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1. Introduction

Throughout the paper, unless otherwise specified, let X,Y and Λ be Hausdorff

topological vector spaces. Let A ⊆ X be nonempty and Γ ⊂ Y be a closed

subset of Y with intΓ 6= ∅ and Γ 6= Y . The problem under our investigation is as

follows. Let K : A × Λ → 2A be a multifunction with nonempty convex values

and f : A × A × Λ → Y be a function. For each parameter λ ∈ Λ consider the

following quasiequilibrium problem

(QEP) Find x̄ ∈ K(x̄, λ) such that, ∀y ∈ K(x̄, λ),

f(x̄, y, λ) ∈ Γ.

If C is closed convex cone. Setting Γ = Y \ −intC, then (QEP) becomes a

parametric quasiequilibrium problem studied by many authors (see [5, 6]). Setting

Γ = C, our problem becomes another problem investigated in e.g. [2, 5].

Let h : X → Y and θ ∈ Y . We denote the θ.Γ-level sets as follows

levθ.Γ = {x ∈ X | h(x) ∈ θ + Γ}.

Definition 1.1. Let g : X ×X → Y be a function.

(i) g is called Γ-quasimonotone in A ⊆ X if, ∀x, y ∈ A : x 6= y,

[g(x, y) ∈ intΓ] =⇒ [g(y, x) /∈ intΓ].

(ii) g is termed Γ-pseudomonotone in A ⊆ X if, ∀x, y ∈ A : x 6= y,

[g(x, y) ∈ Γ] =⇒ [g(y, x) /∈ intΓ].

Definition 1.2. Let X be a normed space, A ⊆ X be nonempty, b : A → X∗

be a mapping. The following terminology may be considered a special case of

Definition 1.1.
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(a) b is said to be quasimonotone in A if, ∀x, y ∈ A,

[〈b(x), y − x〉 > 0] =⇒ [〈b(y), x− y〉 ≤ 0].

(b) b is said to be pseudomonotone in A if, ∀x, y ∈ A,

[〈b(x), y − x〉 ≥ 0] =⇒ [〈b(y), x− y〉 ≤ 0].

Definition 1.3. Let g : X → Y is called generalized Γ-concave in a convex set

A ⊆ X if, ∀x, y ∈ X, from g(x) ∈ Γ, g(y) ∈ intΓ, it follows that, ∀t ∈ (0, 1),

g((1− t)x + ty) ∈ intΓ.

2. Upper semicontinuity of the solution set

In the sequel let, for λ ∈ Λ,

E(λ) =
{
x ∈ A | x ∈ K(x, λ)

}
and S(λ) be the solution set of problem (QEP) corresponding to λ. Since the

solution existence of (QEP) has been intensively studied in the literature, we

focus on the stability study, assuming always that S(λ) 6= ∅.

Theorem 2.1. For problem (QEP) assume that

(i) E is usc at λ0, E(λ0) is compact and K is lsc in A× Λ;

(ii) lev0.Γf(., ., λ0) is closed in K(A, Λ)×K(A, Λ);

(iii) ∀x, y ∈ K(A, Λ), f(x, y, .) is Y \ Γ- usc at λ0, uniformly with respect to

x, y ∈ K(A, Λ) i.e., if f(x, y, λ0) ∈ Y \ Γ, there is a neighborhood N of λ0,

(N do not depend on x, y), such that

f(x, y, N) ⊆ Y \ Γ.
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Then the solution map S is usc at λ0.

Proof. Suppose that S is not usc at λ0, i.e. there is an open superset U of

S(λ0) such that there are nets λα → λ0 and xα ∈ S(λα), xα /∈ U,∀α. By the

upper semicontinuity of E and the compactness of E(λ0) one can assume that

xα → x0, for some x0 ∈ E(λ0). If x0 /∈ S(λ0), there is y0 ∈ K(x0, λ0) such that

f(x0, y0, λ0) ∈ Y \ Γ. The lower semicontinuity of K in turn shows the existence

of yα ∈ K(xα, λα) such that yα → y0. Since lev0.Γf(., ., λ0) is closed, one can

assume that

f(xα, yα, λ0) ∈ Y \ Γ.

