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Abstract: Let M be a compactification of a Stein surface X and let Γ:=M \ X be the connected compact curve. Then we 
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surfaces according to the topological type of  Γ. 
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                              § 0.- Preliminaries 
 
                        
                         Unless the contrary is explicitly stated, all C-analytic spaces are assumed to be non compact. 
Also 2-dimensional connected C-analytic manifolds will be referred to simply as surfaces. All compact 
surfaces are assumed to be minimal i.e. free from exceptional curves of the first kind. For a given compact 
surface M, let us denote by a(M):= the transcendence degree of the field of global meromorphic functions on 
M over C. Also 1-dimensional  C-analytic spaces will be referred to simply as curves. 
  
 
(0.1) Definition : (a) A compact surface M is said to be an analytic compactification of a given 
surface X if there is given 
 (i) a compact C-analytic subvariety Γ ⊂ M and 
 (ii) an analytic isomorphism X ≅ M \ Γ 
(b) A surface X is said to be compactifiable if it admits an analytic compactification M 
(c) A compactifiable surface X is said to admit an algebraic (resp. a non algebraic) compacti- 
fication if M is a projective algebraic (resp. a non algebraic) variety 
(d) A surface X is said to admit an affine structure if there exists an affine variety X such that X≅X h 
where X h is the underlying C-analytic space associated to X.  
(e) Finally the toric surface X ≅  C* x C*, where C* := C \{0}  will be denoted, from now on  by Š   
 
Our main concern here is the following 
(0.2) Problem: To classify the compactifiable Stein surfaces ? 
In [V3] it was shown that all compactifiable Stein surface are quasi projective, in particular they 
admit algebraic structure. 
Furthermore one has: 



(0.3) Theorem: [V3] Let X a given Stein surface.  
Then all  non algebraic compactifications  of X are bimeromorphically  equivalent, provided  X≠ Š  
 
So naturally one would like to raise the following 
(0.4) Problem: Does Theorem 0.3 hold if  the“non algebraic” hypothesis is replaced by the 
‘algebraic” one  ? 
Notice that all known examples of compactifiable Stein surfaces, which are not affine do indeed 
admit  some affine structure; hence another  fundamental issue is  
(0.5) Problem: Do compactifiable  Stein surfaces always admit some affine structure ? 
Finally there was the following  
(0.6) Problem: (Hartshorne) To classify Stein surfaces which are not affine ? 
 
This paper is the continuation of [V3]. Also it seeks to rectify and strengthen some results there. So 
the organization will be as follows. In section 1 we shall briefly review the intrinsic character of Š 
In section 2, we shall state concisely the algebraic structures of compactifiable Stein surfaces. In 
section 3, the uniqueness issue of compactifiable Stein surfaces will be taken up. Section 4 will be 
devoted to the proof of the Main Theorem which provides an affirmative answer to Problem 0.4. 
The affine structure of compactifiable Stein surface will be explored in section 5. Finally in section 
6, some generalization problem of arbitrary compactifiable surfaces will be studied 
 
 
                                                              § 1.- The toric surface  
 
(1.1) This venture, as well as many others, was inspired by the groundbreaking paper [Ho] and by 
the following pioneering observation [S] (p.108): 
“For any given C-non singular elliptic curve T viewed as a Lie group, there exists a unique 
algebraic group G which is a non trivial extension  
                          0    →   Ga     →    G      →     T    →      0                                        (*) 
where Ga is the 1-dimensional additive group. Consequently one can check ([H1] p.232) that  
(a)  H0(G, O ) = C where O is the algebraic structure sheaf of G , and 
(b) analytically G is isomorphic to Gm x Gm where Gm is the 1-dimensional multiplicative group “. 
  
(1.2) We infer readily that Š admits both affine algebraic and non affine algebraic structures. 
 In other words, Š admits 2 distinct families of algebraic compactifications:  
(a) the non rational ones, namely  elliptic ruled surfaces π:  E  → T  and 
(b) the rational ones , namely  P2 and Hirzebruch surfaces,  Fn for any n ≥ 0 and n ≠ 1  
 
(1.3) Remark: (1) [Sh][Si][U] Those 2 families are the only algebraic compactifications of Š 
(2) Although all rational structures of Š are birationally equivalent, the novelty of (*) stems from 
the fact that it inherits Š with infinitely many different (i.e. non birationally equivalent) algebraic 
structures  
 
(1.4) This phenomenon shows a sharp contrast with the case when dim X = 1 [Si] or when X is a 
compact C-analytic space which admits, in view of the GAGA principle at most one algebraic 
structure. Also notice that such a construction was also established in [MM]( p.145) 
(1.5)                 “ Let G  be the rank 2 group of (2x2) diagonal matrices with complex entries. Hence  
G ≅ C*x C* . Let A be the subgroup of G  , consisting of those matrices of the form 
                                         ┌    exp z         0         ┐ 
                                         └      0          exp iz      ┘
with z ∈ C. Obviously A is a closed subgroup of G . Since A ≅ C, we infer that G is a topologically 
trivial principal bundle over G/A with structural group A. Since C is contractible, one has an 



isomorphism of fundamental groups π(G) ≅ π(G/A). Since G/A is 1-dimensional and its fundamental 
group is abelian with 2 generators, it follows readily that G /A is an elliptic curve.”  
(1.6) This result tells us that the toric surface Š admits a structure of an affine principal  line bundle 
of degree zero over an elliptic curve. 
Also notice that few years earlier, the structure of such bundle, also known  as A-bundle of degree 
zero,  was thoroughly investigated in [A]. Apparently, it was not aware that the latter is indeed 
biholomorphic to C* x C*, until [S] and [MM] came along  

                                                                
 
                § 2.- The Existence of an algebraic structure 

 
Our main goal here is the following: 
(2.1) Problem: To classify the Stein surfaces X which admit  non algebraic compactifications ? 
 
