ON THE ANALYTIC PICARD GROUP OF CERTAIN AFFINE ALGEBRAIC HYPERSURFACES.

Vo Van Tan

Suffolk University, Department of Mathematics, Beacon Hill, Boston, Massachusetts. 02114, USA e-mail: <u>tvovan@suffolk.edu</u>

Abstract: Let $Y \subset \mathbf{P}_N$ be a non singular hypersurface with N > 3, let $\Gamma \subset Y$ be a transverse hyperplane section and let $\mathcal{A} := Y V \Gamma$. In 1966, A. Howard established the following result:

The analytic Picard group of \mathcal{A} is trivial (*)

In 1973, Gerstner and Kaup showed that (*) remained valid if Y has only isolated singularities, say $\{q_k\}$ and Γ is merely a non singular hyperplane section, provided $\{q_k\} \notin \Gamma$. The purpose of this note is to propose to the latter result, a counterexample which is a nodal and irreducible 3-dimensional hypersurface $\mathbf{Y} \subset \mathbf{P}_4$. Also a geometric characterization of a Non-Kahlerian and non singular resolution $\pi: \mathbf{m} \to \mathbf{Y}$ will be established.

Key words: GAGA theory, Borel-Moore homology, null-homologous rational 1-cycle **MSC:** Primary 14 C22, 14 R05; Secondary 32 S45, 32 J25

§ 0.- The Motivation

Unless the contrary is explicitly stated, all 3-dimensional (resp. 2-dimensional) connected Canalytic manifolds will be referred to simply as *threefolds* (resp. *surfaces*). For any C-algebraic variety X, let us denote by $Pic(X) := H^1(X, O_X^*)$ the *analytic Picard group* of X, where X is the underlying C-analytic space associated to X. $\mathcal{L} \in Pic(X)$ is called *numerically positive* if $\mathcal{L} . C > 0$ for any compact irreducible curve $C \subset X$. Also the finite sum $\Xi := \Sigma_i n_i C_i$ where $n_i \in \mathbb{Z}^+$ and $C_i \subset X$ are irreducible compact curves for any i, will be called a *1*- *cycle* and Ξ is said to be *numerically trivial* if $\mathcal{L} . \Xi = 0$ for any $\mathcal{L} \in Pic(X)$

In 1966, A. Howard established the following result [H] (corollary 2.3)

Proposition 0.1: Let N > 3, let $Y_0 \subset P_N$ be a connected and non singular hypersurface and let $Y' \subset P_N$ be a linear hyperplane intersecting Y_0 transversely. Let $\Gamma_0 := Y_0 \cap Y'$ and let $A_0 := Y_0 \setminus \Gamma_0$ Then $Pic(A_0)$ is 0

Also as noticed in [H] (p.213) the hypothesis of transversality of Y' is crucial here; in fact one has

Example 0.2: Let $Y_2:= \{x^2 + y^2 + z^2 + w^2 = 0\} \subset P_4$ (x:y:z:w:t) be a quadric hypersurface with a single (isolated) singular point q = (0:0:0:0:1) and let $\underline{A}_2:= Y_2 \cap \{x \neq 0\}$. Then it is clear that $\underline{A}_2 \cong \{\zeta^2 + \xi^2 + v^2 = -1\} \subset \mathbb{C}^4$ (ζ, ξ, v, τ) is a non singular affine algebraic hypersurface, where $\zeta:= y/x$ $\xi:= z/x$ v:= w/x and $\tau:=t/x$ Certainly \underline{A}_2 is homotopically equivalent to $\underline{A}_2 \cap \{\tau = 0\}$ which has the same homotopy type as the 2-sphere S^2 ; consequently, in contrast with A_0

$$\operatorname{Pic}(A_2) \cong \operatorname{H}^2(A_2, \mathbf{Z}) = \mathbf{Z}$$

By steering clear from Example 0.2, in 1973, the following generalization of Proposition 0.1 was given in [GK] (Satz 1, p.121 & Korollar 3, p.125)

Theorem 0.3: Let N > 3, and let $Y \subset P_N$ be an irreducible hypersurface with only isolated singularities, say $\{q_k\}$. Now, let $\Gamma \subset Y$ be a non singular hypersurface section such that $\{q_k\} \notin \Gamma$ and let $A := Y \setminus \Gamma$. Then

- (a) $\pi(A)$, the fundamental group of A, is finite cyclic, and
- (b) Pic(A) = 0, provided Γ is a non singular hyperplane section

One of the main purposes of this note is to provide a simple *counterexample* to Theorem 0.3 (b) (see Counterexample1.3 below); consequently its fundamental group, in view of Theorem 0.3(a), is *non trivial* cyclic. It turns out that such a construction also provides a road map for a geometric characterization of certain Moishezon 3-folds M (resp. *compactifiable* 1-convex 3-folds $X \subset M$) which are Non-Kahlerian. That will be the goal of the last section. First of all let us introduce the following