Since f(x, y, .) is Y \ Γ-usc at λ0, there is neighborhood N of λ0 such that

f(xα, yα, N) ⊆ Y \ Γ,

which is impossible as xα ∈ S(λα),∀α. Thus, x0 ∈ S(λ0) ⊆ U , which is again a

contradiction, since xα /∈ U , ∀α. �

Remark 2.1. When K(x, λ) ≡ K, the closedness assumption (ii) for f(., ., λ0)

can be relaxed to that for f(., y, λ0),∀y ∈ K(A, Λ) and the uniformity with

respect to x, y ∈ K(A, Λ) in (iii) can be weakened to the uniformity with respect

to x ∈ K. Therefore, Theorem 2.1 improves Theorem 3.1 in Bianchi and Pini

(2003) and Theorem 2.1 in Bianchi and Pini (2006), since our assumptions are

required only in K(A, Λ) (not globally in A as in the mentioned theorems) and

our semicontinuity assumption in (iii) is weaker than the corresponding in these

theorems.

Assumption (iii) in Theorem 2.1 is essential as shown by the following example.
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Example 2.1. Let X = A = Y = l2, Λ = [0, 1], Γ = {x ∈ l2 | xk ≥ 0, k =

1, 2, ...}, K(x, λ) = {x ∈ l2 | 0 ≤ xn ≤ 1
n
}, λ0 = 0 and

f(x, y, λ) =

{
x− y, if λ = 0,

x(x− y), otherwise,

where l2 = {x = (x1, x2, ...) |
∑∞

n=1 x2
n < +∞}. Then (i) is satisfied as K(x, λ)

is constant and compact. (ii) is fulfilled since f(., ., 0) is continuous. It is clear

that S(0) = {(1, 1
2
, ..., 1

n
, ...)} and S(λ) = {(0, 0, ...), (1, 1

2
, ..., 1

n
, ...)} and hence S

is not usc at 0. The reason is that assumption (iii) is violated. Indeed, taking

x = (0, 0, ...), y = (1
2
, 1

4
, ..., 1

2n
, ...), one has, for λ 6= 0,

f(x, y, 0) = (−1

2
,−1

4
, ...,

1

2n
, ...) ∈ l2 \ Γ,

f(x, y, λ) = (0, 0, ...) /∈ l2 \ Γ.

Although assumption (iii) cannot be dropped, we can replace it as follows.

Theorem 2.2. Theorem 2.1 is still valid if we replace assumptions (ii) and (iii)

by

(ii’) lev0.Γf is closed in K(A, Λ)×K(A, Λ)× {λ0}.

Proof. Reasoning ab absurdo, suppose the existence of an open subset U ⊇ S(λ0)

and a net (xα, λα) → (x0, λ0), such that xα ∈ S(λα) \ U,∀α. If x0 /∈ S(λ0), there

is y0 ∈ K(x0, λ0), f(x0, y0, λ0) ∈ Y \Γ. Since K is lsc at (x0, λ0), there exists a net

yα ∈ K(xα, λα), yα → y0. As xα ∈ S(λα), f(xα, yα, λα) ∈ Γ. From assumption

(ii’) we have f(x0, y0, λ0) ∈ Γ, a contradiction. If x0 ∈ S(λ0) ⊆ U , one has

another contradiction, as xα /∈ U,∀α. �

Theorem 2.3. Theorem 2.2 is still valid if (ii’) is replaced by the following three

conditions
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(ii”) lev0.(Y \intΓ)f is closed in K(A, Λ) × K(A, Λ) × {λ0} and, ∀y ∈ K(A, λ0),

lev0.Γf(., y, λ0) is closed;

(iii”) there is a neighborhood U of λ0, such that ∀λ ∈ U(λ0), f(., ., λ) is Γ-

pseudomonotone in K(A, λ)×K(A, λ);

(iv”) ∀x ∈ K(A, λ0), f(x, ., λ0) is generalized Y \ intΓ-concave in E(λ0) and

f(x, x, λ0) ∈ Γ.