First of all , let us recall some fundamental constructions (see [E1,2]) 
(2.2) Let m ≥1 and k ≥ 1 be fixed integers. Let  α∈ C with 0 < |α|< 1, let t:=( t1,…., tk)∈Ck 

and let v ∈C*. Now, let τ := Σ1 ≤ j ≤ k   tjvj-1   and let us define a holomorphic automorphism 
                          gk,α,τ  :C x C*       →              C x C*                         by 

                                     (u, v)      |→          (vku +τ,  αv) 
 
(2.3) Let Ak,α,τ   be the quotient surface C x C*/< gk,α,τ >. Then one can check that 

(a) Ak,α,τ is a bundle of affine lines with structural group the affine group, over the elliptic curve 
Cα  :=C*/<α> 

(b) Its linear part L is actually a holomorphic line bundle over Cα  such that c1(L) = -k 
(c) In the case where τ ≠ 0, Ak,α,τ will be referred to, from now on, as generic affine C-bundles 

of degree - k over Cα    
Let us mention some intrinsic properties of affine C-bundles 
(2.4) Theorem: [E1,2] Let A be an affine C-bundle of degree – k over some elliptic curve C*/<α> . 
Then A is equivalent as an affine C-bundle to some Ak,α,τ  for some τ∈ C* 
(2.5) Lemma:[V3] (1) The generic affine C-bundles Ak,α,τ (i.e. τ  ≠ 0) are free of compact curves  
(2) Meanwhile Ak,α,0 is the total space of a line bundle  L over Cα  such that c1(L) = -k;  
  
 (2.6) Definition: [K1] (see also [V7]) Let t∈ C*, α∈ C with 0 < |α|< 1, let U:= C2 \ {0,0} and let  
g: U   →   U be an automorphism of U defined by 
                                  g(z, w) := (αmz  + twm,  αw)  
Now one can check [K1] (p.695) that the cyclic group <g> is properly discontinuous and the 
quotient space Hα,t,m :=  U/<g> is a compact surface with  
                        b1(Hα,t,m)  = 1  and       b2(Hα,t,m  ) = a(Hα,t,m) = 0                                                 (♦) 
where bi( ) are the Betti numbers. Furthermore, the punctured line U ∩{w = 0} is invariant under g, 
so it is mapped by the projection π: U →  Hα,t,m onto a non singular elliptic curve Γα := C*/<αm> 
which is  the only compact curve in Hα,t,m

                        Hα,t,m   is called the non elliptic Hopf surface of Type (I)  
    
(2.7) It was first shown in [Ho] that Hα,t,m  \ Γα  ≅  Š for any α and t∈ C* 
 
 (2.8) Definition: [H2] (V.2) For any (geometric) ruled surface π X  →  Cg where Cg is a compact 
curve of genus g ≥ 0, there exists a rank 2 vector bundle Vg on Cg such that X  ≅ P(Vg). 
Furthermore, we assume that Vg is normalized in the sense of Hartshorne [H2](V.2.8.1) and e:= -
c1(det Vg ) will be referred to as an invariant of X 



Let Ξ be the canonical section of X with OX(Ξ)≅ O(1) where O is the structural sheaf of P(Vg ). 
Then  Ξ2= -e. Also  let F:= π-1(x) for any x∈ Cg be the fibre of X 
(2.9) [V1,2] Definition: A surface X is said to be strongly pseudoconvex (or 1-convex for short) if 
there exist: 
(1) a 2-dimensional Stein space Y with only finitely many isolated normal singularities, say {pi}and 
(2) a proper and surjective morphism π : X→ Y. inducing a biholomorphism 
                                        X  \ S   ≅   Y \ ∪i { pi} 
where S:= ∪iπ-1(pi) is called the exceptional set of X 
(2.10) Remark: Obviously any Stein surface is 1-convex (with dim S = 0). So from now on 1-
convex surfaces which are not Stein (i.e. dim S > 0) will be referred to as proper 1-convex surfaces 
(2.11) Lemma: (1) The generic principal affine C-bundles  Ak,α,τ (i.e. τ  ≠ 0 ) are compactifiable 
Stein surfaces which also admit affine structure  
(2) Meanwhile Ak,α,0  are compactifiable proper 1-convex surfaces with exceptional set, an elliptic 
curve  Ξ,  such that Ξ 2 = -k < 0 
  Proof: By definition, each Ak,α,τ admits an elliptic ruled surface π:Eα :=P(V1) →  Cα  as its 
compactification. In particular, one can find a section Θ ⊂ Eα such that Ak,α,τ ≅ X:= Eα\Θ .Now one 
will have the following  3 alternatives: 
(a) If Θ2< 0, then V1 is necessarily decomposable and Θ = Ξ the canonical section; hence there 
exists a section at “infinity”, say Λ⊂ Eα such that Λ2 > 0 and Θ.Λ = 0, i.e. Λ ⊂ X ≅ Ak,α,τ which is 
not possible in view of Lemma 2.5 
(b) If  Θ2= 0, it means that Ak,α,τ is an affine bundle of degree 0, but this is not possible, since k ≠0  
(c) Therefore, Θ2> 0. We infer readily that Ak,α,τ  are 1-convex  see. e.g. [V5]  
(1) Now, as far as  generic affine C-bundles Ak,α,τ are concerned, as previously observed (Lemma 
2.5)  since τ ≠ 0, Ak,α,τ are free of compact curves. Hence Θ is actually an ample divisor. Thus X is 
affine. In particular Ak,α,τ is Stein 
(2) On the other hand as noticed earlier, if Θ := Eα \ Ak,α,0, then Θ2 = k; in particular Ak,α,0 is proper 
1-convex and admits  Ξ := the canonical section of  L , as exceptional set with Ξ 2 = -k < 0 
Q.E.D.                                                  
 
