The Generalized Discretized Sequential Probability Ratio Test and its Application in Insurance Mathematics

Body Math

by
Volker Mammitzsch
Department of Mathematics and Computer Science Philipp University, D-35032 Marburg /Germany
E-mail: mammit@mathematik.uni-marburg.de

Abstract

WALD's famous sequential probability ratio test for comparing two simple hypotheses $\quad P_{1}$ and P_{2} is extended to the case when instead of successive observations of i.i.d. random variables general onservations can be taken and final decisions are allowed at a discrete series of pre-assigned time points. It is shown that the following properties are equivalent: (a) Each test of that type is closed. (b) The errors of first and second kind of those tests can be made arbitrarily small. (c) P_{1} and P_{2} are orthogonal probability measures.

This result is applied to the risk process in insurance mathematics and a uniqueness problem is discussed.

The discretized generalized sequential probability ratio test (DGSPRT) is a generalization of A. WALD's well-known sequential probability ratio test, cf. [8]. Therefore, we first give a short description of that testing procedure here, cf. also [1]

a. WALD's sequential probability ratio test

Let be X_{1}, X_{2}, \ldots i.i.d. random variables with unknown density function f. The simple hypothesis "f= $f_{1} "$ is to be tested against the simple alternative $" f=f_{2} "$,where $f_{1} \neq f_{2}$ are two known density functions.

1991 Mathematics Subject Classification: 62L10, 62M99
Key words and phrases: Closed sequenctial tests, error probabilities, orthogonal hypotheses, risk process, compound Poisson process, excess of loss.

Define the likelihood ratio

$$
q^{(n)}:=q^{(n)}\left(X_{1}, \ldots, X_{n}\right):=\frac{f_{1}\left(X_{1}\right) \cdots f_{1}\left(X_{n}\right)}{f_{2}\left(X_{1}\right) \cdots f_{2}\left(X_{n}\right)}, n=1,2, \ldots,
$$

and, moreover, with $a, b \in \mathbb{R}, a<b$ the stopping rule

$$
T:=\inf \left\{n: q^{(n)} \leq a \text { or } q^{(n)} \geq b\right\}
$$

and the (terminal) decision rule

$$
\delta:=\left\{\begin{array}{l}
f_{1} \text { if } q^{(T)} \geq b \\
f_{2} \text { if } q^{(T)} \leq a
\end{array}\right.
$$

This means that we take observations as long as the likelihood ratio is strictly between a and b and stop taking observations as soon as the likelihood ratio leaves the open interval (a, b), and decide in favour of f_{1} if the likelihood ratio in the moment of stopping is "big" and otherwise in favour of f_{2}.

The pair (T, δ) is called WALD's sequential probability ratio test. It has two remarkable properties.

1. $P\left(T<\infty \mid f_{1}\right)=P\left(T<\infty \mid f_{2}\right)=1$
which says that the test with probability one comes to an end, no matter which one of the hypotheses f_{1} or f_{2} is true.
2. For each pair $\left(\alpha_{1}, \alpha_{2}\right)$ with $0<\alpha_{i}<1(i=1,2)$ there exist reals a, b with $a<b$ such that

$$
P\left(\delta=f_{2} \mid f_{1}\right) \leq \alpha_{1} \text { and } P\left(\delta=f_{1} \mid f_{2}\right) \leq \alpha_{2}
$$

which says that for appropriate a and b the error of the first kind and the error of the second kind can be made arbitrarily small.

b. The discretized generalized sequential probability ratio test

WALD's test has been modified in several ways in order to meet the needs for more general testing situations, see e.g. [2],. [7]. Here we will generalize the concept for the case when observations are possible in continuous time.