Proof. We prove first that S is closed at λ0. Consider λα → λ0, xα ∈ S(λα), xα →

x0. For each y ∈ K(x0, λ0), since K is lsc at (x0, λ0), there is a net yα ∈ K(xα, λα)

such that yα → y. Since xα ∈ S(λα) and f(., ., λα) is pseudomonotone one has

f(yα, xα, λα) ∈ Y \ intΓ.

By the closedness of lev0.(Y \intΓ)f we have

f(y, x0, λ0) ∈ Y \ intΓ. (1)

We show that f(x0, y0, λ0) ∈ Γ, ∀y0 ∈ K(x0, λ0). For t ∈ (0, 1), yt = (1− t)x0 +

ty0 ∈ K(x0, λ0), as x0 ∈ K(x0, λ0). We claim that f(yt, y0, λ0) ∈ Γ. Indeed,

suppose f(yt, y0, λ0) ∈ Y \ Γ. If f(yt, x0, λ0) ∈ Y \ Γ, from the assumed Y \ intΓ-

concavity, one has f(yt, yt, λ0) ∈ Y \ Γ, impossible. If f(yt, x0, λ0) ∈ Γ. From (1)

we have f(yt, x0, λ0) ∈ bdΓ = bd(Y \ intΓ) ⊆ Y \ intΓ, where bd(.) denotes the

boundary of set (.). By the generalized Y \ intΓ-concavity, f(yt, yt, λ0) ∈ Y \Γ, a

contradiction. So f(yt, y0, λ0) ∈ Γ. Since lev0.Γf(., y0, λ0) is closed, taking t → 0+

we have f(x0, y0, λ0) ∈ Γ, and hence x0 ∈ S(λ0), thus S is closed at λ0.

Now we show that S is usc at λ0. Suppose there is an open superset U of

S(λ0) such that there are nets λα → λ0 and xα ∈ S(λα), xα /∈ U,∀α. By the

6



upper semicontinuity of E and the compactness of E(λ0) one can assume that

xα → x0, for some x0 ∈ E(λ0). Since S is closed at λ0, we have x0 ∈ S(λ0) ⊆ U ,

it is impossible since xα /∈ U,∀α. �

The following example shows that the assumption about the closedness of

lev0.(Y \intΓ)f in Theorem 2.3 cannot be dropped.

Example 2.2. Let X = Y = A = R, Λ = [0, 1], Γ = R+, K(x, λ) = [0, 1], λ0 = 0

and

f(x, y, λ) =

{
x− y, if λ = 0,

xy(x− y), otherwise.

We check the assumed R−-concavity. If f(x, y, 0) ≤ 0 and f(x, z, 0) < 0, then

x ≤ y and x < z. So f(x, (1− t)y + tz, 0) = x− (1− t)y− tz < 0, ∀t ∈ (0, 1), i.e.

f(x, ., 0) is R−-concave. It is easy to see that the assumptions of Theorem 2.3 are

fulfilled except the closedness of lev0.R−f . (Indeed, let xn = 1, yn = 0 and λn = 1
n
.

Then (xn, yn, λn) → (1, 0, 0) and f(xn, yn, λn) = 0, but f(1, 0, 0) = 1 > 0.) It is

clear that S(0) = {1}, S(λ) = {0, 1},∀λ ∈ (0, 1], and hence S is not usc at 0.

The reason is that lev0.R−f is not closed.

3. Lower semicontinuity of the solution set

As an auxiliary problem we consider also the following problem (QEP1) together

with (QEP):

(QEP1) Find x̄ ∈ K(x̄, λ) such that, ∀y ∈ K(x̄, λ),

f(x̄, y, λ) ∈ intΓ,

where X,Λ, A,K, Γ and f are as in Section 1. For λ ∈ Λ, let S1(λ) be the solution

set of (QEP1) corresponding to λ. Clearly S1(λ) ⊆ S(λ).