Definition 0.4: [V1] A C-analytic manifold X is said to be *strongly pseudoconvex* (or *1-convex* for short) if X is a non singular resolution π : X \rightarrow Y of some *Stein* space Y which has only finitely many isolated singular points $\{q_k\}$ Henceforth, S:= $\bigcup_k \pi^{-1}(q_k)$ will be referred to as the *exceptional set* of X. Furthermore, X is said to be *compactifiable* if there exist a compact C-analytic manifold M and a C-analytic subvariety $\Gamma \subset M$ such that $X \cong M \setminus \Gamma$

§ 1.- The Small Resolution

We are now in a position to proceed to the construction of the following

Example 1.1: For any fixed integer $d \in \mathbb{Z}$ with $d \ge 3$, let Y_d be an irreducible hypersurface of degree d in \mathbb{P}_4 with only one isolated singular point{ p} which is an ordinary double point. Let $\Gamma_d \subset Y_d$ be a non singular hyperplane section such that $\{p\} \notin \Gamma_d$

Since {p} is an ordinary singularity, a result in [Kz] tells us that Y_d admits an *irreducible small* resolution π : $M_d \rightarrow Y_d$, where M_d is a compact 3-fold with $Exc(\pi)$:= the *exceptional locus* of $\pi \cong \mathbf{P}_1$. Now, Lefschetz hyperplane section theorem and Poincaré duality tell us that

$$\mathrm{H}^{1}(\Gamma_{\mathrm{d}}, \mathbf{Z}) \cong \mathrm{H}_{3}(\Gamma_{\mathrm{d}}, \mathbf{Z}) = 0$$

Certainly, $A_d := Y_d \setminus \Gamma_d$, is Stein; hence, in view of Definition 0.4,

 $X_d := M_d \setminus \Theta_d$ is a compact fiable 1-convex 3-fold with exceptional set $\varepsilon \cong Exc(\pi) = P_1$. (^)

where $\Theta_d := \pi^{-1}(\Gamma_d)$. Since, $d \ge 3$, {p} is *factorial* [Ch]: consequently H² (M_d, Z) \cong H₄(M_d, Z) \cong Z Thus, from the following exact sequence

 $\mathbf{Z}\cong H_4\ (\Theta_d,\,\mathbf{Z})\ -\ \iota_*\rightarrow \ H_4\ (M_d,\,\mathbf{Z})\cong \mathbf{Z}\ \rightarrow \ H_4\ (M_d,\,\Theta_d;\ \mathbf{Z})\ \rightarrow \ H_3\ (\Theta_d,\,\mathbf{Z})=0$ we infer that

$$H^2(X_d, \mathbb{Z}) \cong H_4(M_d; \Theta_d, \mathbb{Z})$$
 is a finite group for any $d \ge 3$ (#)

Claim : X_d is non Kählerian

Assume the contrary and assume that Ω is a Kähler (1,1) form on X_d upon which one has the following exact sequence

$$0 \longrightarrow \mathbf{R} - \iota \longrightarrow \quad o \longrightarrow \quad \mathbf{P} \longrightarrow \quad 0$$
$$f \quad \mapsto \quad \operatorname{Re} f$$

where O is the analytic structure sheaf of X_d , P is the sheaf of germs of pluriharmonic functions, see e.g. [HL] and the map ι is defined by multiplication by $\sqrt{-1}$. Hence one obtains the following exact sequence

$$\mathrm{H}^{1}(\mathrm{X}_{\mathrm{d}}, \mathrm{O}) \longrightarrow \mathrm{H}^{1}(\mathrm{X}_{\mathrm{d}} \mathbf{P}) \longrightarrow \mathrm{H}^{2}(\mathrm{X}_{\mathrm{d}}, \mathbf{R})$$
(1)

Let us consider the following restriction morphism

$$\lambda := \pi | X_d : X_d \to A_d \tag{~}$$

Since {p} is a rational singularity, we infer from Leray spectral sequence that the left hand side group in (1) vanishes; and so does its right hand side group, in view of (#). Hence it follows readily that

$$H^{1}(X_{d} \boldsymbol{P}) = 0 \tag{2}$$

(\$)

(*)

On the other hand from the following exact sequence

$$0 \longrightarrow \mathbf{P} \longrightarrow \mathbf{E} \longrightarrow \mathbf{K} \longrightarrow 0 \qquad (\bullet)$$

$$\phi \longmapsto \iota \partial \partial \phi$$

where \boldsymbol{E} (resp \boldsymbol{K}) is the sheaf of germs of real valued differentiable functions (resp of real valued differentiable closed (1,1) forms)[HL] one gets, in view of (2), the following exact sequence

$$\Gamma(X_{d}, \boldsymbol{E}) \rightarrow \Gamma(X_{d}, \boldsymbol{K}) \rightarrow H^{1}(X_{d}, \boldsymbol{P}) = 0$$
(3)

Consequently (3) gives rise to some global differentiable function ϕ on X_d such that

 $i \partial \partial \phi = \Omega$ is positive definite

i.e. ϕ is *strongly plurisubharmonic*. Thus, it follows readily from the maximum principle for plurisubharmonic functions that X_d is free of compact subvarieties of positive dimension; this contradicts (^) and our claim is proved.

