ S(xn)}.

From (4) and (5) it follows that

1

2
δk0 ≤K k0p(xn, xn+1) ≤K yn − yn+1

and hence

1

2
δ ≤ z∗(yn)− z∗(yn+1).

Adding these inequalities from 0 to n− 1 we obtains

1

2
nδ ≤ z∗(y0)− z∗(yn) ≤ z∗(y0)− inf z∗(M).

Passing to the limit as n →∞ one gets a contradiction. Therefore we have only

two cases. The first case is sup {p(xn0 , x) : x ∈ S(xn0)} = 0 for some n0 ∈ N.

Since S(xn0) 6= ∅, this together with (τ4) imply that S(xn0) is a singleton, say

{v}. Then ∅ 6= S(v) ⊆ S(xn0) = {v}, i.e. S(v) = {v}, which is impossible.

The remaining case is

lim
k→∞

sup {p(xnk
, x) : x ∈ S(xnk

)} = 0

for a subsequence {xnk
}. Since xnm ∈ S(xnk

) for all m > k,

lim
k→∞

sup {p(xnk
, xnm) : m > k} = 0.

Lemma 3.3 now implies that {xnk
} is a Cauchy sequence and hence converges

to some v ∈ X. Since ≤k0 is lower closed, v ∈ S(xnk
), ∀k ∈ N. Now that
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all the assumptions of Lemma 3.4 for S are satisfied, one has S(v) = {v}, a

contradiction. �

Some sufficient conditions for ≤k0 to be lower closed, as needed in Theorem

4.1, are collected in the following

Proposition 4.2 Let X, Y, p, K, k0 be as in Theorem 4.1.

(i) If S(x) is closed for each x ∈ X, then ≤k0 is lower closed.

(ii) If K is closed, F : X → 2Y is K-lsca and K-closed valued and p satisfies

(τ2), then ≤k0 is lower closed.

(iii) If K is closed, F : X → 2Y is K-lsc and K-closed valued and p satisfies

(τ2), then S(x) is closed for all x ∈ X and hence ≤k0 is lower closed.

Proof (i) It follows from Remark 2.1(i).

(ii) Let xn+1 ≤k0 xn,∀n ∈ N, and xn → x. Fix n. For i ∈ N, by (τ2) we have

Q(i) ∈ N such that, ∀q > Q(i),

p(xn, xn+q) ≥ p(xn, x)− 1

i
. (6)

Indeed, if ∀Q ∈ N, ∃q > Q such that

p(xn, xn+q) < p(xn, x)− 1

i
,

then (τ2) implies that

p(xn, x) ≤ p(xn, x)− 1

i
,

a contradiction. By virtue of (6) one has

F (xn)− (p(xn, x)− 1

i
)k0 ⊆ F (xn)− p(xn, zn+q)k0 + K.
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As xn+q ≤k0 xn, one gets also

F (xn)− p(xn, xn+q)k0 + K ⊆ F (xn+q) + K.

Hence,

F (xn)− (p(xn, x)− 1

i
)k0 ⊆ F (xn+q) + K.

Since F is K-lsca and xn+q is ≤k0-monotone and converges to x as q → ∞ one

has F (xn+q) ⊆ F (x) + K, ∀q ∈ N. Thus, ∀i ∈ N,

F (xn)− (p(xn, x)− 1

i
)k0 ⊂ F (x) + K,

i.e.

F (xn) +
1

i
k0 ⊆ F (x) + p(xn, x)k0 + K.

As F (x) + p(xn, x)k0 + K is closed, this leads to x ≤k0 xn, ∀n ∈ N.

(iii) Assume that, for a fixed x ∈ X, {xn} ⊆ S(x) and xn → x. We have to show

that x ∈ S(x). Similarly as proving (6), for each i ∈ N, we have Q(i) ∈ N such

that, ∀n > Q(i),

p(x, xn) ≥ p(x, x)− 1

i
.

Since xn ∈ S(x), we have, ∀n > Q(i),

F (x)− (p(x, x)− 1

i
)k0 ⊆ F (x)− p(x, xn)k0 + K ⊆ F (xn) + K.

As xn → x and F is K-lsc, we have further, ∀i ∈ N,

F (x)− (p(x, x)− 1

i
)k0 ⊂ F (x) + K,

i.e.