Theorem 3.1. Assume for (QEP) that S1(λ) 6= ∅ and that
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(i) E is lsc at λ0 and E(λ0) is convex; K is usc and compact-valued in E(λ0)×

{λ0};

(ii) lev0.Y \intΓf is closed in K(A, Λ)×K(A, Λ)× {λ0};

(iii) for each y ∈ K(A, λ0), f(., y, λ0) is generalized Γ-concave in E(λ0);

(iv) ∀x̄ ∈ S(λ0),∀x̄1 ∈ S1(λ0), ∀y ∈ K(E(λ0), λ0),

f(x̄, y, λ0) ∈ Γ and f(x̄1, y, λ0) ∈ intΓ.

Then S is lsc at λ0.

Proof. We start by proving that S1 is lsc at λ0. Suppose to the contrary that

∃x0 ∈ S1(λ0), ∃λα → λ0,∀xα ∈ S1(λα), xα 6→ x0. Since E is lsc at λ0, there is

x̄α ∈ E(λα), x̄α → x0. By the above contradiction assumption, there must be a

subnet x̄β such that, ∀β, x̄β /∈ S1(λβ), i.e., for some yβ ∈ K(x̄β, λβ),

f(x̄β, yβ, λβ) ∈ Y \ intΓ. (2)

As K is usc at (x0, λ0) and K(x0, λ0) is compact one has y0 ∈ K(x0, λ0) such

that yβ → y0 (taking a subnet if necessary). By assumption (ii), (2) yields that

f(x0, y0, λ0) ∈ Y \ intΓ, which is impossible since x0 ∈ S1(λ0).

Now let us prove that

S(λ0) ⊆ S1(λ0) (3)

Let x̄ ∈ S(λ0), x̄
1 ∈ S1(λ0) and xt = (1−t)x̄+tx̄1, where t ∈ (0, 1). Then xt →

x̄ as t → 0. By assumption (iv), ∀y ∈ K(xt, λ0), f(x̄, y, λ0) ∈ Γ and f(x̄1, y, λ0) ∈

intΓ. Since f(., y, λ0) is generalized Γ-concave, we have f(xt, y, λ0) ∈ intΓ, i.e.
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xt ∈ S1(λ0). Therefore (3) holds. Now by the lower semicontinuity of S1 at λ0

we have

S(λ0) ⊆ S1(λ0) ⊆ lim inf S1(λα) ⊆ lim inf S(λα).

Since liminf is always closed, S is lsc at λ0. �

The following example shows that the concavity of f(., y, λ0) is essential.

Example 3.1. Let X = Y = A = R, Λ = [0, 1], Γ = R+, K(x, λ) = [λ, λ +

3], λ0 = 0 and f(x, y, λ) = x2−(λ+1)x. Then, it is easy to see that E(λ) = [λ, λ+

3],∀λ ∈ [0, 1], and assumptions (i), (ii) and (iv) of Theorem 3.1 are satisfied. But

S(0) = {0} ∪ [1, 3] and S(λ) = [λ + 1, λ + 3],∀λ ∈ (0, 1], and hence S(.) is not lsc

at 0. The reason is that (iii) is violated. Indeed, let x1 = 0, x2 = 3
2
∈ E(0) = [0, 3]

and t = 1
2
. ∀y ∈ K(A, 0) = [0, 3], we have f(x1, y, 0) = 0, f(x2, y, 0) = 3

4
, but

f
(1

2
x1 +

1

2
x2, y, 0

)
= − 3

16
6∈ (0, +∞).

Remark 3.1. If K(x, λ) ≡ K(λ), we can omit assumption (iv). The following

example shows that in the general case assumption (iv) cannot be dropped.

Example 3.2. Let X = Y = R,Λ = [0, 1], A = [0, 6], Γ = R+, K(x, λ) = [λ, 4λ+

2 − x], λ0 = 0 and F (x, y, λ) = {x(x − y)}. Then we have E(λ) = [λ, 2λ + 1].

It is easy to see that assumptions (i)-(iii) of Theorem 3.1 are satisfied. But

S(0) = {0, 1}, S(λ) = {2λ + 1} and hence S(.) is not lsc at 0. The reason is

that assumption (iv) is violated. Indeed, K(E(0), 0) = K([0, 1], 0) = [0, 2]. For

x = 1 ∈ S(0), y = 2 ∈ K(E(0), 0), we have F (1, 2, 0) = −1 < 0. So (iv) is not

fulfilled.