Definitions. Let be given
$\left(\mathcal{A}_{t}\right)_{t \in[0, \infty)}$ an increasing familiy of σ-algebras on Ω, \mathcal{A}_{t} representing all possible observations until time $t ; \mathcal{A}_{\infty}:=\sigma\left(\underset{t \in[0, \infty)}{\cup} \mathcal{A}_{t}\right)$;
P_{1} and P_{2} probability measures on \mathcal{A}_{∞} called hypotheses; a sequence $0 \leq t_{1}<t_{2}<\ldots$ with $t_{n} \rightarrow \infty$ as $n \rightarrow \infty$ representing the time points in which a (terminal) decision is possible, $D:=\left\{t_{1}, t_{2}, \ldots\right\}$.

Let denote
$P_{i}^{(n)}:=P_{i} \mid \mathcal{A}_{t_{n}}$ the restriction of P_{i} to $\mathcal{A}_{t_{n}}, i=1,2, n=1,2, \ldots ; P_{i}^{(\infty)}:=P_{i}$ $i=1,2, ;$
$P:=\frac{1}{2}\left(P_{1}+P_{2}\right)$ on \mathcal{A}_{∞} a dominating measure of the family $\left\{P_{1}, P_{2}\right\}$, $P^{(n)}:=P \mid \mathcal{A}_{t_{n}}$ the restriction of P to $\mathcal{A}_{t_{n}}, n=1,2, \ldots$.

By the RADON-NIKODYM Theorem, there exist densities

$$
f_{i}^{(n)}:=\frac{d P_{i}^{(n)}}{d P^{(n)}}, \quad \mathrm{i}=1,2 ; \quad \mathrm{n}=1,2, \ldots
$$

Without loss of generality we assume

$$
0 \leq f_{i}^{(n)} \leq 2 \text { and } f_{1}^{(n)}+f_{2}^{(n)}=2 \text { for all } i=1,2 ; n=1,2, \ldots
$$

Define the (generalized) likelihood ratio $q^{(n)}$ according to

$$
q^{(n)}:= \begin{cases}f_{1}^{(n)} / f_{2}^{(n)} & \text { if } f_{2}^{(n)}>0 \\ \infty & \text { otherwise }\end{cases}
$$

and for reals a, b with $0<a<1<b<\infty$ the stopping rule

$$
T_{a, b}:=\inf \left\{t_{n}: q^{(n)} \leq a \text { or } q^{(n(} \geq b\right\}
$$

and the decision rule

$$
\delta:=\left\{\begin{array}{l}
P_{1} \text { if } q^{\left(T_{a, b}\right)} \geq b \\
P_{2} \text { if } q^{\left(T_{a, b}\right)} \leq a
\end{array}\right.
$$

The pair $\left(T_{a, b}, \delta\right)$ is called generalized discretized sequential probability ratio test
(GDSPRT).

We say that a GDSPRT is closed if and only if $P_{i}\left(T_{a, b}<\infty\right)=1$ for $i=1,2$ or,
equivalently, $P\left(T_{a, b}<\infty\right)=1$ which means that the test with probability one will end in finite time, no matter which one of the hypotheses is true.

Let us recall that the probability measures are called orthogonal if and only if there exists an
$A \in A_{\infty}$ such that $P_{1}(A)=0$ and $P_{2}(A)=1$.

In what follows we need some lemmas
Lemma 1.

$$
\sigma\left(\underset{t \in[0, \infty)}{\cup} \mathcal{A}_{t}\right)=\sigma\left(\cup_{t \in D} \mathcal{A}_{t}\right)
$$

The proof is obvious.

Lemma 2. $q^{(n)} \rightarrow q^{(\infty)} \quad P$ a.e. as $n \rightarrow \infty$.

Proof: According to the martingale convergence theorem we have $f_{i}^{(n)} \rightarrow f_{i}^{(\infty)}$ P a.e. as $n \rightarrow \infty, i=1,2$. Observing $0 \leq f_{i}^{(n)} \leq 2$ and $f_{1}^{(n)}+f_{2}^{(n)}=2$ for $i=1,2, \ldots, n=1,2, \ldots$, we immediately see that $q^{(n)} \rightarrow q^{(\infty)} P$ a.e. as $n \rightarrow \infty$.