Therefore, in view of Lemma 2.11, Problem 2.1 is completely settled by the following  
(2.12) Theorem: [E2] [V3] Let M non algebraic and compact surface, let Γ ⊂ M be a compact 
analytic subvariety and let X:= M \Γ. Then the following conditions are equivalent 
(i)  X is Stein   
(ii)  X ≅ Š or Ak,α,τ  for  some k,  α  and τ  as in  (1.1) withτ ≠  0 
(iii) X admits an affine structure 
 (2.13) Corollary: A Stein surface X is compactifiable iff X is quasi- projective    
(2.14) Corollary: Any compactification M  of a Stein surface X is projective algebraic provided X ≠ 
Š and Ak,,α,,τ  

                                                   
 
 
                                           §.3. The Uniqueness issue 
 
(3.1) As notice earlier, one has Hα,t,m  \ Γα   ≅ Š  ≅     Hβ,s,m \ Γβ for any α and.β. On the other hand, one 
can check that  
                                      Hα,t,m   is bimeromorphic to Hβ,s,m   iff    α = β                            (!) 
 
Hence complementing (0.4), we infer from (!) that Š admits infinitely many different (i.e. non bime-
romorphically equivalent) non algebraic structures. Hence one would like to raise the following  



(3.2) Problem: Up to biholomorphism, is Š the only compactifiable Stein surface which admits non  
algebraic (resp.algebraic) compactifications which, as surfaces, are not bimeromorphically equiva- 
lent ? 
Our main purpose here is to provide an affirmative answer to this Problem, namely  
 
(3.4) Main Theorem:  Let X be a given compactifiable Stein surface. 
Then all algebraic  compactifications of X are birationally equivalent, provided  X ≠  Š   
 
The proof of this result will be given in the next section. We would like to exhibit here a very 
special but practical version of Theorem 3.4 as an illustration which has interest in its own right.. 
But first of all few basic ingredients are in order 
(3.5) Definition:[I] Let D be a non singular algebraic curve and let C be its non singular 
compactification (which exists and is unique). Hence there exist finitely many points{qi}∈ C such 
that D ≅ C \.∪i qi Now let g:= genus of  C  and n:= card |qi |. Then we say that D  is of type (g, n)  
 
(3.6) Theorem: [I] (Theorem 5) Let X be a Stein surface. Assume that there exist a non singular 
algebraic curve R and a surjective morphism π : X  →   R . Assume that 

(a) π is of maximal rank for any x ∈ X 
(b) each fibre D := π-1(t) for any t.∈ R  is a non singular algebraic curve of type (g,n) such 

that 
                                             2g  + n  > 2                                                                         (♠) 

Then X only admits algebraic compactifications which are birationally equivalent  
 
We are now ready to state a special case of Theorem 3.4 
(3.7) Proposition: Theorem 3.4 holds  if one assumes that X ≅ A1x A2, product of two non singular 
algebraic curves 
Proof: Notice that any non singular algebraic curve D does satisfy (♠) with 2 exceptions: C and 
C*. Consequently it follows readily from Theorem 3.6 that Proposition 3.7 does hold with possibly 
3 exceptions: 

(i) C2 or 
(ii) C x C*    or 
(iii) C* x C* 

However, we infer from results in [K2] (resp. in [U]) that the only compactifications of C2 (resp. C 
x C*) are rational compact surfaces. Hence our proof is complete.                                            
                                                                                                                                           Q.E.D.  
(3.8) Corollary: Let X:= A1x A2, be the product of two non singular algebraic curves 
Then X only admits algebraic compactifications which are birationally equivalent with only a sin-
gle exception, namely X = Š  
                  
                                
                                              
 
                                                      §4. The generic birationality 
 
The main purpose of this section is to devote to a complete proof of Theorem 3.4 above. But first of 
all few basic ingredients are in order: 
(4.1) Definition: Let M be an analytic compactification of some Stein surface X, let Γ:= M\X and 
 let KM be the canonical bundle of M. From the vector space V:= H0(M, O (m KM + (m-1)Γ) , let us 
consider a basis {φ0,…,φN} which gives rise to a well defined meromorphic map: 
                                         Φm: M              →              PΝ 
                                                  z    |→            Φm (z):= [φ0:…:φN] 



where N:= dim V – 1 
Following [Sa] (p.245), let N(X):= {m >0| dim V > 0} and let us define  
                  max m {dimΦm(M)}       if N(X)  ≠  ∅ 
 k(aX ):=                                                                                                                                                             (0) 

                      − ∞                                     if N(X) = ∅. 
 