Remark 3.2. Theorems 5.1-5.3 of [11] are incomparable with our Theorem 3.1.

Assumption (vi) of the mentioned theorems is difficult to be checked, although it

9



is weaker than assumption (ii) in Theorem 3.1. However, many of our assumptions

are weaker than the corresponding ones of these theorems: we omit the concavity

assumption of K(., λ); our concavity assumption of f(., y, λ0) is imposed in E(λ0),

while in the mentioned theorems the concavity property of f is imposed in X ×

X × Λ. The following example shows a case where Theorem 3.1 can be applied

but Theorems 5.1-5.3 of [11] cannot.

Example 3.3. Let X, Y, Λ, Γ, λ0 be as in Example 3.2, A = [0, 1], K(x, λ) = [0, λ]

and

F (x, y, λ) =

{
−1, if y + λ = −1,

1, otherwise.

Then the assumptions of Theorem 3.1 are satisfied, (in fact S(λ) = [0, λ],∀λ ∈

[0, 1] is lsc). But Theorems 5.1-5.3 in [11] cannot be applied since f is not concave

as required in these theorems.

We now proceed to Hausdorff lower semicontinuity.

Theorem 3.2. Assume the assumptions of Theorem 3.1, and the following ad-

ditional conditions:

(v) K(., λ0) is lsc in E(λ0) and E(λ0) is compact;

(vi) lev0.Γf(., ., λ0) is closed in K(A, Λ)×K(A, Λ).

Then S is Hausdorff lower semicontinuous at λ0.

Proof. We first show that S(λ0) is closed in X. Suppose that xα ∈ S(λ0), xα →

x0. Then x0 ∈ E(λ0) by the compactness. If x0 /∈ S(λ0), there exists y0 ∈

K(x0, λ0) such that

f(x0, y0, λ0) ∈ Y \ Γ. (4)
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Since K(., λ0) is lsc at x0, there is a net yα ∈ K(xα, λ0), yα → y0. As xα ∈

S(λ0), we have

f(xα, yα, λ0) ∈ Γ. (5)

By the closedness of lev0.Γf(., ., λ0), we see a contradiction between (4) and

(5). Thus, S(λ0) is closed and then compact.

Now suppose that S is not Hlsc at λ0, i.e. ∃B (a neighborhood of the origin

in X), ∃λα → λ0, ∀α, ∃x0α ∈ S(λ0) \ (S(λα) + B). Since S(λ0) is compact, we

can assume that x0α → x0 ∈ S(λ0). Then there are α1, a neighborhood B1 of 0

in X with B1 + B1 ⊆ B and bα ∈ B1 such that, ∀α ≥ α1, x0α = x0 + bα. Since S

is lsc at λ0, there is zα ∈ S(λα), zα → x0 and then there is α2 such that, ∀α ≥ α2,

zα ∈ x0 −B1,

i.e., there exists b′α ∈ B1, zα = x0 − b′α. Consequently, ∀α ≥ α0 = max{α1, α2},

x0α = x0 + bα = zα + b′α + bα ∈ zα + B.

This is impossible due to the fact that x0α /∈ S(λα) + B. Thus, S is Hlsc at λ0.�

The following example shows that the assumptions about E in (i) are essential.

Example 3.4. Let X = A = R2, Y = R,Λ = [0, 1], Γ = R+, λ0 = 0, and for x =

(x1, x2) ∈ R2, K(x, λ) = {(x1, λx1)}, f(x, y, λ) = 1 + λ. Then E(λ) = {(x1, x2) |

x2 = λx1}. Clearly the assumptions of Theorem 3.2, but the compactness of

E(λ0), are satisfied. Direct computations give S(λ) = {(x1, x2) ∈ R2 | x2 = λx1}

and then S is not Hlsc at 0 (although S is lsc at 0).