Remark1.2: It follows readily from (\$) that M_d is not projective algebraic. Another proof of this fact can be found in [M1] (p.174) (see also [C]) where it is shown that ε is a *null homologous* 1-cycle in M_d

Counterexample 1.3 For any fixed integer $d \ge 3$, the hypersurface $Y_d \subset P_4$ (x:y:z:w:t) considered in Example 1.1 can be explicitly described by the homogeneous equation, see e.g. [W1][CC],

$$Q_2(x, y, z, w) t^{d-2} + H_d(x, y, z, w) = 0$$

where $Q_2(\mathbf{x})$ (resp $H_d(\mathbf{x})$) is a non degenerate quadric (resp.a homogeneous equation of degree d) in $P_3(\mathbf{x})$, where $\mathbf{x}:=(x,y,z,w)$. Now let

$$p:=(0:0:0:0:1) \in \mathbf{P}_4(\mathbf{x}:t) \text{ and } Y' := \{t=0\} \cong \mathbf{P}_3(\mathbf{x})$$

Certainly

$$\{p\} \notin Y'$$
 and $\Gamma_d := Y_d \cap Y'$ is non singular by Bertini theorem (4)

Step1: Let **m** be the maximal ideal sheaf of {p}. Then a main result in [HR](Theorem1) tells us that there exists an **m**-primary ideal sheaf $\mathcal{J}(\sqrt{\mathcal{J}} -= m)$ such that $\pi: M_d \rightarrow Y_d$ is dominated by the monoidal transformation $\Pi: \mathcal{B} \rightarrow Y_d$ with center \mathcal{J} i. e. there exists a modification morphism $\tau: \mathcal{B} \rightarrow M_d$ such that $\pi \circ \tau = \Pi$. Since {p} is an ordinary singular point, $\mathcal{Q} = \text{Exc}(\Pi) \cong \mathbf{P}_1 \times \mathbf{P}_1$. In fact since {p} is the only singular point in Y_d , one can assume that

$$B:=\{Q_2 = H_d = 0\} \subset \mathbf{P}_3(\mathbf{x}) \text{ is a non singular curve.} \qquad (\mathbf{\bullet})$$

Notice that $C := \{(\mathbf{x}, t) \in Y_d | \mathbf{x} \in B\}$ is the cone of all lines $l \in Y_d$ passing through $\{p\}$; hence we infer readily from (\clubsuit) , (\blacklozenge) and (4) that

$$l_{\rm M} \Theta_{\rm d} = l_{\rm Y} \Gamma_{\rm d} = m \ge 1 \tag{5}$$

where l is the strict transform of l by π . This situation can be summarized by the following diagram

where $\mathcal{R}_{l} := \pi^{*}(C)$ is the compact surface (*singular* but *irreducible*) which is the union of lines l joining ε to $B_{1} := \pi^{*}(B)$.and \mathcal{R}_{2} is a ruled surface; Notice that one has $\Pi^{-1}(C) \cong \mathcal{Q} \cup \mathcal{R}_{2}$, $\tau(\mathcal{Q}) \cong \varepsilon$ and $\mathcal{R}_{l} \cong \tau(\mathcal{R}_{2})$

Step2:: a) If d = 3, it follows readily from (*) and (5) that m = 1; consequently (#) tells us that $H^2(X_3, \mathbb{Z}) = 0$

b) Yet this simple case shows us how to concoct a situation in which the latter group is non trivial, when d = 2N + 1 for any positive integer N.

Indeed, instead of the defining equation (\bullet), let us consider, the nodal hypersurface \ddot{Y}_{2N+1} , defined by

$$t^{2N+1}Q_2(x, y, z, w) + tQ_2^N(x, y, z, w) + H_{2N+1}(x, y, z, w) = 0$$
 (**)

where $Q_2(x, y, z, w)$ (resp. $H_{2N+1}(x, y, z, w)$) is a non degenerate quadric (resp. a generic homogeneous polynomial of degree 2N + 1) in $P_3(x:y:z:w)$. Then in view of [CC] (section II, p.288) \ddot{Y}_{2N+1} carries the same cone of lines, which in view of (**), meets the hyperplane section Γ_{2N+1} along the *non reduced N-uple* curve

$$\check{\boldsymbol{c}} := \{ Q_2^N = H_{2N+1} = 0 \} \subset \mathbf{P}_3(\mathbf{x})$$

$$(\mathbf{\vee} \mathbf{\vee})$$

From, $(\mathbf{v}\mathbf{v})$ and (5) one can check that m = N. We infer from (#) that

$$\mathrm{H}^{2}(\mathrm{X}_{2\mathrm{N}+1}, \mathbf{Z}) = \mathbf{Z}/\mathrm{N}\mathbf{Z}$$
(%)

Notice that, although Γ_{2N+1} is non singular, it is not in general a transverse hyperplane section