Lemma 3. P_{1} and P_{2} orthogonal implies $P\left(0<q^{(\infty)}<\infty\right)=0$.
Proof: From P_{1} and P_{2} orthogonal it follows

$$
P\left(\left\{f_{1}^{(\infty)}>0\right\} \cap\left\{f_{2}^{(\infty)}>0\right\}\right)=0
$$

which implies

$$
P\left(0<q^{(\infty)}<\infty\right)=P\left(\left\{f_{1}^{(\infty)}>0\right\} \cap\left\{f_{2}^{(\infty)}>0\right\}\right)=0
$$

Remark: The converse of Lemma 3 is true, too.

We are now ready to prove an equivalence theorem, a simple version of which for the discrete case can be found in [4].

Theorem. The following statements are equivalent:
(i) Each DGSPRT is closed.
(ii) For each pair $0<\alpha_{1}, \alpha_{2}<1$ there exists a closed DGSPRT $\left(T_{a, b}, \delta\right)$ with $0<a<1<b<\infty$ such that

$$
P_{i}\left(\delta \neq P_{i}\right)<\alpha_{i}, \quad i=1,2 .
$$

(iii) $\quad P_{1}$ and P_{2} are orthogonal.

Proof:

(i) \Rightarrow (ii): As $\left(T_{a, b}, \delta\right)$ is closed, for suitable a we have

$$
\begin{aligned}
P_{1}\left(\delta \neq P_{1}\right) & =\sum_{k=1}^{\infty} \iint_{\left\{T_{a, b}=t_{k}, q^{(k)} \leq a\right\}} f_{1}^{(k)} d P \\
& \leq \sum_{k=1}^{\infty} \int_{\left\{T_{a, b}=t_{k}\right\}} a f_{2}^{(k)} d P=a<\alpha .
\end{aligned}
$$

The proof for $P_{2}\left(\delta \neq P_{2}\right) \leq \frac{1}{b}<\alpha_{2}$ is similar.
(ii) \Rightarrow (iii): Choose a sequence of DGSPRT $\quad\left(T^{(n)}, \delta^{(n)}\right)$ such that $P_{i}\left(\delta^{(n)} \neq\right.$ $\left.P_{i}\right)<\frac{1}{2^{n}}$,
$i=1,2$.
Moreover, define

$$
A:=\limsup _{n \rightarrow \infty}\left\{\delta^{(n)} \neq P_{1}\right\}=\bigcap_{k=1}^{\infty} \bigcup_{n=k}^{\infty}\left\{\delta^{(n)} \neq P_{1}\right\}
$$

then

$$
P_{1}(A)=\lim _{k \rightarrow \infty} P_{1}\left(\bigcup_{n=k}^{\infty}\left\{\delta^{(n)} \neq P_{1}\right\}\right) \leq \lim _{k \rightarrow \infty} \sum_{n=k}^{\infty} \frac{1}{2^{n}}=0
$$

and

$$
\begin{aligned}
P_{2}(A) & =\lim _{k \rightarrow \infty} P_{2}\left(\bigcup_{n=k}^{\infty}\left\{\delta^{(n)} \neq P_{1}\right\}\right) \\
& \geq \lim _{k \rightarrow \infty} P_{2}\left(\delta^{(n)} \neq P_{1}\right)=\lim _{k \rightarrow \infty}\left(1-P_{2}\left(\delta^{(k)} \neq P_{2}\right)\right) \\
& =1-\lim _{k \rightarrow \infty} \frac{1}{2^{k}}=1 .
\end{aligned}
$$

(iii) $\Rightarrow(\mathrm{i})$: Let P_{1} and P_{2} be orthogonal and suppose that there exist reals
a, b with
$0<a<1<b<\infty$ such that

$$
0<P\left(\bigcap_{n=1}^{\infty}\left\{a<q^{(n)}<b\right\}\right)
$$

then from Lemma 2 we conclude

$$
0<P\left(a \leq q^{(\infty)} \leq b\right) \leq P\left(0<q^{(\infty)}<b\right)
$$

which contradicts Lemma 3.