 Notice that k(aX ) which will be referred to as the analytic Kodaira dimension of X, is a bimero-
morphically invariant. On the other hand, we have 
  
(4.2) Definition: [Ii.2,3] In formula (0) of the definition  (4.1) ,  if one replaces the vector space V 
by W:=  H0(M, O (m( KM + Γ)),  then one obtains the so called logarithmic Kodaira dimension of 
X which will be denoted from now on by kl (X) 
Notice that in contrast with ka(X) , kl (X) which is a birational invariant,  is not biholomorphically 
invariant , an aspect  which will be fully exploited later on in our strategy  
Also, it is obvious from the definition, that in the special case where Γ = ∅, kl(M) and ka(M) will 
coincide with the standard notion of Kodaira dimension k (M) for compact surfaces M. Now in 
general, if M is a compactification of some Stein surface X, then one has [Ii(2)][Sa] 
                                         − ∞ ≤ k (M) ≤ ka (X) ≤ kl (X) ≤ 2                                              (1) 
 
(4.3)Example: Let X1:= P2\ Γ where Γ consists of 3 lines in general position. Let V  be an inde-
composable rank 2 bundle over an elliptic curve with invariant e = 0. From [H2](V.2) we know  
that there exists a unique section Γ ⊂ P(V) such that Γ2 = 0. Now let X2:=P(V)\ Γ  Then one can 
check that: 
(1) X1≅ X2 ≅ Š 
(2) kl (X1) = 0 and kl (X2 )= -∞ 
(3) ka(X1) = ka(X2) = -∞ 
 
(4.4) Proposition:[Sa]  ka(X = 2 iff kl(X) = 2 
(4.5) Proposition: [Sa] Let Γ be a compact curve of degree d in P3 and let X:= P3 \Γ. Then   
                                 2             if d > 3 
               k a (X) = 
                                 − ∞         otherwise  
 
As far as Stein surfaces with ka (X) < 2 are concerned, we have the following crucial results 
(4.6) Theorem: [V2] (Lemma 2)   Let M be an algebraic compactification of a Stein surface X. 
Assume that ka (X) < 2. Then M is a ruled surface 
Combining Theorem 4.6 with a main result in [Sr] (Theorem 3.4) one obtains the following  
 
(4.7) Theorem: Let π: Rg →  Cg with g ≥1, be an irrational  ruled surface and let Γ ⊂ Rg be a 
compact curve. Assume that X:= Rg \ Γ is Stein  and admits non birationally  algebraic 
compactifications. Then  

(a) g = 1 i.e. π: R1  →  C 1 is necessarily an elliptic ruled surface; furthermore  
(b) Γ  is  either  
(i) a section  or 
(ii)  an irreducible  2-section, or 
(iii)  a reducible 2-section, C  ∪ D   where C (resp. D) is a section 

 



(4.8) Notations: From now on, a surface X:= R1\Γ in Theorem 4.7 will be denoted by XI (resp XII, 
resp XIII)  if Γ is of type (b) (i) (resp.(ii), resp.(iii)) of Theorem 4.7. Also from now on let us adhere 
to the following convention R1= P(V) for some rank 2 bundleV  over C1 with invariant e 
 
(4.9) Definition:[F] Let π:M→   C be a ruled surface and let Γ⊂ M be a compact curve . Then X:= 
M\ Γ is said to admit a C*-fibration  if  Γ. F = 2  for generic fibre F  in M. From now on a C*-
fibration structure on X will be denoted by f:X  →  C  where f:=π|X  
 
Now let us look at the following alternatives: 
 
(4.10) By taking  Proposition 4.4 into account,  we have 
 Theorem: [Sa] Assume that kl (X) = 2 and X is quasi projective.  Then all algebraic 
compactifications of X are bimeromorphically equivalent 
 
(4.11) Theorem : (see e.g.Remark of Lemma 2.4 in [GS] (p.120)) 
 Assume that  kl(X) =1 and furthermore assume that X is affine 
 Then X admits a structure of a C*-fibration f: X  →   C which is uniquely determined 
Precisely if g:=X’ →   C’ is another C*-fibration, such that κ: X ≅ X’ , then there exists an 
isomorphism σ: C ≅ C’ such that g = σ ο f ο κ 
 
 (4.12) Theorem: Let M  be a compactification of X.  Assume that kl(X) = 0.  
Then M is  a  rational surface provided  X ≠  Š.  
Proof: Assume that M = R g is an irrational surface  with g ≥ 1. In view of the hypothesis,  
                                                K + Γ ≡  0                                                    (^) 
where  K  is the canonical bundle of R g, ≡ stands for numerical equivalence, and Γ := R g\X. In 
view of Theorem 4.7, one can assume that Γ is free of fibre components.  
(1) Assume that Γ is irreducible. Hence, from (^) , we have that   
                                          Γ2  =  K 2    
                                                 =  - 8( 1 – g)  ≤ 0 
Since X is Stein, so necessarily  
                                                        Γ2 = 0 i.e. g = 1.                                     (%) 
 In this situation, one has 3 alternatives for the elliptic ruled surface R1:= P(V)  
(i) V is a decomposable rank 2 bundle with e = 0. In this case its canonical section Γ will satisfy 
(%). From the decomposability assumption of V, it follows that R1 also contains compact curves 
Θ with Θ.Γ = 0, i.e. Θ ⊂ X, contradicting the fact that X is Stein 
(ii) V is an indecomposable rank 2 bundle with invariant e = -1. Then   
                                                             Γ ≡ 2Ξ - F                                         (•)                    
which is an elliptic curve will satisfy (%). But it was shown [N] (Lemma 6.8)  that in this situation, 
X also contains compact curves. That will contradict  the Steiness of X. In fact, in [Su] by realizing 
R1 as an hyperelliptic surface over P1, (at least) 3 disjoint curves of type (•) in X, were explicitly 
exhibited. Consequently, this case cannot happen, as long as X is required to be Stein.  
(iii) V  is an indecomposable rank 2 bundle with invariant e = 0. 
In this case, there exist a unique section Γ ⊂  P(V) such that Γ2 = 0. Here one can check that X ≅ Š 
 