Step3: From the morphism (~), let us consider the following commutative diagram with exact rows

$$\mathrm{H}^{1}(\varepsilon, \mathbf{Z}) \rightarrow \mathrm{H}^{2}(\mathrm{X}_{d}, \varepsilon; \mathbf{Z}) \rightarrow \mathrm{H}^{2}(\mathrm{X}_{d}, \mathbf{Z}) \rightarrow \mathrm{H}^{2}(\varepsilon, \mathbf{Z})$$

$$\begin{array}{cccc} \uparrow \lambda_1 & \uparrow \lambda_2 & \uparrow \lambda_3 & \uparrow \lambda_4 \\ 0 \cong \mathrm{H}^1(\{\mathbf{p}\}, \mathbf{Z}) & \to & \mathrm{H}^2(\mathbf{A}_{\mathrm{d}}, \{\mathbf{p}\}; \mathbf{Z}) & \to & \mathrm{H}^2(\mathbf{A}_{\mathrm{d}}, \mathbf{Z}) & \to & \mathrm{H}^2(\{\mathbf{p}\}, \mathbf{Z}) \cong 0 \end{array}$$

By construction $X_d \setminus \varepsilon \cong A_d \setminus \{p\}$, it follows readily that λ_2 is an isomorphism. Therefore, from the above diagram one obtains the following exact sequence

$$0 \cong \mathrm{H}^{1}(\varepsilon, \mathbf{Z}) \rightarrow \mathrm{H}^{2}(\mathbf{A}_{\mathrm{d}}, \mathbf{Z}) \longrightarrow \mathrm{H}^{2}(\mathrm{X}_{\mathrm{d}}, \mathbf{Z}) - \rho^{*} \rightarrow \mathrm{H}^{2}(\varepsilon, \mathbf{Z}) \cong \mathbf{Z}$$

In view of (\$), X_d is Non Kählerian; hence we infer from a main result in [V1] (Theorem III) that the restriction application ρ^* is the zero map. Hence our desired construction is complete, provided one takes (%) into account.

§.2. The Borel- Moore Homology

The major shortcoming in the proof of Theorem 0.3(b) stems from the *erroneous* assertion that the affine algebraic hypersurface \mathcal{A} is *simply connected* which we shall discuss next. But first of all let us introduce the following:

Definition 2.1: ([K1] p.3) Let Y, \mathcal{A} and Γ be as in Theorem 0.3.. Then, for any $k \ge 0$, let $\mathcal{H}_k(\mathcal{A}) := H_k(Y, \Gamma; \mathbb{Z})$

where $H_k(Y, \Gamma; \mathbb{Z})$ stands for the *relative singular homology* of the pair (Y, Γ) $\mathcal{H}_k(\mathcal{A})$ is the so called *k*th *Borel-Moore integral homology of* \mathcal{A} .

In [GK] (Korollar 3, p.124), a strategy to prove Theorem 0.3 (b) followed exactly the same pattern as the one in [H]. In particular, it was established, by using the universal coefficient theorem

 $H^{2}(\mathcal{A}; \mathbb{Z}) \cong Hom (H_{2}(\mathcal{A}, \mathbb{Z}); \mathbb{Z}) \oplus Tor H_{1}(\mathcal{A}, \mathbb{Z})$ and, by quoting (as explicitly mentioned in Korollar 2, p123 in [GK]) the fact that $\mathcal{H}_{l}(\mathcal{A}) = 0$ a proof of which was given in [K2] (Korollar 2.8 (ii)); however, in general $\mathcal{H}_{l}(\mathcal{A}) \neq H_{1}(\mathcal{A}, \mathbb{Z})$

namely the Borel-Moore homology is not necessarily the same as the singular one.. In fact, this is true if Y is non singular. Indeed, if Y is non singular, we have

 $\mathcal{H}_{l}(\mathcal{A}) := \operatorname{H}_{1}(\operatorname{Y}, \Gamma : \mathbf{Z}) \cong \operatorname{H}^{2N-3}(\operatorname{Y}, \Gamma ; \mathbf{Z}) \cong \operatorname{H}_{1}(\mathcal{A}, \mathbf{Z})$

in view of the Poincaré (resp. Alexander-Lefschetz) duality., since **R**-dimension Y = 2N - 2. On the other hand, when the ambient space Y is singular, this is not always the case;

Remark 2.2: Counterexample 1.3 is , in some extent rare, as shown by the following result which was kindly communicated to us by Prof. P. Deligne.

Theorem 2.3: Let $Y_d \subset P_4(x:y:z:w:t)$ be the nodal hypersurface defined by equation (*) in section 1.3 above. For generic $H_d(x, y, z, w)$, let $\Gamma_d \subset Y_d$ be a transverse hyperplane section and let $A_d := Y_d \setminus \Gamma_d$. Then

$$Pic(\mathbf{A}_{d}) \cong H^2(\mathbf{A}_{d}, \mathbf{Z}) = 0$$
 for any d.