F (x) +
1

i
k0 ⊆ F (x) + p(x, x)k0 + K.

By the assumption about closedness, we obtain in the limit as i →∞

F (x) ⊆ F (x) + p(x, x)k0 + K,
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i.e. x ∈ S(x). �

Theorem 4.3 Assume, in addition to the assumptions of Theorem 4.1, that

x0 ∈ domF , S(x0) 6= ∅ and S(x0) is ≤k0-complete. Then there exists v ∈ S(x0)

such that, ∀x 6= v,

F (v) 6⊆ F (x) + k0p(v, x) + K, (7)

i.e. v is a strict minimizer of F (.) + k0p(v, .) if p(x, x) = 0, ∀x ∈ X.

Proof For an arbitrary y0 ∈ F (x0), starting from (x0, y0) we construct a sequence

{(xn, yn)} ⊆ S(x0)×Y in the following way: having xn ∈ S(xn−1) and yn ∈ F (xn)

we choose xn+1 ∈ S(xn) as in the proof of Theorem 4.1. If there is n0 such that

S(xn0) = ∅, then v = xn0 satisfies (7). Otherwise, S(xn) 6= ∅,∀n ∈ N. As in the

proof of Theorem 4.1, by the completeness of S(x0), we always arrive at a point

v ∈ S(x0) such that S(v) = {v}. Hence ∀x 6= v, x 6∈ S(v), i.e. (7) holds. �

Traditionally, the statement of the EVP, say for a scalar function f in a metric

space, includes an ε > 0 such that f(x0) < infx∈domF f(x) + ε and an estimate

of d(x0, v). We can get a corresponding statement for our case by modifying

Theorem 4.3 as follows.

Theorem 4.4 Assume, additionally to the assumptions of Theorem 4.3 that

F (x0) * F (x) + εk0 + K, for some ε > 0 and all x ∈ X. Then, ∀λ > 0,

∃v ∈ X such that, ∀x 6= v,

(i) p(x0, v) ≤ λ;

(ii) F (x0) ⊆ F (v) +
ε

λ
p(x0, v)k0 + K;

(iii) F (v) * F (x) +
ε

λ
p(x, v)k0 + K.
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Proof By replacing k0 by εk0 and p by
1

λ
p in the proof of Theorem 4.1, this

theorem yields v ∈ X such that (ii) and (iii) hold. We claim that p(x0, v) ≤ λ.

Indeed, otherwise, with p(x0, v) > λ we would have

F (x0) ⊆ F (v) +
ε

λ
p(x0, v)k0 + K ⊆ F (v) + εk0 + K.

which contradicts the property of x0. �

Remark 4.1

(i) If 0 ∈ K and p(x0, x0) = 0, then condition S(x0) 6= ∅ is satisfied, since

x0 ∈ S(x0).

(ii) By the K-boundedness from below of F (X), ∀ε > 0, ∃x0 ∈ X,

F (x0) * F (x) + εk0 + K,

see Ha (2005), Proposition 3.1.

(iii) Since minimizers and Pareto minimizers are incomparable (see Examples

2.1 and 2.2) we see no direct comparison between Theorems 4.1, 4.3 and

4.4 with the results for Pareto minimizers. We observe only paper Ha (2005)

which deals with minimizers. For the special case where p = d, a (complete)

metric, Theorem 4.4 strictly contains Theorem 3.1, the main result of Ha

(2005), by Proposition 4.2 (iii) and Example 2.3, since in Ha (2005) F is

assumed to be K-lsc instead of our assumption about lower closedness of

≤k0 .

(iv) Several authors (see e.g. Park 2000, Oetli and Théra 1993, Bianchi et

al. 2007) consider mapping Φ defined on X × X (of two variables) with

the property (written here for the scalar case) Φ(x, z) ≤ Φ(x, y) + Φ(y, z)
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for any x, y, z ∈ X and argue that by setting Φ(x, y) = F (y) − F (x) this

consideration contains the usual study of mapping of one variable. However,

with the above-mentioned property, putting F (.) = Φ(x0, .) we can derive

the statements for Φ from the theorems for F , compare [39] and Section 5.

So there is no need of considering such Φ.

The following theorem collects some equivalent formulations of the EVP.