(2) Assume that Γ:= R 1\X   is reducible. Then let Λ ⊂ Γ be an irreducible component. As 
mentioned earlier, one can assume that Γ is free of fibre components; hence Λ .F > 0 for any fibre F 
of R1 Hence 
                             0 = (Λ.K +Γ) = Λ2  +  K .Λ +  Λ. (Γ \ Λ)  
                                 = 2 g(Λ) – 2  +   Λ .(Γ \ Λ) 



Hence g(Λ) = 1 and Λ. (Γ \ Λ) = 0 i.e. Λ is isolated in Γ. But X is Stein so Λ = Γ and the same 
argument as above will apply                                                                                    Q.E.D 
 
(4.13) Remark: (a) It follows from the arguments in (1) (ii) we infer that the surfaces X ≅ Xm 
where m = II or III  are affine 
(b) A complete list of rational surfaces satisfying Theorem 4.12 can be found in [Ii1] Prop.6 and 16 
 
We are in now in a position to provide a complete  proof of the Main Theorem.  
Proof: We are going to show that all algebraic compactifications of  X = Xm  where m = I or II or 
III are birationally equivalent, unless X ≅ Š  
  Step 1: Assume that                                            
                                                X = Xm with m = I or II .                           (¶) 
Let us  assume that X admits a rational compactification say  M. So let us consider the following 
exact sequence of  homology groups with C coefficients 
          
    0 =  H3(M)  →   H3(M,Λ) → H2(Λ)→  H2(M) →  H2(M,Λ) →  H1(Λ)→ H1(M) = 0     (2) 
where Λ:= M \ X  
On the one hand, in view of  the hypothesis (¶), one can check that  
                                  b1(X) = 2   and    b2(X) = 1.                                                               (3)  
On the other hand, by duality, we have  
                        H3 (M, Λ) = H1 (X) and H2 (M, Λ) = H2 (X)                                         (4) 
Since C-dim.H2 (Λ) =:µ (Λ) is equal to the number of irreducible components of Λ, by combining 
(2), (3) and (4), one can check that: 
(a) If M = Fn , then  µ(Λ)= 4 , Λ consists of 2 sections and 2 fibres  and X  ≅ Š 
(b) If M = P3, then µ(Λ) = 3, Λ consists of 3 lines in general position and X ≅ Š                        
 
 
Step 2:  As notice earlier, (0.8),  Š has a structure of an affine C-bundle of degree 0 over an elliptic 
curve; So let R1 be a compactification of  Š. Then it follows readily that Γ:= R1\ Š is a section with 
Γ2 = 0. We infer readily that XII can not admit  a rational compactification  
 
Step 3:  In step 1, assume that  
                                               X = XIII                                                                                  (¶¶) 
 Since C and D are sections and since bi(X)= 0 for i ≥ 3, the topological Euler number χ(X) of X 
can be expressed as follows: 
                             χ(X)  =   b0 (X) – b1(X) + b2 (X)  
                                       =   χ(R1) - χ(Λ) 
                                       =   ν > 0                                                                    (5) 
where ν:= Card(C ∩ D). In view of Lemma (7.10)[F]    
                                          b1(X) = 2 (resp.=  3)  .                                                                 (6) 
Now let us assume  that  
                                                      kl( X)  = − ∞ .                                                      (7)                                           
 Then we shall use the following informations  to rule out any rational compactfication for (¶¶) 
 
(α) Assume that all the components of  Λ are projective lines. By excluding the case where X ≅ Š, 
one has the following alternatives: 
(i) If  M = P3, then one can check that M is the product of 2 affine curves.  Therefore Theorem 
(3.6) will exclude this possibility for X 



(ii) On the other hand, let us assume that  M = Fn. Then some careful calculations (see e.g. [F] 
Lemma 7.9) show us that, in view of (2) and under the constraints (6), Λmust consist of 1 section 
and 3 fibres (resp. 1 section and 4 fibres). Now one has 
                                                         χ(X) =χ (Fn) -χ (Λ) 
                                                                  = 4 – (1 – 0 + µ(Λ) ) 
                                                                  =  - 1 (resp. -2)  
which in either case will contradict (5)  Hence a rational compactification M of XIII is not possible: 
 
(β) Otherwise, at least one component of Λ say Ξ is either 

(a) an irrational curve (with possibly singularities) or 
(b) a rational curve with one node 

This certainly will be the case when ν is large.  Indeed, since 1≤ b2(M) ≤ 2, ie. µ(Λ) ≤ 5, then (5) 
will tell us that b2(M) is big and so does b1(Λ)in view of (2). 
(i) If M = P3, Proposition 4.5 tells us that ka(X)  = 2 contradicting (7). Hence M cannot occur 
 (ii) On the other hand if M  = Fn, we infer from Hurwitz’s Formula that  Ξ is a mutisection. Now 
in this situation one can assume that M= F0 = P1x P1, [Ve](Theorem4.1) Then from definition 4.2 , 
one can check that kl (X) ≥ 0.  
Now in view of the presence of the elliptic ruled surface R1 which is a compactification of XIII , we 
infer from Theorem 4.12 (resp. Theorem 4.11, resp. Theorem 4.10) that such a rational 
compactification M for (¶¶) cannot occur. 
 