Proof: Since $H_d(x, y, z, w)$ is generic, one gets, by perturbation a differentiable 3-fold **M** such that $\mathbf{M} \approx \mathbf{Y}$ (6) where \mathbf{Y} is some non singular hypersurface of degree d in \mathbf{P}_4 and \approx stands for diffeomorphism, and that, \mathbf{M} carries a vanishing cycle $\delta \cong S^3$ the 3-sphere, which can be contracted topologically to $\{p\}$. Precisely there exists a topological morphism f: $\mathbf{M} \longrightarrow Y_d$ such that

$$\mathbf{M} \setminus \mathbf{S}^3 \approx \mathbf{Y}_d \setminus \{\mathbf{p}\}. \tag{!}$$

Now, let g: $\mathbf{M} \setminus f^{-1}(\Gamma_d) =: \mathbf{A} \longrightarrow A_d$ be the restriction topological modification morphism. We infer from (!) that

$$\mathbf{A} \setminus \mathbf{S}^3 \approx \mathbf{A}_{d} \setminus \{\mathbf{p}\} \tag{!!}$$

Consequently, by taking (!!) into account, similar commutative diagram as the one of (\blacklozenge), in section 1.3, applies to the morphism g in this situation and one gets the following exact sequence

$$0 \cong \mathrm{H}^{1}(\delta, \mathbf{Z}) \longrightarrow \mathrm{H}^{2}(\mathbf{A}_{\mathrm{d}} \mathbf{Z}) - \mathrm{g}^{*} \longrightarrow \mathrm{H}^{2}(\mathbf{A}, \mathbf{Z})$$
(7)

In view of a result in [H](corollary 2.3) and (6) it follows readily that $H^2(\mathbf{A}, \mathbf{Z}) = 0$; hence our conclusion will follow from (7). Q.E.D.

§3. The Threefold Paradigm.

Notice that the previous examples only occurred in dimension 3 and this is by no means accidental as shown by the following

Proposition 3.1: Let $Y \subset P_v$ be a (strict) complete intersection with only isolated singularities, say $\{p_i\}$ and let $\pi: M \to Y$ be a non singular resolution. Assume that

(1) $Exc(\pi)$ is of pure dimension one and

(2) $\dim Y > 3$. Then such a resolution does not exist

Proof: Assume the contrary that such a resolution does exist.

Let $\bigcup_i C_i$ be an irreducible decomposition of $\mathbf{Exc}(\pi)$, and let \mathcal{K} be the canonical bundle of M. Let $\Gamma \subset Y$ be a non singular hyperplane section such that $\{p_i\} \notin \Gamma$ and let $X := M \setminus \Theta$ where $\Theta := \pi^{-1}(\Gamma)$. Since X is 1-convex with exceptional set $S \cong \mathbf{Exc}(\pi)$ and since with C-dim $X \ge 4$ and dim S = 1, it follows readily that

(a) \mathcal{K} |S is ample (Theorem 1.5 in [V2]) and

(b) for any irreducible and positive dimensional compact subvariety $Z \subset M$ such that $Z \neq C_i$, for any i, necessarily $Z \cap \Theta \neq \emptyset$. Hence we infer from Moishezon-Nakai criterion that for some N>>0, $\mathcal{K} \otimes L^N$ is ample where L is the line bundle on M determined by Θ .

Consequently, M is projective algebraic .Therefore GAGA type theorem implies that π is actually a projective morphism. By virtue of our hypothesis (2), {p_i} are algebraically factorial [G] (XI 3.1.4); hence van der Waerden theorem tells us that S is of pure codimension one. Contradiction ! Q.E.D.

In sharp contrast to this situation, its 3-fold analogue is completely characterized by the following

(†)

Theorem 3.2: Let $\pi: M \to Y$ and X be as in Proposition 3.1 with C-dim. Y = 3. Assume that

 $S := Exc(\pi) \text{ is of pure dimension one}$ Then the following conditions are equivalent: (α) M is non-Kählerian (β) M carries a null homologous 1-cycle Ξ

(γ) X carries a null homologous 1- cyle $\Lambda \cong \Xi$

Proof: (α) ===> (β)

Step 1: We shall follow here closely an idea in [HL]. Let us consider the following homomorphism of Frechet spaces :

$$d: \mathcal{E}^{1,1}(\mathbf{M}) \quad \to \quad \mathcal{E}^{2,1}(\mathbf{M}) \oplus \ \mathcal{E}^{1,2}(\mathbf{M}) \tag{8}$$

where for any non negative pair of integers p and q, $\mathcal{E}^{p,q}(M)$ denotes the Frechet space of global, real-valued, smooth (p,q) forms on M and let $\mathcal{D}^{p,q}(M)$, be its dual space,. Notice that (8) induces a dual homomorphism

$$\partial_{+} \partial : \mathcal{D}^{1,2} (\mathbf{M}) \oplus \mathcal{D}^{2,1} (\mathbf{M}) \to \mathcal{D}^{1,1} (\mathbf{M})$$
(9)