c. An application in insurance mathematics

In collective risk theory we consider the so-called risk process

$$
S_{t}=\sum_{j=1}^{N_{t}} X_{j}, \quad 0 \leq t<\infty
$$

where N_{t} denotes the number of claims in a portfolio up to time t with $\left(N_{t}\right)_{t \in[0, \infty)}$ supposed to be a Poisson process with parameter $\lambda>0$,
$X_{j} \geq 0$ denoting the amount of the j-th claim, where X_{1}, X_{2}, \ldots are i.i.d. with distribution
function $F,\left(N_{t}\right)_{t \in[0, \infty)}, X_{1}, X_{2} \ldots$ independent.
S_{t} is the accumulated claim up to time $t \in[0, \infty)$ and is compound Poisson. We want to test the hypothesis H_{1} against the alternative H_{2} given by

$$
\begin{aligned}
& H_{1}: \lambda=\lambda_{1}, \quad F=F_{1} \\
& H_{2}: \lambda=\lambda_{2}, \quad F=F_{2}
\end{aligned}
$$

where λ_{i} are known reals and F_{i} known distribution functions, $i=1,2$, with $\left(\lambda_{1}, F_{1}\right) \neq\left(\lambda_{2}, F_{2}\right)$.

Problem: Given arbitrarily small $\alpha_{i}>0, i=1,2$, is it possible to distinguish H_{1} from H_{2} by means of a DGSPRT with error probabilities of the first and second kind no larger than α_{1} and α_{2}, respectively?

Answer: Yes!
A rough sketch of the proof can be found in [5]. A further generalization to
other stochastic processes are dealt with in [3].

Proof: Define

$$
\begin{aligned}
\mathcal{A}_{t} & :=\sigma\left(S_{u}: u \leq t\right), \quad t \in(0, \infty] \\
\mathcal{A}_{\infty} & :=\sigma\left(S_{u}: u<\infty\right)=\sigma\left(\bigcup_{t \in(0, \infty]} \mathcal{A}_{t}\right) \\
D & :=\left\{t_{1}, t_{2}, \ldots\right\} \text { as in part b. }
\end{aligned}
$$

(i) If $F_{1} \neq F_{2}$, then there exists an $x \in \mathbb{R}_{+}$such that $F_{1}(x) \neq F_{2}(x)$.

Consider the random variables

$$
Z_{j}:=1_{[0, x]}\left(X_{j}\right), \quad j=1,2, \ldots
$$

Obviously, Z_{j} is measurable with respect to \mathcal{A}_{∞}, and Z_{1}, Z_{2}, \ldots are i.i.d. with $E\left(Z_{j} \mid H_{i}\right)=F_{i}(X), i=1,2$. Moreover, by the strong law of large numbers, for

$$
A:=\left\{\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{j=1}^{n} Z_{j}=F_{2}(x)\right\} \in \mathcal{A}_{\infty}
$$

there holds $P\left(A \mid H_{1}\right)=0$ and $P\left(A \mid H_{2}\right)=1$. Thus, $P\left(\cdot \mid H_{1}\right)$ and $P\left(\cdot \mid H_{2}\right)$ are orthogonal, and our Theorem finishes the proof.
(ii) If $\lambda_{1} \neq \lambda_{2}$, then choose a subsequence $t_{j}^{*} \in D$ with $t_{j+1}^{*}-t_{j}^{*} \geq 1$ for all $j=1,2, \ldots$,
and consider the random variables

$$
Z_{j}:=\frac{1}{t_{j+1}^{*}-t_{j}^{*}}\left(N_{t_{j+1}^{*}}-N_{t_{j}^{*}}\right), \quad j=1,2, \ldots .
$$

Again, Z_{j} is measurable with respect to \mathcal{A}_{∞} for all $j=1,2, \ldots$, and Z_{1}, Z_{2}, \ldots are
independent with

$$
\begin{aligned}
& E\left(Z_{j} \mid H_{i}\right)=\lambda_{i} \\
& \operatorname{Var}\left(Z_{j} \mid H_{i}\right) \leq \lambda_{i}, \quad i=1,2 ; \quad j=1,2, \ldots
\end{aligned}
$$

