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Abstract: WALD’s famous sequential probability ratio test for comparing two
simple
hypotheses P1 and P2 is extended to the case when instead of successive
observations of i.i.d. random variables general onservations can be taken and
final decisions are allowed at a discrete series of pre-assigned time points. It is
shown that the following properties are equivalent:
(a) Each test of that type is closed.
(b) The errors of first and second kind of those tests can be made arbitrarily
small.
(c) P1 and P2 are orthogonal probability measures.
This result is applied to the risk process in insurance mathematics and a unique-
ness problem is discussed.

The discretized generalized sequential probability ratio test (DGSPRT) is a

generalization of A. WALD’s well-known sequential probability ratio test, cf.

[8]. Therefore, we first give a short description of that testing procedure here,

cf. also [1]

a. WALD’s sequential probability ratio test

Let be X1, X2, ... i.i.d. random variables with unknown density function f.

The simple hypothesis ”f = f1” is to be tested against the simple alternative

”f = f2” ,where f1 6= f2 are two known density functions.
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Define the likelihood ratio

q(n) := q(n)(X1, ..., Xn) :=
f1(X1)

...f1(Xn)

f2(X1)...f2(Xn)
, n = 1, 2, ...,

and, moreover, with a, b ∈ R, a < b the stopping rule

T := inf
{

n : q(n) ≤ a or q(n) ≥ b
}

and the (terminal) decision rule

δ :=























f1 if q(T ) ≥ b

f2 if q(T ) ≤ a

.

This means that we take observations as long as the likelihood ratio is strictly

between a and b and stop taking observations as soon as the likelihood ratio

leaves the open interval (a, b), and decide in favour of f1 if the likelihood ratio

in the moment of stopping is ”big” and otherwise in favour of f2.

The pair (T, δ) is called WALD’s sequential probability ratio test. It has two

remarkable properties.

1. P (T <∞ | f1) = P (T <∞ | f2) = 1

which says that the test with probability one comes to an end, no matter which

one of the hypotheses f1 or f2 is true.

2. For each pair (α1, α2) with 0 < αi < 1 (i = 1, 2) there exist reals a, b

with a < b such that

P (δ = f2 | f1) ≤ α1 and P (δ = f1 | f2) ≤ α2
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which says that for appropriate a and b the error of the first kind and the

error of the second kind can be made arbitrarily small.

b. The discretized generalized sequential probability ratio test

WALD’s test has been modified in several ways in order to meet the needs for

more general testing situations, see e.g. [2],. [7]. Here we will generalize the

concept for the case when observations are possible in continuous time.

Definitions. Let be given

(At)t∈[0,∞) an increasing familiy of σ−algebras on Ω, At representing all

possible observations until time t; A∞ := σ

(

∪
t∈[0,∞)

At

)

;

P1 and P2 probability measures on A∞ called hypotheses; a sequence

0 ≤ t1 < t2 < ... with tn → ∞ as n → ∞ representing the time points in

which a (terminal) decision is possible, D := {t1, t2, ...} .

Let denote

P
(n)
i := Pi | Atn

the restriction of Pi to Atn
, i = 1, 2, n = 1, 2, ...; P

(∞)
i := Pi

i = 1, 2, ;

P := 1
2 (P1 + P2) on A∞ a dominating measure of the family {P1, P2} ,

P (n) := P | Atn
the restriction of P to Atn

, n = 1, 2, ... .

By the RADON-NIKODYM Theorem, there exist densities

f
(n)
i :=

dP
(n)
i

dP (n)
, i=1,2; n=1,2,....

Without loss of generality we assume

0 ≤ f
(n)
i ≤ 2 and f

(n)
1 + f

(n)
2 = 2 for all i = 1, 2; n = 1, 2, ... .
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Define the (generalized) likelihood ratio q(n) according to

q(n) :=











f
(n)
1

/

f
(n)
2 if f

(n)
2 > 0

∞ otherwise

and for reals a, b with 0 < a < 1 < b <∞ the stopping rule

Ta,b := inf
{

tn : q(n) ≤ a or q(n( ≥ b
}

and the decision rule

δ :=











P1 if q(Ta,b) ≥ b

P2 if q(Ta,b) ≤ a
.

The pair (Ta,b, δ) is called generalized discretized sequential probability

ratio test

(GDSPRT).

We say that a GDSPRT is closed if and only if Pi(Ta,b <∞) = 1 for i = 1, 2

or,

equivalently, P (Ta,b <∞) = 1 which means that the test with probability one

will end in finite time, no matter which one of the hypotheses is true.

Let us recall that the probability measures are called orthogonal if and only if

there exists an

A ∈ A∞ such that P1(A) = 0 and P2(A) = 1.

In what follows we need some lemmas

Lemma 1.

σ

(

∪
t∈[0,∞)

At

)

= σ

(

∪
t∈D

At

)

.
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The proof is obvious.