Now let

$$\begin{aligned} \mathcal{P} &:= \{ \phi \in \mathcal{E}^{1,1}(\mathbf{M}) \mid \phi > 0 \} \\ \mathcal{K} &:= \{ \phi \in \mathcal{E}^{1,1}(\mathbf{M}) \mid d\phi = 0 \} \end{aligned} \qquad \text{and} \end{aligned}$$

By hypothesis $\mathcal{P} \cap \mathcal{K} = \emptyset$. Following Hahn- Banach Theorem, one can find a continuous linear form say T, on $\mathcal{E}^{1,1}(M)$ separating \mathcal{P} from \mathcal{K} , i.e. a *current* $T \in \mathcal{D}^{1,1}(M)$ such that

- (a) $T(\phi) > 0$ for any $\phi \in \mathcal{P}$ i.e. T is a *positive* current and
- (b) $T(\phi) = 0$ for every $\phi \in \mathcal{K}$ i.e. $t\partial \partial T = 0$

Since M\S \cong Y\($\cup_k p_k$) } is quasi projective, (a) implies that Supp(T) \subset S. In view of (b), a result in [HL](Lemma 32) tells us that T = $\Sigma_i r_i \subset_i$ where C_i are irreducible components of S and $r_i \in \mathbf{R}^+$.

Step 2: On the other hand from the Leray spectral sequence associated to the morphism π , one obtains the following exact sequence

 $\mathrm{H}^{2}\left(\mathrm{Y},\mathrm{O}_{\mathrm{Y}}\right)\to\mathrm{H}^{2}\left(\mathrm{M},\,\mathrm{O}_{\mathrm{M}}\right)\to\ \Gamma\left(\mathrm{Y},\,\mathcal{R}^{2}(\pi_{*}\left(\mathrm{O}_{\mathrm{M}}\right)\right) \tag{10}$

Notice that in (10) the first homology group vanishes in view of [S] (Prop.5(b), p.273); so does the third one, in view of the hypothesis (\dagger). Consequently H² (M, \circ_M) = 0 and an extension of the exact sequence (1) will give rise to the following one

$$\mathrm{H}^{1}(\mathrm{M}, \mathbf{P}) - \rho \rightarrow \mathrm{H}^{2}(\mathrm{M}, \mathbf{R}) \rightarrow \mathrm{H}^{2}(\mathrm{M}, \mathbb{O}_{\mathrm{M}}) \cong 0$$

On the other hand, from the exact sequence (\blacklozenge) in section 1 and the definition ($\blacklozenge \blacklozenge$) above, one has $H^1(M, P) \cong \mathcal{K}/\iota \partial \partial \mathcal{E}^{0,0}(M)$; therefore, one deduces from (b) and the surjectivity of ρ , that $T(\phi) = 0$ for any $\phi \in H^2(M, \mathbb{R})$. Hence, by duality, T is a null-homologous 1-cycle in $H_2(M, \mathbb{R}) := H_2(M, \mathbb{Z}) \otimes \mathbb{R}$ which is finitely generated. Thus, there exist integers $n_i \in \mathbb{Z}^+$ such that $\Xi := \Sigma_i n_i C_i$ is the desired null homologous 1-cycle

 $(\beta) ===> (\gamma)$

In view of Lefschetz hyperplane section theorem, $H_3(\Gamma, \mathbf{R}) = 0$. Consequently, one obtains the following natural map of vector spaces

$$H_4(\mathbf{M}, \mathbf{R}) \rightarrow H_4(\mathbf{M}, \Gamma; \mathbf{R}) \rightarrow H_3(\Gamma, \mathbf{R}) = 0$$
(11)

By duality

 $\mathrm{H}^{2}(\mathrm{M}, \mathbf{R}) \cong \mathrm{H}_{4}(\mathrm{M}; \mathbf{R}) \text{ and } \mathrm{H}^{2}(\mathrm{X}, \mathbf{R}) \cong \mathrm{H}_{4}(\mathrm{M}, \Gamma; \mathbf{R})$ (12)

From (12) and the dual of finite dimensional vector spaces, the surjectivity of (11) is equivalent to the injectivity of

 $\mathrm{H}_{2}\left(\mathrm{X},\mathbf{R}\right) \rightarrow \mathrm{H}_{2}\left(\mathrm{M};\;\mathbf{R}\right)$

Consequently Ξ is homologous to zero in H₂ (X, **R**)

 $(\gamma) ==> (\alpha)$ is trivial

However, when dim. $Exc(\pi) = 2$, the situation is quite delicate, since Pic(M) (resp. Pic(X)) would be, in general no longer isomorphic to H² (M, **R**) (resp. H² (X, **R**)) unless {p_i} are rational singularities However, we have the following result

Proposition 3.3: Let $\pi: M \to Y$ be as in Theorem 3.2. *Assume that, for any* $r \neq s$ *,*

 $E_r \cap E_s = \emptyset$ (††) where $E_r \in S := Exc(\pi)$ with $1 \le r, s \le p$, are irreducible 2-dimensional components Then M is Kahlerian iff M is free of numerically trivial 1-cycles