Step 4:  Let us use the same conventions as in (4.8). Assume that X= XI admits another elliptic 
ruled surface, say E1  →  D1as its compactification, i.e.there exists a compact curve Θ ⊂ E1 such 
that  
                                            σ : X ≅  X.’ := E1 \ Θ                                                                (8) 
where E1 = P(W) for some rank 2 bundle W over D1with invariant e’. 
Since one excludes the case where X ≅ Š, one can assume that  
                                                 Γ2 = k > 0,                                                                  (9) 
i.e.  X is an affine surface where Γ:= R1 \X. In view of Theorem 4.7, one can assume that Θ has no 
fibre components. Now by using Mumford-Ramanujam theory [E2] [Sh] [U] one can show, on the 
basis of (8), that  ∂U is homotopically equivalent to  ∂V where U (resp.V) is  some tubular neigh-
borhood of  Γ (resp.Θ);  we infer from (9) that  Θ2  = k   
 
Case 1: Assume that V is a decomposable vector bundle. Hence R1 admits a canonical section 
Ξ  such that  Ξ2 = - ε < 0. From (8), it follows that σ(Ξ\ (Ξ∩Γ))=:€ ⊂ E1is an algebraic curve. Since 
dim. €  = 1, it admits a unique algebraic structure[Si] , so let Ξ‘be the compactification of  € . Then 
one can deduce from (8) that  Ξ ≅ Ξ’ and  (Ξ’) 2 = Ξ2  = - ε < 0 . Since E1 is an elliptic ruled 
surface, this will imply [H2] (V.2) that W  is also a decomposable rank 2 bundle and that E1will 
admit Ξ‘ as its canonical  section. Now by identifying the base curve of the elliptic ruled surface 
with its canonical section, we infer readily that C1 ≅ D1 and  e = e’ = ε > 0 Consequently R1 ≅ E1 
Case 2: Assume that V is indecomposable. Then the same argument as above shows that W must be 
also indecomposable. Hence (8) is actually an isomorphism of affine C-bundles of degree ≠ 0. As 
note earlier , Theorem 2.4, (see also [Ka]), each affine C-bundle A of degree – k < 0, over an elliptic 
curve e, is completely determined by its linear part L which is a line bundle over e such that c1(L) =  
-k; however , from Lemma 2.10,  the total space of  L is in fact a proper 1-convex  surface which is 
determined by its exceptional set S which in turn is the canonical section of the elliptic ruled 



surface. By identifying the base curve of the elliptic ruled surface with its canonical section, again 
we infer readily that C1 ≅ D1; hence R1 ≅ E1 
(4.13) Remark: This result  is an analogue of Theorem (4.11) for affine surfaces X which admit a 
C-fibration structure over some elliptic curve e and which satisfy the condition kl(X) = -∞  
 
 Step 5:  With the same situation in Step 4 with X = XII or  XIII 
Assume that kl(X)  = − ∞. Since X is Stein, then  Θ got to be a section  without any fibre 
components.. Thus it brings us back to case Step 4. Otherwise, one can check that kl (X) ≥ 0, Then 
similar arguments as above, will show that kl (X)  = 0 is not possible. Now if kl (X) = 1 (resp = 2) 
we infer from Theorem 4.11  (resp. Theorem 4.10 ) that all algebraic compactifications of X are 
birationally equivalent  
 
Step 6:  Assume that Xm with m = I or II or III, admits an irrational ruled surface Rg with g > 1 as 
its compactification. Clearly this case can not occur in view of Theorem 4.7   
                                                                                                                                 Q.E.D. 
 
 
                                                              § 5.- The Affine structures 
  
 
 As far as affine surfaces are concerned, we have the following: 
. 
 (5.1) Proposition : [V3,4] Let X be an  affine surface. Then ka (X) = -∞ or 2   
 In parallel to 5.1, we have 
 
(5.2) Theorem: Let X be a compactifiable Stein surface. Then ka (X) = -∞ or 2  
Proof:Let M be a compactification of X and let Γ := M \ X 
 
Case1: Assume that M = P2. Then our conclusion will follow from Prop. 4.5 
Case 2: Assume that M is a ruled surface. Then a main result in [V5,6] tells us that X is 
biholomorphic to,  either 