Theorem 4.5 Under the same assumptions of Theorem 4.3, the following asser-

tions, which are equivalent to Theorem 4.3, hold.

(i) There exists v ∈ S(x0) such that S(v) = ∅ or S(v) = {v}.

(ii) There exists v ∈ S(x0) such that, ∀x ∈ X \ {v},

F (v) * F (x) + k0p(v, x) + K.

(iii) Let I be an index set. For i ∈ I, let Ti: S(x0) → 2X be a multivalued map

with nonempty values such that, for each x ∈ S(x0) with x 6∈ Ti(x), there

exists y = y(x, i) ∈ S(x0) with y 6= x such that y ≤k0 x. Then {Ti}i∈I has

a common fixed point in S(x0).

(iv) Let I be an index set. For i ∈ I, let Ti: S(x0) → 2X be a multivalued

map with nonempty values such that, for each x ∈ S(x0), there exists y =

y(x, i) ∈ Ti(x) with y ≤k0 x. Then {Ti}i∈I has a common fixed point in

S(x0).

(v) Let I be an index set. For i ∈ I, let Ti: S(x0) → X be a single-valued map

such that Ti(x) ≤k0 x for all x ∈ S(x0). Then {Ti}i∈I has a common fixed

point in S(x0).
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(vi) Let I be an index set. For i ∈ I, let Ti: S(x0) → 2X be a multivalued

map with nonempty values such that, for each x ∈ S(x0), y ≤k0 x for all

y ∈ Ti(x). Then {Ti}i∈I has a common stationary point x in S(x0); that is,

Ti(x) = {x} for each i ∈ I.

(vii) Let I be an index set. For i ∈ I, let Ti: S(x0) → 2X be a multivalued

map. Suppose that, for each (x, i) ∈ S(x0)× I with Ti(x) 6= ∅, there exists

y = y(x, i) ∈ S(x0) with y 6= x such that y ≤k0 x. Then there exists

x ∈ S(x0) such that Ti(x) = ∅ for all i ∈ I.

Proof “(i)⇔ (ii)” It is obvious.

“(i)⇒ (iii)” By (i), there exists v ∈ S(x0) such that S(v) = ∅ or S(v) = {v}.

Suppose v 6∈ Ti0(v) for some i0 ∈ I, then, by hypothesis, there exists w =

w(v, i0) ∈ S(x0) with w 6= v such that w ≤k0 v, which leads to a contradiction.

Hence v is a common fixed point of {Ti}i∈I .

“(iii)⇒ (i)” Suppose, for each x ∈ S(x0) S(x) 6= ∅ and S(x) 6= {x}. Therefore,

for each x ∈ S(x0), there exists y ∈ X with y 6= x such that y ≤k0 x. Then for

each x ∈ S(x0), we can define a multivalued map T : S(x0) → 2X \ {∅} by

T (x) = {y ∈ X : y 6= x, y ≤k0 x}.

Clearly, x 6∈ T (x) for all x ∈ X, contradicting (iii).

“(i)⇒ (iv)” By (i), there exists v ∈ S(x0) such that S(v) = ∅ or S(v) = {v}.

Suppose that v 6∈ Ti0(v) for some i0 ∈ I, then, by hypothesis, there exists w =

w(v, i0) ∈ Ti0(v) such that w ≤k0 v. Since w(v, i0) ∈ Ti0(v) and v 6∈ Ti0(v) then

w(v, i0) 6= v, which leads to a contradiction.

“(iv)⇒ (v)” It is clear.
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“(v)⇒ (i)” Suppose, for each x ∈ S(x0), S(x) 6= ∅ and S(v) 6= {v}. Therefore,

for each x ∈ S(x0), there exists y ∈ X with y 6= x such that y ≤k0 x. Choose

T (x) to be one of such y. Then T : S(x0) → X has no fixed point by its definition

and T (x) ≤k0 x for all x ∈ S(x0), contradicting (v).

“(i)⇒ (vi)” By (i), there exists v ∈ S(x0) such that S(v) = ∅ or S(v) = {v}.

By the hypothesis of (vi), w ≤k0 v for all w ∈ Ti(v) for all i ∈ I. Then ∅ 6=

Ti(v) ∈ S(v). Hence S(v) = {v}. Therefore, we have Ti(v) = {v} for all i ∈ I.