As $\sum_{j=1}^{\infty} \frac{1}{j^{2}} \operatorname{Var}\left(Z_{j} \mid H_{i}\right)<\infty(i=1,2)$, from Kolmogorov's convergence theorem using the same argument as in (i) we find that $P\left(\cdot \mid H_{1}\right)$ and $P\left(\cdot \mid H_{2}\right)$ are orthogonal, which as above finishes the proof.

d. A uniqueness problem

Usually, in part c we cannot observe λ and F directly but can only track the process
$\left(S_{t}\right)_{t \in[0, \infty)}$. This raises the following question, which was put to me by G.
SIEGEL
(oral communication).

Problem: Is (λ, F) uniquely determinated by the distribution of

$$
\left(S_{t}\right)_{t \in[0, \infty)} ?
$$

Answer: (1) Yes, if $F(0)=0$, which means $P(X>0)=1$
(2) No, if $F(0)>0$, which means $p:=P(X>0)<1$, $q:=P(X=0)>0$.

Proof: (1) For all $n=1,2, \ldots, x \geq 0$ there holds P a.e.

$$
\begin{aligned}
\left\{N_{t}=n\right\} & =\left\{\left(S_{t}\right) \text { has } n \text { jumps in }(0, t], X_{j}>0, j=1, \ldots, n\right\} \\
& =\left\{\left(S_{t}\right) \text { has } n \text { jumps in }(0, t]\right\},
\end{aligned}
$$

thus λ is uniquely defined by $\left(S_{t}\right)_{t \in[0, \infty)}$. Furthermore, P a.e. holds $\left\{n\right.$-th jump of $\left.\left(S_{t}\right)>x\right\}=\left\{X_{n}>x, X_{j}>0, j=1, \ldots, n-1\right\}=\left\{X_{n}>x\right\}$
thus F is uniquely defined by $\left(S_{t}\right)$.
(2) Consider the thinned process $\left(M_{t}\right)$ defined by

$$
M_{t}=\text { number of jumps of }\left(N_{t}\right) \text { with } X_{N_{t}}>0, t \geq 0 .
$$

$\left(M_{t}\right)$ is a Poisson process with parameter $\lambda_{M}=p \lambda$, c.f. [6], Section 6.3.
Moreover, define

$$
G(x)= \begin{cases}\frac{1}{p}(F(x)-q) & \text { if } x \geq 0 \\ 0 & \text { if } x<0\end{cases}
$$

Clearly, G is a distribution function with $G \neq F$ and $G(0)=0$. Let Y_{1}, Y_{2}, \ldots be i.i.d. random variables with distribution function G and let be $\left(M_{t}\right), Y_{1}, Y_{2}, \ldots$ independent.

Define

$$
R_{t}:=\sum_{j=1}^{M_{t}} Y_{j}
$$

and let denote $\varphi_{t}, \psi_{t}, \varphi_{X}$, and φ_{Y} the characteristic functions of S_{t}, R_{t}, X_{t}, and Y_{t}, respectively, then it holds for all real z

$$
\begin{aligned}
\varphi_{x}(z) & =\int_{[0, \infty)} e^{i z x} d F(x) \\
& =e^{i z \cdot 0} \cdot q+\int_{(0, \infty)} e^{i z x} d F(x) \\
& =q+\int_{(0, \infty)} e^{i z y} p d G(y)=q+p \cdot \varphi_{Y}(z)
\end{aligned}
$$

and finally

$$
\begin{aligned}
\varphi_{t}(z) & =e^{i t \lambda\left(\varphi_{X}(z)-1\right)}=e^{i t \lambda\left(q+p \cdot \varphi_{Y}(z)-1\right)} \\
& =e^{i t \lambda p\left(\varphi_{Y}(z)-1\right)}=\psi_{t}(z)
\end{aligned}
$$

Part (2) of the answer has a nice application in reinsurance.