(a) an affine surface, or 
(b) P(V )\ Γ whereV  is an indecomposable rank 2 bundle over a compact curve Cg with g > 0 

with invariant e < 0 and Γ is a section with Γ2 = 0 
For (a) Proposition 5.1 will apply . As far as (b) is concerned, one has 
 Claim: If  Γ ⊂ P(V) is a section then  ka (X) = -∞  where X:= P(V)\Γ 
Proof of the Claim: Assume such that kl (X) ≥ 0. Let us consider the linear system |m(KM + Γ)| for 
any integer m > 0 Since Γ is a section, KM + Γ ≡ - Ξ + kF for some integer k. Hence, one can find 
at least one effective element D∈ |m(KM + Γ)|. But  D.F= -m < 0 . Contradiction.  
Consequently kl(X) (and a fortiori, ka (X) ) is equal to -∞ 
Case3:  Assume that M is algebraic and k(M) ≥ 0. Then it follows from [V2] that ka (X) = 2  
Case 4: Assume that M is a non algebraic surface. Then it follows from Theorem 2.12 that X is 
biholomorphic to, either 

(a)  Š  which as affine line bundle of degree 0, admits an elliptic ruled surface as compactifica-
tion such that Γ is a section with Γ2 = 0. Thus from the Claim above, ka (X) = -∞   or 

(b)  Ak,α,τ which as affine C bundle of degree -k, will admit an elliptic ruled surface as 
compactification such that Γ is a section with Γ2 > 0. Hence again ka (X) = -∞ 

                                                                                                                                  Q.E.D. 
 



(5.3) Remark: (1) In [V3] a proof of Theorem 5.2 was also given. However it was incomplete 
(2) As notice in (0.3) (b) (resp. Lemma 2.11), the toric surface Š (resp. the generic affine C- 
bundles  Ak,α,τ ) admit  affine structures. On the other hand, as previously noticed, the analytic 
Kodaira dimension is bimeromorphically invariant; hence the above results naturally lead us to the 
following 
 
(5.4) Problem: Do compactifiable Stein surfaces X always admit some affine structure ?. 
Our main goal here is to provide a negative answer to this Problem. 
 
(5.5) Counterexample: Let Vg  be an indecomposable rank 2 vector bundle over some non singular 
compact curve of genus g ≥1 with invariant e = 0.  Then one can check that the ruled surface Rg := 
P(Vg) carries a section Γ such that 
                                                         Γ2  =  - e  = 0.                                                     (♣)  
On the other hand it was shown [V5,6] that Xg:= Rg \ Γ is indeed Stein. Notice that X1 ≅ Š. We 
deduce from (♣) that Xg are not affine.. Then it follows readily from Theorem 3.4 , that, in contrast 
with X1, all compactifications of Xg for g > 1, are birationally equivalent; therefore Xg do not admit 
any affine structure if g > 1. 
 
(5.6) Notice that ka(Xg) = - ∞. In [V4,] it was anticipated that Problem (5.4)  might have an 
affirma-tive answer provided ka (X) = 2, which is not always the case as shown by the following 
  
(5.7) Counterexample: Step1:  Here we follow closely an idea in [B]. From now on let us denote 
Rg simply by R  and let us select a sufficiently ample divisor, say δ on R  such that  

(a) KR  +  δ  is very ample and  
(b)  |2δ| contains an effective smooth divisor, say  ∆. 

 
Let π: M → R  be a double cover of R  , ramified along ∆.Then from the Leray spectral sequence 
one has 
                                  H0 (M, KM)   ≅   H0(R , KR)  ⊕  H0 (R, KR + δ )                            (♥) 
                  
Since R  is a ruled surface the first summand in (♥) is zero. Furthermore (a) and (b) will guarantee 
that M is a surface of general type   
 
Step2.  Let Θ:= π∗ (Γ). Hence in view of (♣),  
                                                 Θ2 = 0                                          (♣♣) 
 Furthermore Z := M \ Θ , being a finite cover of the Stein surface R ,  is itself Stein. Since M   is  of 
general type it follows readily that ka (Z) = 2. In view of (♣♣),  Z is not affine. Since ka (Z) = 2,  
Theorem 4.10 tells us that analytic compactifications of Z are biholomorphic. We infer readily that 
Z does not admit any affine structure. 
 
 
                                                        
                                           §6. Some further prospects. 
    
 (6.1)  The above constructions provide us concrete examples of compact algebraic surfaces M 
which are ruled (resp. of general type) namely Rg (resp. Mg), for any g > 1 (resp. any g> 0), such 
that M is a compactification of a Stein surface X, namely Xg (resp. Zg) which does not admit any 
affine structure Such construction  was motivated by a question raised by Hartshorne. First of all let 
us introduce the following: 
 



(6.2)Definition: Let Γ be a connected compact curve in a given compact surface M. Then Γ is said 
to be topologically of positive (resp. null, resp. negative) type if  Γ2 > 0 (resp. = 0, resp. < 0) 
 
(6.3) Problem: ([H1] Problem 3.4,p.235) Let M be a compact surface, let Γ ⊂  M be an irreducible 
compact curve and let X:= M\.Γ 
Assume that X is free of compact curves. 
Is X always Stein, provided Γ is topologically of non negative type ? 
In [V5,6] an affirmative answer to Problem 6.3 was given, provided k (M) = - ∞ ; concisely one has 
 
(6.4) Theorem: [V5,6] Let M be a compactification of some surface X. 
 Assume that k (M) = - ∞. 
(I ) Assume that M is non algebraic.  Then X is Stein iff  X ≅ Š or  Ak,α,τ 
(2) Assume that M is algebraic.  Then X is Stein iff X is either affine or X  = Xg  for any g > 0 

Complementing this result, it is not very hard to prove the following, see also [V1] 
 