4. Continuity of the solution set

We can combine the results in Section 2 and Theorem 3.1 to derive sufficient

conditions for the continuity of the solution map of (QEP). In this section we
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establish sufficient conditions without concavity assumptions.

Theorem 4.1. Assume the assumptions of one of the Theorems 2.1-2.3. Assume

further that

(a) f(., ., λ0) is Γ-quasimonotone in K(A, λ0)×K(A, λ0);

(b) ∀x ∈ S(λ0),∀y ∈ S(λ0) \ {x}, f(x, y, λ0) ∈ intΓ.

Then S is continuous at λ0.

Proof. Assume first the assumptions of Theorems 2.1 or 2.2. It suffices to

prove that S is lsc at λ0. Suppose to the contrary that ∃λα → λ0,∃x0 ∈ S(λ0),

∀xα ∈ S(λα), xα 6→ x0. Since E is usc and E(λ0) is compact, we can assume that

xα → x̄0 for some x̄0 ∈ E(λ0).

From the proof of Theorem 2.1 or 2.2, we see that x̄0 ∈ S(λ0). By the

contradiction assumption we have x̄0 6= x0. Due to assumption (b) one has

f(x̄0, x0, λ0) ∈ intΓ and f(x0, x̄0, λ0) ∈ intΓ,

which is impossible since f(., ., λ0) is quasimonotone.

The proof for the case, where the assumptions of Theorem 2.3 are fulfilled, is

similar. �

Theorem 4.2. Assume the assumptions of one of Theorems 2.1-2.3 and assume

further that

(a’) f(., ., λ0) is Γ-pseudomonotone in K(A, λ0)×K(A, λ0);

(b’) if f(x, y, λ0) ∈ bdΓ then x = y, where bd(.) denotes the boundary of the set

(.);
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(c’) ∀x, x̄ ∈ S(λ0), f(x, x̄, λ0) ∈ Γ.

Then S is continuous at λ0.

Proof. By an argument similar to the first part of the proof of Theorem 4.1, we

have x̄0 6= x0. (c’) implies that f(x, x̄, λ0) ∈ Γ. By the pseudomonotonicity of

f(., ., λ0), one has f(x̄0, x0, λ0) ∈ Y \ intΓ.

On the other hand, since x0, x̄0 ∈ S(λ0), f(x̄0, x0, λ0) ∈ Γ and hence f(x̄0, x0, λ0) ∈

bdΓ. By assumption (b’), we have x̄0 = x0, a contradiction. �

5. Particular cases

Since equilibrium problems contain many problems as special cases, including

variational inequalities, optimization problems, fixed point and coincidence point

problems, complementarity problems, Nash equilibria problems, etc, we can de-

rive from the results of Sections 2-4 consequences for such special cases. In this

section we discuss only some corollaries of the typical results in Sections 2-4 for

quasivariational inequalities and traffic network problems as examples.

5.1. Quasivariational inequalities

Let X, A,Λ, K be as in Section 1, X∗ be the dual space of X and T : X×Λ → X∗.

We consider the following parametric quasivariational inequality, for each λ ∈ Λ,

(QVI) Find x̄ ∈ K(x̄, λ) such that, ∀y ∈ K(x̄, λ),

〈T (y, λ), y − x̄〉 ≥ 0,

where 〈., .〉 denotes the pairing between X and X∗.

To convert (QVI) to a special case of (QEP) set Y = R, Γ = R+ and

f(x, y, µ) = 〈T (y, µ), y − x〉. Consequently, the following result is immediate

from Theorem 5.1.
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The three following results are derived from Theorems 2.1-2.3.

Corollary 5.1. Assume for (QVI) that

(i) E is usc at λ0, E(λ0) is compact and K is lsc in K(A, Λ)×K(A, Λ);

(ii) the set {(x, y) ∈ A×A | 〈T (y, λ0), y−x〉 ≥ 0} is closed in K(A, Λ)×K(A, Λ);

(iii) ∀x, y ∈ K(A, Λ), the function λ 7→ 〈T (y, λ), y − x〉 is (−∞, 0)-usc at λ0.

Then the solution map S is usc at λ0.