Lemma 2. q(n) → q(∞) P a.e. as n→ ∞.

Proof: According to the martingale convergence theorem we have f
(n)
i → f

(∞)
i

P a.e. as n → ∞, i = 1, 2. Observing 0 ≤ f
(n)
i ≤ 2 and f

(n)
1 + f

(n)
2 = 2

for i = 1, 2, ... , n = 1, 2, ... , we immediately see that q(n) → q(∞) P a.e. as

n→ ∞.

Lemma 3. P1 and P2 orthogonal implies P (0 < q(∞) <∞) = 0.

Proof: From P1 and P2 orthogonal it follows

P
({

f
(∞)
1 > 0

}

∩
{

f
(∞)
2 > 0

})

= 0

which implies

P
(

0 < q(∞) <∞
)

= P
({

f
(∞)
1 > 0

}

∩
{

f
(∞)
2 > 0

})

= 0

Remark: The converse of Lemma 3 is true, too.

We are now ready to prove an equivalence theorem, a simple version of which

for the discrete case can be found in [4].

Theorem. The following statements are equivalent:

(i) Each DGSPRT is closed.

(ii) For each pair 0 < α1, α2 < 1 there exists a closed DGSPRT (Ta,b, δ)

with 0 < a < 1 < b <∞ such that

Pi(δ 6= Pi) < αi, i = 1, 2.

(iii) P1 and P2 are orthogonal.
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Proof:

(i)⇒(ii): As (Ta,b, δ) is closed, for suitable a we have

P1(δ 6= P1) =
∞
∑

k=1

∫

{Ta,b=tk, q(k)≤a}
f

(k)
1 dP

≤
∞
∑

k=1

∫

{Ta,b=tk}

a f
(k)
2 dP = a < α.

The proof for P2(δ 6= P2) ≤
1
b
< α2 is similar.

(ii)⇒(iii): Choose a sequence of DGSPRT (T (n), δ(n)) such that Pi(δ
(n) 6=

Pi) <
1
2n ,

i = 1, 2.

Moreover, define

A := lim sup
n→∞

{

δ(n) 6= P1

}

=

∞
⋂

k=1

∞
⋃

n=k

{

δ(n) 6= P1

}

,

then

P1(A) = lim
k→∞

P1

(

∞
⋃

n=k

{

δ(n) 6= P1

}

)

≤ lim
k→∞

∞
∑

n=k

1

2n
= 0

and

P2(A) = lim
k→∞

P2

(

∞
⋃

n=k

{

δ(n) 6= P1

}

)

≥ lim
k→∞

P2

(

δ(n) 6= P1

)

= lim
k→∞

(

1 − P2(δ
(k) 6= P2

)

)

= 1 − lim
k→∞

1
2k = 1.

(iii)⇒(i): Let P1 and P2 be orthogonal and suppose that there exist reals

a, b with

0 < a < 1 < b <∞ such that

0 < P

(

∞
⋂

n=1

{

a < q(n) < b
}

)
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then from Lemma 2 we conclude

0 < P (a ≤ q(∞) ≤ b) ≤ P (0 < q(∞) < b)

which contradicts Lemma 3.

c. An application in insurance mathematics

In collective risk theory we consider the so-called risk process

St =

Nt
∑

j=1

Xj , 0 ≤ t <∞,

where Nt denotes the number of claims in a portfolio up to time t with

(Nt)t∈[0,∞) supposed to be a Poisson process with parameter λ > 0,

Xj ≥ 0 denoting the amount of the j-th claim, where X1, X2, ... are i.i.d. with

distribution

function F, (Nt)t∈[0,∞), X1, X2... independent.

St is the accumulated claim up to time t ∈ [0,∞) and is compound Poisson.

We want to test the hypothesis H1 against the alternative H2 given by

H1 : λ = λ1, F = F1

H2 : λ = λ2, F = F2

where λi are known reals and Fi known distribution functions, i = 1, 2, with

(λ1, F1) 6= (λ2, F2).

Problem: Given arbitrarily small αi > 0, i = 1, 2, is it possible to distinguish

H1 from H2 by means of a DGSPRT with error probabilities of the first and

second kind no larger than α1 and α2, respectively?

Answer: Yes!

A rough sketch of the proof can be found in [5] . A further generalization to
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other stochastic processes are dealt with in [3] .

Proof: Define

At := σ(Su : u ≤ t), t ∈ (0,∞]

A∞ := σ(Su : u <∞) = σ

(

⋃

t∈(0,∞]

At

)

D := {t1, t2, ...} as in part b.

(i) If F1 6= F2, then there exists an x ∈ R+ such that F1(x) 6= F2(x).

Consider the random variables

Zj := 1[0,x](Xj), j = 1, 2, ... .