(6.5)   Theorem:  Let M be a compact algebraic surface, let Γ ⊂ M be a compact analytic 
subvariety and let X:= M \Γ. Assume that k (M) = 0 or 1 
Then X is Stein   iff  X is affine 
 
In order to complete this picture, one naturally would like to raise the following 
 
(6.6) Problem: Are Mg , for any g > 0, up to biholomorphism, the only compact surfaces of general 
type which compactify Stein surfaces which are not affine, namely Zg  ? 
To round off this discussion, we would like to provide some applications of Theorem 3.4 to another 
aspect of   Problem 0.4 above, namely 
  
(6.7) Problem: Let Mi  be given compact surfaces and let Γi ⊂ Mi be compact connected curves, 
with  i = 1 or 2. Assume that Xi:= Mi \ Γi are biholomorphic. 
Are Mi bimeromorphically equivalent  if  Γi are topologically of the same type ?  
In this direction, we have the following: 
 
(6.8) Theorem: Problem 6.7  admits an affirmative answer, provided  
                              both Γi are topologically of negative (resp. positive) type.              ($) 
Proof: a) Assume that both Γi are topologically of negative type. Grauert’s criterion tells us that 
there exist, normal 2 dimensional compact normal C-analytic spaces, say Yi with one isolated 
singular point {γi} and morphisms πi: Mi →  Yi inducing biholomorphisms  
                                        Xi = Mi \ Γi ≅ Yi \ {pi}.                                                         (~) 
Then Hartogs extension Theorem tells us that the isomorphism X1 ≅ X2 will extend to a biholomor-
phism M1 ≅ M2  

b) Assume that Γ i are both topologically of positive type. Then it follows readily from Chow- 
Kodaira Theorem that Mi are projective algebraic. Also we infer from [V2] that Xi are 1-convex 
with exceptional set Si  

(1) Assume that dim. Si> 0. Then a main result in [V2] tells us that Mi are biholomorphic 
(2) Assume that dim Si = 0, i.e. Xi are Stein.  

(a) Assume that Xi = Š.  Since Γi are topologically of positive type, Mi are necessarily rational 
surfaces. Thus we are done. 
 (b) Assume that Xi ≠ Š Then Theorem 3.4 tells us that Mi are birationally equivalent 
Q.E.D. 
(6.9) Corollary: Theorem 6.8  will hold if one replaces the hypothesis ($) by 



                                  none of the Γi  are topologically of zero type         ($$) 
Proof: Assume that Γ1 is topologically of negative type, it follows readily from (~) and Hartogs 
extension Theorem that  
                                              Γ (X1, O1) = C.                                               (10) 
Now if Γ2 is topologically of positive type, then X2 is 1-convex, i.e.  
                                      dim Γ(X2, O2) = ∞                                                  (11) 
in view of the definition 2.9. Therefore (10) and (11) contradict the hypothesis that X1 ≅ X2. Thus 
Γ2 must be also topologically of negative type. Hence our conclusion will follow from Theorem 6.8 
(b) Assume that Γ1 is topologically of positive type. Then the same argument as above will tell us 
that Γ2 must be also topologically of positive type. Again our conclusion will follow from Theorem 
6.8                                                                                                                  Q.E.D.                                                 
  
(6.10) Question: Does Problem 6.7 admits an affirmative answer if both Γi are topologically of null 
type ? 
Obviously the answer is No. However, our current study shows that, drastically, an answer to 
Question 6.10 is still negative, even  if one assumes, furthermore that 

(a) Mi are both algebraic (resp. both non algebraic) and 
(b) Xi are Stein 

However on the positive side, we have 
 
(6.11) Proposition: Question 6.10  admits a positive answer, provided, either  
(a) X1 ≅ X2 =: X is Stein and X ≠ Š or 
(b) X1 ≅ X2 =:X is proper 1-convex 
Proof: (a) Step 1: Assume that M1 is non algebraic. Since  (Γ1)2= 0, it follows from Theorem 2.12 
that X ≅ Ak,α,τ. Assume that M2 is algebraic. Since X2 ≅ Ak,α,τ and (Γ2)2= 0, Lemma 2.11 tells us 
that this not possible. Hence M2 got to be non algebraic. We infer from Theorem 0.3 that  M1 ≅ M2 
Step 2: Assume that M1 is algebraic and since (Γ1)2 = 0 it follows from Theorem 2.12 that X≠ Ak,α,τ 
(and , by hypothesis, ≠ Š). Assume that M2 is non algebraic. Then Corollary 2.12 tells us that this  
is not possible . Consequently M2 is also algebraic. Since Xi ≠ Š the main Theorem will apply and 
our conclusion will follow  
 
(b) Assume that M1is non algebraic. We infer from a main result in [V2] that  
                                                           X  ≅ Ak,α,0                                         ( #)   
Now if M2 is algebraic, then in view of (#) and (Γ2)2 = 0, Lemma 2.11 tells us that this not 
possible. Hence M2 is also non algebraic and our conclusion will follow from [V2] 
Now assume that M1is algebraic. Then, following [V1]  
                                                     X  ≠ Ak,α,0                                                     (##) 
Now if M2 is non algebraic, we infer from [V1], (Γ2)2 = 0 and (##)  that this is not possible. Hence 
M2 is also algebraic and our conlusion will follow from a main result in [V2] 
                                                                                                                                             Q.E.D  
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