“(vi)⇒ (i)” The proof is similar to ”(iii)⇒ (i)”

“(i)⇒ (vii)” By (i), there exists v ∈ S(x0) such that S(v) = ∅ or S(v) = {v}.

Suppose to the contrary that Ti0(v) 6= ∅ for some i0 ∈ I. Then, by the hypothesis

of (vii), there exists w = w(v, i0) ∈ S(x0) with w 6= v such that w ≤k0 v, a

contradiction. Hence Ti(v) = ∅ for all i ∈ I.

“(vii)⇒ (i)” Suppose, for each x ∈ S(x0), S(x) 6= ∅ and S(v) 6= {v}. There-

fore, for each x ∈ S(x0), there exists y ∈ X with y 6= x such that y ≤k0 x. Then

for each x ∈ S(x0), we can define a multivalued map T : S(x0) → 2X by

T (x) = {y ∈ X : y 6= x, y ≤k0 x}.

Clearly, T (x) 6= ∅ for all x ∈ X. This constricts (vii). Thus, (i) holds. �

Theorem 4.6 Under the same assumptions of Theorem 4.3, the following also

holds:

(viii) if ∀x ∈ S(x0), ∀y ∈ F (x) with z∗(y) > inf z∗(F (S(x0))), there exists w ∈

S(x0) with w 6= x such that w ≤k0 x, then there exist x ∈ S(x0) and

yx ∈ F (x) such that z∗(yx) = inf z∗(F (S(x0))).

In fact, any of (i)-(vii) implies (viii). Conversely, (viii) implies any of (i)-(vii)

if p(x, y) = 0 implies x = y.
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Proof “(i)⇒(viii)” By (i), there exists v ∈ S(x0) such that S(v) = ∅ or S(v) =

{v}. We will show that there is yv ∈ F (v) such that z∗(yv) = inf z∗(F (S(x0))).

Suppose to the contrary that, ∀y ∈ F (v), z∗(y) > inf z∗(F (S(x0))). Then, by the

hypothesis of (viii), there exists w ∈ S(x0) with w 6= v such that w ≤k0 v. Then

it leads to a contradiction and (viii) holds.

“(viii)⇒(i)” Suppose that, for each x ∈ S(x0), S(x) 6= ∅ and S(v) 6= {v}.

For each x ∈ S(x0), there exists then w ∈ X with w 6= x such that w ≤k0

x. Hence, by (viii), there exist a ∈ S(x0) and ya ∈ F (a) such that z∗(ya) =

inf z∗(F (S(x0))). By our hypothesis, there exists b ∈ S(x0) with b 6= a such that

b ≤k0 a. Consequently, F (a) ⊆ F (b) + k0p(a, b) + K. Then yb ∈ F (b) exists such

that

ya ∈ yb + k0p(a, b) + K.

Therefore,

p(a, b) ≤ z∗(ya)− z∗(yb) ≤ 0.

Hence p(a, b) = 0, which leads to a contradiction. �

Remark 4.2 Consider the special case where F is a single-valued scalar function.

Then Theorems 4.5 and 4.6 contain properly Theorems 1, 1’ and 2 of Park (2000)

due to Remark 4.1(iv) and the fact that any w-distance is a weak τ -function but

not vice versa.

5 Some corollaries for the single-valued case

In this section we will discuss some corollaries of our main results for the single-

valued (vector) case. Note that in this special case the minimizer definition

coincides with that of the Pareto minimizer. To have a generalization similar to
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the extended real line R∪{+∞}, we extend Y by an additional element, denoted

also by +∞, with the usual rules for addition and multiplication with reals. We

avoid indeterminate expressions like 0.(+∞) and adopt that y ≤K +∞,∀y ∈ Y .

Now we consider a mapping f : X → Y ∪ {+∞} and denote domf := {x ∈ X :

f(x) 6= +∞}. We say that f is proper if domF 6= ∅. Note that the relation ≤k0

defined by (2) now becomes

x2 ≤k0 x1 ⇔ f(x2) + k0p(x1, x2) ≤K f(x1)

The following corollary is a direct consequence of Theorem 4.3, by Proposition

4.2(i) and Remark 4.1(i).