Remark 5.1.

(i) By Theorem 2.2, Corollary 5.1 is still valid if we replace assumptions (ii)

and (iii) by

(iii’) The set {(x, y, λ) | 〈T (y, λ), y − x〉 ≥ 0} is closed in K(A, Λ) ×

K(A, Λ)× {λ0}.

(ii) Corollary 5.1 together with (i) include Theorems 2.2 and 2.3 of [9], Theorems

4.1 and 4.3 of [10].

(iii) Similarly, we can obtain direct corollaries of Theorems 3.1, 3.2 and these

results are new for (QVI).

5.2. Traffic network problems

The notion of equilibrium flows for transportation network problem was intro-

duced in Wardrop (1952) together with a basic traffic network principle. Since

then, traffic network problems have raised a great interest and much developed

in both theory and methodology view points. The variational approach to such

traffic problems begins with Smith (1979), who proved that the Wardrop equi-

librium can be expressed in terms of variational inequalities, see also Nagurney

14



(1993). In De Luca (1995) and Maugeri (1995), travel demands were proposed to

depend on the equilibrium vector flow to met diverse practical situations. Then

Wardrop equilibriums of the network problem are expressed as solutions of the

corresponding quasivariational inequality. In Ait Mansour and Scrimali (online),

the Hölder continuity of the solution sets of such parametric elastic traffic prob-

lems was considered. In this subsection, using results in Section 2 we establish

continuity properties of the solution of an elastic traffic problem.

We first describe the problem. Let N be the set of nodes, L be that of links

(or arcs), W = (W1, ...,Wl) be the set of origin-destination pairs (O/D pairs for

short). Assume that the pair Wj, j = 1, ..., l, is connected by a set Pj of paths

and Pj contains rj ≥ 1 paths. Let F = (F1, ..., Fm) be the path vector flow, where

m = r1 + ... + rl. Following Giannessi (1980) the capacity of these paths must be

taken into account in practice. So we assume that the capacity restriction is

F ∈ A := {F ∈ Rm : 0 ≤ γs ≤ Fs ≤ Γs, s = 1, ...,m},

where A be a convex and compact subset of Rm. Assume further that the travel

cost on the path flow Fs, s = 1, ...,m, depends on the whole path vector flow F

and is Ts(F ) ≥ 0. Then we have the path cost vector T (F ) = (T1(F ), ..., Tm(F )).

Following Wardrop (1952) a path vector flow H is said to be an equilibrium

vector flow if ∀Wj, ∀p ∈ Pj, ∀s ∈ Pj,

[Tp(H) < Ts(H)] =⇒ [Hs = γs or Hp = Γp].

Now assume that the perturbation on the traffic expresses by parameter c

of a metric space C. Assume further that the travel demand gj of the O/D pair

Wj depends on c ∈ C and also on the equilibrium vector flow H as explained

in De Luca (1995), and Maugeri (1995). Denote the travel vector demand by
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g = (g1, ..., gl) and set

φjs =

{
1, if s ∈ Pj,

0, if s /∈ Pj,

φ = {φjs}, j = 1, ..., l; s = 1, ...,m.

Then the path vector flows meeting the travel demands are called the feasible

path vector flows and form the constraint set

K(H, c) = {F ∈ A | φF = g(H, c)}.

φ is called the O/D pair - path incidence matrix.

Assume further that the path costs are also perturbed, i.e. depend on a

perturbation parameter b of a metric space B: Ts(F, b), s = 1, ...,m.

Remark 5.2. The above traffic model is formulated in terms of path flow vari-

ables. Another way to describe the traffic problem is using link flow variables.

But the latter model can be employed only if the travel cost is additive, i.e. any

path cost is the sum of the link costs for all the links involved in the path. The

“path model” we use here does not need this additivity.

Our traffic network problem is equivalent to a quasivariational inequality as

follows.

Lemma 5.2. (See De Luca (1995), Smith (1979)). A path vector flow H ∈

K(H, a) is an equilibrium flow if and only if it is a solution of the following

quasivariational inequality

(TNP) Find H ∈ K(H, c) such that, ∀F ∈ K(H, c),

〈T (H, b), F −H〉 ≥ 0.