Proof: *Step1:* Assume that M is non-Kahlerian and that C-dim.Exc(π) = 2. (such a non Kahlerian 3-fold does exist, see Examples below). Certainly M \ Exc(π) \cong Y \ ($\cup_k p_k$) is quasi projective. Hence a main result in [M2] (see also [Hi]) tells us that there exist an ideal sheaf $\mathcal{J} \subset \mathcal{O}_M$ and a monoidal transformation μ : W \rightarrow M with center \mathcal{J} such that

(a) support of $\mathcal{J}=: C = \bigcup_{i} C_{i}$, where each C_{j} is a compact non singular curve $\subset S$ with $1 \le j \le q$

(b) W is projective algebraic

Consequently, in view of (b),

$$\mathbf{M} \setminus C \cong \mathbf{W} \setminus \boldsymbol{\mu}^{-1}(C) \text{ is quasi-projective.}$$
(13)

Step 2: In view of (b), let $H \in Pic(W)$ be a very ample divisor and let $\mu_*(H) =: H \in Pic(M)$. Now let $\mathcal{L}_r \in Pic(M)$ be determined by \mathcal{E}_r . Then we have the following alternatives:

(i) Assume that there exists a component $C' \subset C$ such that for some r, $C' \subset E_r$ and that $\mathcal{L}_r \cdot C' = 0$,. Then certainly *C*' is a null homologous 1-cycle in view of $(\dagger \dagger)$ and the fact that $\operatorname{Pic}(\mathbf{Y}) = \mathbf{Z}$. (ii) Assume that there exists an $\mathcal{L} \in \operatorname{Pic}(\mathbf{M})$ such that $\mathcal{L} | \mathbf{C}_j > 0$ (resp. $\mathcal{L} | \mathbf{C}_j < 0$) for any j. Then, in view of (13), for some integer N >> 0, $\mathcal{E} := \mathcal{L} \otimes \mathbb{H}^N$ (resp. $\mathcal{E}' := \mathcal{L}^* \otimes \mathbb{H}^N$) is numerically positive. Therefore, we infer from a result in [Ko] (Corollary 5.1.5) that M is projective algebraic; contradiction to the hypothesis that M is Non-Kahlerian (iii) Consequently it remains the mixed case, and we can consider only the components E_v with $\mathbf{v} \in \mathbb{H}^n$.

{1,..,p} such that each such E_v contains or meets at least two of the C_j In view of (i) and (ii), one can find positive integers v_m such that $\mathcal{L}_V.Z_v = 0$ where $Z_v := \Sigma_m v_m C_m$. Since there are only finitely many such E_v , from the fact that rank Pic(Y) = 1 and the hypothesis (*††*), it follows that $\Xi := \Sigma_V Z_v$ is the desired numerically trivial 1-cycle Q.E.D.

In order to illustrate the above results, we would like to exhibit the following concrete examples which mirror certain peculiar aspects of Moishezon 3-folds.

Example 3.4: For any fixed integer $d \ge 3$, let π : $M_d \rightarrow Y_d$ be an irreducible small resolution as in Example 1.1. Let λ : $M_0 \rightarrow M_d$ be the blow up of M_d along $\varepsilon \cong \mathbf{P}_1$. Then one can check that M_0 is projective algebraic with $\mathbf{Exc}(\lambda) \cong \mathbf{P}_1 \times \mathbf{P}_1$. Notice that rank $\operatorname{Pic}(M_0) = 2$

On the other hand let $\kappa: M_1 \to M_d$ be the blow up of M_d along $\cup_j a_j \in \varepsilon$ where $\{a_j\}$, with $1 \le j \le k$, are k distinct points. Let σ (resp. $\mathbb{E}_j \cong \mathbf{P}_2$) be the strict transform of ε (resp. a_j) by κ Then one can check that $\Lambda:=\sigma + \sum_j \mathbb{C}_j$ is a null-homologous 1-cycle, where $\mathbf{P}_1 \cong \mathbb{C}_j \subset \mathbb{E}_j$. Notice that $\mathbb{E}_i \cap \mathbb{E}_j = \emptyset$ and rank $\text{Pic}(M_1)=k+1$

Example 3.5: Let $\hat{Y} := \mathbf{H}_1 \cap \mathbf{H}_2$, where \mathbf{H}_i , (i = 1 or 2) are quadric hypersurfaces in \mathbf{P}_5 , such that \hat{Y} contains exactly 1 singular point {p} [F] which is locally defined by{ $x^2 + y^2 + z^2 + w^4 = 0$ } in $\mathbf{C}^4(x, y, z, w)$. Then one can check that \hat{Y} admits a non singular resolution $\pi: \mathbf{M}_2 \to \hat{Y}$ such that

- (a) \mathcal{R} :=**Exc**(π) \cong **F**₂, a Hirzebruch ruled surface
- (b) \Re carries a rational 1-cycle $\Xi := \zeta + \xi$ which is null homologous in M_2 , where $\zeta \cong \mathbf{P}_1$ and $\xi \cong \mathbf{P}_1$ are 2 disjoint sections in \mathbf{F}_2 , such that $\xi^2 = -\xi^2 = 2$, and
- (c) rank $Pic(M_2) = 2$