Corollary 5.1 Let X, Y, p, K and k0 be as specified in Section 4. Assume that

f : X → Y ∪ {+∞} be proper and K-bounded from below. Let S(x):={x′ ∈ X :

f(x′)+k0p(x, x′) ≤K f(x)} be closed for every x ∈ X. Then for every x0 ∈ domf

there exists v ∈ X such that, ∀x 6= v,

f(v) + k0p(x0, v) ≤K f(x0), (8)

f(x) + k0p(v, x) 6≤K f(v). (9)

This corollary properly includes Corollary 2 of Göpfert et al. (2000), since

p 6= d and f may not be bounded from below.

Corollary 5.2 Let X, Y, p, K, k0 and f be as in Corollary 5.1. Assume that if

xn ∈ domf, xn → x and f(xn) is ≤K decreasing, then f(x) ≤K f(xn),∀n ∈ N.

Assume that 0 ∈ K and K is closed in the direction k0, i.e. K ∩ (y − R+k0) is

closed for all y ∈ Y . Assume further that x0 ∈ domf and p is a τ -function. Then

there exists v ∈ X such that, ∀x 6= v, (8) and (9) hold.

Proof By Remark 4.1(i), S(x0) 6= ∅. To apply Theorem 4.3 we show the ≤k0-
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completeness of S(x0). If {xn} ⊆ S(x0) is ≤k0 decreasing and Cauchy then

xn → x, for some x ∈ X, and f(xn) is clear ≤K decreasing, and hence f(x) ≤K

f(xn),∀n ∈ N.

Now, fix n. For i ∈ N, by (τ2) there exists Q(i) ∈ N such that, ∀q > Q(i),

p(xn, xn+q) ≥ p(xn, x)− 1

i
.

Consequently,

f(x) + k0p(xn, x) ≤K f(x) + k0(p(xn, xn+q) + 1
i
)

≤K f(xn+q) + k0p(xn, xn+q) + 1
i
k0

≤K f(xn) + 1
i
k0.

Passing i → ∞, by the closedness of K in the direction k0, we obtain that

f(x)+k0p(xn, x) ≤K f(xn), i.e. x ≤k0 xn,∀n ∈ N. Hence x ≤k0 x0, i.e. x ∈ S(x0)

and S(x0) is ≤k0 complete. Finally, (8) and (9) follow directly from the conclusion

of Theorem 4.3. �

If f is not only K-bounded from below but also bounded from below and

p = d, this corollary coincides with Corollary 3 of Göpfert et al. (2000).

Corollary 5.3 Let X, Y, K and k0 be as in Corollary 5.1, with the additional

closedness of K. Let p be a τ -function. Let Φ: X ×X → Y ∪ {+∞} satisfy the

assumptions

(i) there is x0 ∈ X such that Φ(x0, x0) = 0 and Φ(x0, .) is K-lsca and K-

bounded from below;

(ii) if Φ(x, z) ∈ −K and Φ(z, y) ∈ −K, then

Φ(x, y) ≤ Φ(x, z) + Φ(z, y).
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Then there exists v ∈ X such that, ∀x 6= v,

(a) Φ(x0, v) ∈ −K, if p(x0, x0) = 0.

(b) Φ(v, x) + k0p(v, x) 6∈ −K.

Proof Set f(.) = Φ(x0, .). Then the assumptions of Proposition 4.2(ii) are clearly

satisfied. Hence, by Theorem 4.1, there exists v ∈ X such that, ∀x 6= v,

f(x)+k0p(v, x) 6∈ f(v)−K, (10)

f(v)+k0p(x0, v) ∈ f(x0)−K. (11)

As f(x0) = Φ(x0, x0) = 0, (11) implies that Φ(x0, v) ∈ −K. For any x ∈ X \{v},

if Φ(v, x) 6∈ −K then (b) is fulfilled. If Φ(v, x) ∈ −K, (10) implies that

Φ(x0, x)− Φ(x0, v) + k0p(v, x) 6∈ −K,

and hence

Φ(v, x) + k0p(v, x) 6∈ −K,

since Φ(x0, x)− Φ(x0, v) ∈ Φ(v, x)−K by (ii). �

Corollary 5.4 (Lin and Du 2006, Theorem 2.1) Let X be a complete quasimetric

space and p be a τ -function. Let f : X → R ∪ {+∞} be a proper, R+-lsca and

bounded from below. Let ϕ: R → (0,∞) be nondecreasing. Then there exists

v ∈ X such that, ∀x 6= v,

p(v, x) > ϕ(f(v))(f(v)− f(x)).