We need the following simple assertions
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Lemma 5.3. (See Ait Mansour and Scrimali, online, Lemma 1) Let A be an

m × n matrix, a1 and a2 be given vectors in Rm. The solution set of the linear

equality Ax = ai, for i = 1, 2, is denoted by Si. Then, there exists δ = δ(A) > 0

such that for each x1 ∈ S1 there exists x2 ∈ S2 satisfying

‖x1 − x2‖ ≤ δ‖a1 − a2‖.

Lemma 5.4. Assume that g is continuous at (H0, c0). Then K is continuous at

(H0, c0) and convex, compact-valued.

Proof. Let c ∈ V (c0) and H ∈ W (H0), where V (c0) and W (H0) be neighborhoods

of c0 and H0, respectively. Consider the system

φF = g(H0, c0),

φF = g(H, c).

By Lemma 5.3, there exists δ = δ(φ) such that for each F0 ∈ K(H0, c0), there

exists F ∈ K(H, c) satisfying

‖F − F0‖ ≤ δ‖g(H, c)− g(H0, c0)‖.

Since g is continuous at (H0, c0), K is lsc at (H0, c0). Suppose that K is not usc

at (H0, c0), i.e., there are a neighborhood U of K(H0, c0) and a net (Hn, cn) →

(H0, c0) such that, for each n, there exists Fn ∈ K(Hn, cn)\U . By the compactness

of A, we can assume that Fn → F0. According to Lemma 5.3, there is F 0
n ∈

K(H0, c0) such that

‖Fn − F 0
n‖ ≤ δ‖g(Hn, cn)− g(H0, c0)‖.

Hence,

‖F 0
n − F0‖ ≤ ‖F 0

n − Fn‖+ ‖Fn − F0‖.

Consequently, F 0
n → F0. Since φF 0

n = g(H0, c0), we have φF0 = g(H0, c0), i.e.,

F0 ∈ K(H0, c0) ⊆ U , a contradiction. �
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Setting X = Rm, Λ = C ×B and, for each λ = (c, b) ∈ Λ,

K1(H, λ) = K(H, c),

f(x, y, λ) = 〈T (x, b), y − x〉.

Then (TNP) becomes a special case of (QEP).

The following results are implied directly from Theorems 2.2, 4.1 and 4.2.

Corollary 5.5. For problem (TNP) assume that

(i) g is continuous in K(A, c0)× {c0};

(ii) the set {(H, F, c) | 〈T (H, c), F −H〉 ≥ 0} is closed in A× A× {c0}.

Then the solution set S is usc at (c0, b0).

Proof. It is derived from Lemma 5.4 and Theorem 2.2. �

Corollary 5.6. Assume the assumptions of Corollary 5.5 and assume further

that

(a) T is quasimonotone in K(A, c0);

(b) ∀H ∈ S(c0, b0), ∀H ′ ∈ S(c0, b0) \ {H}, 〈T (H, c0), H
′ −H〉 > 0.

Then S is continuous at (c0, b0).

Proof. It is clear from Theorem 4.1. �

Corollary 5.7. Assume (i) and (ii) of Corollary 5.5 and further more

(a’) T is pseudomonotone in K(A, c0);

(b’) if 〈T (H1, c0), H2 −H1〉 = 0 then H2 = H1;

(c’) ∀H1, H2 ∈ S(c0, b0), 〈T (H1, c0), H2 −H1〉 ≥ 0.

Proof. It is a direct consequence of Theorem 4.2. �
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Remark 5.3. Corollary 5.7 improves Theorem 4.1 of Li et al. [12], since here

(c’) needs to be fulfilled only at x ∈ S(λ0) and assumption (ii) is weaker than the

continuity assumption of T required in this theorem. Corollaries 5.5 and 5.6 are

new. We note further that the results in Subsection 5.1 can be applied for (TNP).

But Theorems 3.1 - 3.3 in [10] cannot, since assumption (iii) in these theorems is

not fulfilled in this case.
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