Example 3.6: Let $\ddot{Y} := H_1 \cap H_2$, where H_i , (i = 1 or 2) are quadric hypersurfaces in \mathbf{P}_5 , such that \ddot{Y} contains exactly 1 singular point {q} [W2](Beispiel 1, p.25) which is locally defined by{ $x^2 + y^2 + z^2 + w^6 = 0$ } in \mathbb{C}^4 but which is *not* factorial. Then one can check that \ddot{Y} admits a non singular *projective* resolution τ : $M_3 \rightarrow \ddot{Y}$ such that $\mathbf{Exc}(\tau) \cong \mathbf{P}_1$ and rank $\operatorname{Pic}(M_3) = 2$

Example 3.7: In [Ko] (Example 4.3.1) was exhibited a normal 3 dimensional Moishezon space **M** with only isolated rational singularities $\{q_i\}$. Furthermore, **M** contains 2 compact non singular curves, say, C and D such that

- (i) C is rational, D is of arbitrary genus and $C \cap D = \emptyset$
- (ii) The 1-cycle C + D is numerically trivial, and
- (iii) $\bigcup_i q_i \subset C$

Now let $\pi: M_4 \to M$ be the blow-up of M with center $\bigcup_i q_i$, let *C* (resp. \mathcal{D}) be the strict

transform of C (resp.D) by π and let $\mathbb{E}_i := \pi^{-1}\{q_i\} \cong \mathbf{P}_2$. Notice that $\mathbb{E}_i \cap \mathbb{E}_j = \emptyset$. Then certainly (a) M_4 is a Moishezon 3-fold

(b) M₄ carries a null-homologous 1-cycle $\Lambda := C + \sum_i m_i C_i + D$

where $m_i :=$ multiplicity of q_i , and $P_1 \cong C_i \subset E_i$

References

[CC] Ceresa.G. & Collino,A.: Some remarks on algebraic equivalence of cycles. Pacific J. math. 105 (1983) 285-290

[Ch] Cheltsov, I: On factoriality of nodal threefolds, J.Alg.Geom.14,(2005) 663-690
[C] Cornalba,M.: Two theorems on modifications of analytic spaces, Invent. Math.20
(1973) 227-247

[F] Furushima, M: An example of a non-projective smooth compactification of C^3 with second Betti number equal to one. Math.Ann. 300, (1994) 89-96

[GK] Gerstner, O.& Kaup,L.: Homotopiegruppen von Hyperflächenschnitten. Math.Ann. 204 (1973) 105-130

 $[G]\ Grothendieck, A.:$ Cohomologie locale des faisceaux cohérents et Théorèmes de Lefschetz locaux et globaux. SGA 2, North Holland, (1968)

[HL] Harvey,R & Lawson,B.: An intrinsic characterization of Kähler manifolds, Invent.Math. 74 (1983) 169-198

[Hi] Hironaka,H.: Flattening theorem in complex analytic geometry, Amer. J. Math. 97 (1975) 473-507

[HR] Hironaka, H. & Rossi, H.: On the equivalence of imbeddings of exceptional complex spaces, Math. Ann. 156, (1964) 313-333

[H] Howard, A.: On the homotopy groups of an affine algebraic hypersurface. Ann.of Math.84(1966)197-216

[Kz] Katz,S.: Small resolutions of Gorenstein threefold singularities, in Contemp. Math Vol 116, AMS Providence RI (1991) 61-70 [K] Kaup, L.: 1) Poincaré Dualität für Räume mit Normalisierung, Ann.Sc. N.S. Pisa Math., 26 (1972) 1-31

2) Zur Homologie projektiv algebraischer Variet \ddot{a} ten, Ann. Sc. N.S. Pisa Math., 26 (1972) 479-513

[Ko] Kollar,J.: Flips, Flops, Minimal models, etc. Surveys in Differential Geometry, 1. (1991) 113-199

[M] Moishezon, B.G.: 1)On n-dimensional compact algebraic varieties with n algebraically independent meromorphic functions I, II, III. AMS Translations Ser. 2, 63 (1967) 51-177

2) Resolution theorems for compact complex spaces with sufficiently large field of meromorphic functions. Math USSR-Izv, I (1967) 1331-1356

[S] Serre, J.P.: Faisceaux algebriques coherents, Ann. Math., 61, (1955) 197-278

[V] Vo Van, T.: 1) On the embedding problems for 1-convex spaces, Trans. AMS 256 (1979) 185-197

2) On the K \ddot{a} hlerian geometry of 1-convex threefolds, Forum.Math.7,(1995)131-146

[W] Werner,J.: 1)Kleine Auflösungen spezieller dreidimensionaler Variet**ä**ten, Bonner Math. Schriften, 186 (1987)

2)Vollst \ddot{a} ndige Durchschnitte zweier Quadrike in P⁵(C) und ihre kleine Auflösungen, Math. Göttingen Schriften des Sonder. Geom. Anal. 13 (1988)