Consider an excess of loss contract which means that the reinsurer pays $Y_{i}=$ $\left(X_{i}-\varepsilon\right)^{+}$if a claim X_{i} occurs. Assume that there are two portfolios with claim distribution functions F_{1} and F_{2} and retentions ε_{1} and ε_{2}, respectively, which yield the same risk process to the reinsurer if and only if
(*) $\frac{1}{1-F_{1}\left(\varepsilon_{1}\right)}\left(F_{1}\left(x+\varepsilon_{1}\right)-F_{1}\left(\varepsilon_{1}\right)\right)=\frac{1}{1-F_{2}\left(\varepsilon_{2}\right)}\left(F_{2}\left(x+\varepsilon_{2}\right)-F_{2}\left(\varepsilon_{2}\right)\right)$ for all $x>0$.

This may be seen by putting $p_{1}:=1 /\left(1-F_{1}\left(\varepsilon_{1}\right)\right)$ and $p_{2}:=1 /\left(1-F_{2}\left(\varepsilon_{2}\right)\right)$.
Because of

$$
\begin{aligned}
\frac{1}{1-F_{i}\left(\varepsilon_{i}\right)}\left(F_{i}\left(x+\varepsilon_{i}\right)-F_{i}\left(\varepsilon_{i}\right)\right) & =\frac{P_{i}\left(\varepsilon_{i}<X \leq x+\varepsilon_{i}\right)}{P\left(\varepsilon_{i}<X\right)}=\frac{P_{i}\left(0<X-\varepsilon_{i} \leq x\right)}{P\left(0<X-\varepsilon_{i}\right)} \\
& =P_{i}\left(X-\varepsilon_{i} \leq x \mid X-\varepsilon_{i}>0\right), i=1,2,
\end{aligned}
$$

(*) is equivalent with
$(* *) \quad P_{1}\left(X-\varepsilon_{1} \leq x \mid X-\varepsilon_{1}>0\right)=P_{2}\left(X-\varepsilon_{2} \leq x \mid X . \varepsilon_{2}>0\right)$.

Example: If X is exponentially distributed, for each pair $\varepsilon_{1}, \varepsilon_{2}>0$ we have $P\left(X-\varepsilon_{1} \leq x \mid X-\varepsilon_{1}>0\right)=P\left(X-\varepsilon_{2} \leq x \mid X-\varepsilon_{2}>0\right)$.

Thus it is impossible to determine ε_{1} and ε_{2} by observing (S_{t}) only.

References

[1] FERGUSON, T.S.: Mathematical Statistics. A Decision Theoretic Approach.

Academic Press (1967)
[2] GOVINDARAJULU, Z.: A Survey of Sequential Statistical Analysis.
Sequential Methods of Statistics, Banach Center Publications, Vol. 16,
Polish Scientific Publishers, Warsaw (1985)
[3] KLEIN, A.: Zur Sequentiellen Analysis von Stochastischen Prozessen.
Doctoral Thesis, Marburg (1999)
[4] MAMMITZSCH, V.: Sequential Probability Ratio Tests and Orthogonal Hypotheses.

Prace Naukowe Akademii Ekonomicznej we Wroclawiu Nr. 442 (1988), p. 41-47
[5] MAMMITZSCH, V.: Sequentielle Tests zur Unterscheidung von Gesamtschaden-
verteilungen. Münchner Blätter zur Versicherungsmathematik, Heft 22 (Dezember 1992)
[6] SCHMIDT, K.D.: Lectures on Risk Theory, B.G. Teubner, Stuttgart (1996)
[7] SCHMITZ, N.: Sequential Probability Ratio Tests for Stochastic Processes: a Review Note. Sequential Methods of Statistics, Banach Center Publications, Vol. 16,

Polish Scientific Publisher, Warsaw (1985)
[8] WALD, A.: Sequential Tests of Statistical Hypotheses. The Annals of Math. Stat.

Vol. 16, (1945), pp 117-186