Obviously, Zj is measurable with respect to A∞, and Z1, Z2, ... are i.i.d. with

E(Zj | Hi) = Fi(X), i = 1, 2. Moreover, by the strong law of large numbers, for

A :=







lim
n→∞

1

n

n
∑

j=1

Zj = F2(x)







∈ A∞

there holds P (A | H1) = 0 and P (A | H2) = 1. Thus, P (· | H1) and P (· | H2)

are orthogonal, and our Theorem finishes the proof.

(ii) If λ1 6= λ2, then choose a subsequence t∗j ∈ D with t∗j+1 − t∗j ≥ 1 for all

j = 1, 2, ...,

and consider the random variables

Zj :=
1

t∗j+1 − t∗j
(Nt∗

j+1
−Nt∗

j
), j = 1, 2, ... .

Again, Zj is measurable with respect to A∞ for all j = 1, 2, ..., and Z1, Z2, ...

are
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independent with

E(Zj | Hi) = λi,

V ar(Zj | Hi) ≤ λi, i = 1, 2; j = 1, 2, ... .

As
∞
∑

j=1

1
j2V ar(Zj | Hi) <∞ (i = 1, 2), from Kolmogorov’s convergence theorem

using the same argument as in (i) we find that P (· | H1) and P (· | H2) are

orthogonal, which as above finishes the proof.

d. A uniqueness problem

Usually, in part c we cannot observe λ and F directly but can only track the

process

(St)t∈[0,∞). This raises the following question, which was put to me by G.

SIEGEL

(oral communication).

Problem: Is (λ, F ) uniquely determinated by the distribution of

(St)t∈[0,∞)
?

Answer: (1) Yes, if F (0) = 0, which means P (X > 0) = 1

(2) No, if F (0) > 0, which means p := P (X > 0) < 1,

q := P (X = 0) > 0.

Proof: (1) For all n = 1, 2, ..., x ≥ 0 there holds P a.e.

{Nt = n} = {(St) has n jumps in (0, t] , Xj > 0, j = 1, ..., n}

= {(St) has n jumps in (0, t]} ,

thus λ is uniquely defined by (St)t∈[0,∞). Furthermore, P a.e. holds

{n-th jump of (St) > x} = {Xn > x, Xj > 0, j = 1, ..., n− 1} = {Xn > x}
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thus F is uniquely defined by (St).

(2) Consider the thinned process (Mt) defined by

Mt = number of jumps of (Nt) with XNt
> 0, t ≥ 0.

(Mt) is a Poisson process with parameter λM = pλ, c.f. [6] , Section 6.3.

Moreover, define

G(x) =























1
p
(F (x) − q) if x ≥ 0

0 if x < 0

.

Clearly, G is a distribution function with G 6= F and G(0) = 0. Let

Y1, Y2, ... be i.i.d. random variables with distribution function G and let be

(Mt), Y1, Y2, ... independent.

Define

Rt :=

Mt
∑

j=1

Yj

and let denote ϕt, ψt, ϕX , and ϕY the characteristic functions of St, Rt, Xt,

and Yt, respectively, then it holds for all real z

ϕx(z) =
∫

[0,∞)

eizxdF (x)

= eiz·0 · q +
∫

(0,∞)

eizxdF (x)

= q +
∫

(0,∞)

eizyp dG(y) = q + p · ϕY (z)

and finally

ϕt(z) = eitλ(ϕX(z)−1) = eitλ(q+p·ϕY (z)−1)

= eitλp(ϕY (z)−1) = ψt(z)
.
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Part (2) of the answer has a nice application in reinsurance.

Consider an excess of loss contract which means that the reinsurer pays Yi =

(Xi−ε)
+ if a claim Xi occurs. Assume that there are two portfolios with claim

distribution functions F1 and F2 and retentions ε1 and ε2 , respectively,

which yield the same risk process to the reinsurer if and only if

(∗)
1

1 − F1(ε1)
(F1(x+ε1)−F1(ε1)) =

1

1 − F2(ε2)
(F2(x+ε2)−F2(ε2)) for all x > 0.

This may be seen by putting p1 := 1/(1 − F1(ε1)) and p2 := 1/(1 − F2(ε2)).

Because of

1
1−Fi(εi)

(Fi(x+ εi) − Fi(εi)) = Pi(εi<X≤x+εi)
P (εi<X) = Pi(0<X−εi≤x)

P (0<X−εi)

= Pi(X − εi ≤ x | X − εi > 0), i = 1, 2 ,

(∗) is equivalent with

(∗∗) P1(X − ε1 ≤ x | X − ε1 > 0) = P2(X − ε2 ≤ x | X.ε2 > 0).

Example: If X is exponentially distributed, for each pair ε1, ε2 > 0 we have

P (X − ε1 ≤ x | X − ε1 > 0) = P (X − ε2 ≤ x | X − ε2 > 0).

Thus it is impossible to determine ε1 and ε2 by observing (St) only.
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