Proof Setting Φ(x, y) = ϕ(f(x))(f(y) − f(x)). We see that, ∀x ∈ X, Φ(x, .) is

proper, R+-lsca, bounded from below and Φ(x, x) = 0. We claim that Φ satisfies

(ii) of Corollary 5.3. Indeed, if Φ(x, z) ≤ 0 and Φ(z, y) ≤ 0 then

f(y) ≤ f(z) ≤ f(x).
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Hence, as ϕ(f(z)) ≤ ϕ(f(x))

Φ(x, z) + Φ(z, y) ≥ ϕ(f(x))(f(z)− f(x)) + ϕ(f(x))(f(y)− f(z))

= Φ(x, y).

Now applying Corollary 5.3 with k0 = 1 one obtains v ∈ X such that, ∀x 6= v,

Φ(v, x) + p(v, x) > 0.

Therefore

p(v, x) > ϕ(f(v))(f(v)− f(x)). �

Corollary 5.5 Let X be a complete quasimetric space and p be a τ -function. Let

f : X → R ∪ {+∞} be proper, R+-lsca and bounded from below. Let ϕ: R →

(0,∞) be nondecreasing. Let ε > 0 and x0 ∈ X satisfy f(x0) ≤ infx∈X f(x) + ε.

Then v ∈ X exists such that, ∀x 6= v,

(i) 0 ≤ f(x0)− f(v) ≤ ε, if p(x0, x0) = 0;

(ii) εp(v, x) > ϕ(f(v))(f(v)− f(x)).

Proof Setting Φ(x, y) = ϕ(f(x))(f(y) − f(x)). By Corollary 5.4 we have (ii)

(taking εp for p in Corollary 5.4) and Φ(x0, v) ≤ 0. Hence, f(x0) − f(v) ≥ 0.

Since f(x0) ≤ infx∈X f(x) + ε ≤ f(v) + ε, we obtain (i). �

For the special case, where X is a metric space and p is a w-distance, Corollary

5.5 coincides with Theorem 2.4 of Lin and Du (2007).

Corollary 5.6 Let X, Y, K, p and k0 be as in Corollary 5.3. Let x0 ∈ X, ε > 0

and Φ: X ×X → Y satisfy the conditions

(i) Φ(x0, x0) = 0 and z∗(Φ(x0, .)) is bounded from below, where z∗ ∈ K+ such

that z∗(k0) = 1;
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(ii) Φ(x0, .) is K-lsca;

(iii) for any x, y, z ∈ X, Φ(x, y) ≤ Φ(x, z) + Φ(z, y).

Then there exists v ∈ X such that, ∀x 6= v,

(a) Φ(x0, v) + εk0p(x0, v) ∈ −K, if p(x0, x0) = 0;

(b) Φ(v, x) + εk0p(v, x) 6∈ −K.

Proof Without loss of generality assume ε = 1 (by regarding εp as a new τ -

function). Setting f(.) = Φ(x0, .) we see that f(x0) = 0, f(.) is K-lsca and K-

closed valued. By Proposition 4.2(ii), the relation ≤k0 is lower closed. Examining

the proof of Theorem 4.1 we see that we can replace the assumed K-boundedness

of F (X) by a weaker assumption that z∗(Φ(x0, .)) is bounded from below (by

using inf z∗(F (X)) instead of inf z∗(M)). In view of Theorem 4.1 there exists

v ∈ X such that, ∀x 6= v,

f(x) + k0p(v, x) 6∈ f(v)−K.

Consequently, by (iii), we obtain (b). Conclusion (a) is obvious from the proof of

Theorem 4.1 if we use x0 given in the assumptions of Corollary 5.6 to start the

construction of {xn}. �

Corollary 5.7 contains properly Theorem 1 of Bianchi et al. (2007), since in

this theorem X is a complete metric space, p = d, (i) is required to be fulfill for

all x ∈ X (instead of for x0) and (ii) is replaced by Φ(x, .) is K-lsc for all x ∈ X.
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