ON THE ANALYTIC PICARD GROUP OF CERTAIN AFFINE ALGEBRAIC HYPERSURFACES.

Vo Van Tan
Suffolk University, Department of Mathematics, Beacon Hill, Boston, Massachusetts. 02114, USA
e-mail: tvovan@suffolk.edu

Abstract

Let $\mathrm{Y} \subset \mathbf{P}_{\mathrm{N}}$ be a non singular hypersurface with $\mathrm{N}>3$, let $\Gamma \subset \mathrm{Y}$ be a transverse hyperplane section and let $\mathcal{A}:=\mathrm{Y} \backslash \Gamma$. In 1966, A. Howard established the following result:

The analytic Picard group of \mathcal{A} is trivial In 1973, Gerstner and Kaup showed that $\left(^{*}\right)$ remained valid if Y has only isolated singularities, say $\left\{q_{k}\right\}$ and Γ is merely a non singular hyperplane section, provided $\left\{q_{\mathrm{k}}\right\} \notin \Gamma$. The purpose of this note is to propose to the latter result, a counterexample which is a nodal and irreducible 3-dimensional hypersurface $\mathbf{Y} \subset \mathbf{P}_{4}$. Also a geometric characterization of a Non-Kahlerian and non singular resolution π : $\mathbf{m} \rightarrow \mathbf{Y}$ will be established.

Key words: GAGA theory, Borel-Moore homology, null-homologous rational 1-cycle MSC: Primary 14 C22, 14 R05; Secondary 32 S45, 32 J25

§ 0.- The Motivation

Unless the contrary is explicitly stated, all 3-dimensional (resp. 2-dimensional) connected Canalytic manifolds will be referred to simply as threefolds (resp. surfaces). For any C -algebraic variety X , let us denote by $\operatorname{Pic}(\mathrm{X}):=\mathrm{H}^{1}\left(X, O_{X}{ }^{\star}\right)$ the analytic Picard group of X , where X is the underlying C-analytic space associated to $\mathrm{X} . \mathcal{L} \in \operatorname{Pic}(\mathrm{X})$ is called numerically positive if $\mathcal{L} . C>0$ for any compact irreducible curve $C \subset X$. Also the finite sum $\Xi:=\Sigma_{i} n_{i} C_{i}$ where $n_{i} \in \mathbf{Z}^{+}$and $C_{i} \subset X$ are irreducible compact curves for any i , will be called a l - cycle and Ξ is said to be numerically trivial if $\mathcal{L} . \Xi=0$ for any $\mathcal{L} \in \operatorname{Pic}(\mathrm{X})$

In 1966, A. Howard established the following result [H] (corollary 2.3)
Proposition 0.1: Let $N>3$, let $Y_{0} \subset \boldsymbol{P}_{N}$ be a connected and non singular hypersurface and let $Y^{\prime} \subset$ \boldsymbol{P}_{N} be a linear hyperplane intersecting Y_{0} transversely. Let $\Gamma_{0}:=Y_{0} \cap Y^{\prime}$ and let $A_{0}:=Y_{0} \backslash \Gamma_{0}$ Then $\operatorname{Pic}\left(A_{0}\right)$ is 0

Also as noticed in $[\mathrm{H}](\mathrm{p} .213)$ the hypothesis of transversality of Y^{\prime} is crucial here; in fact one has

Example 0.2:: Let $\mathrm{Y}_{2}:=\left\{\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}+\mathrm{w}^{2}=0\right\} \subset \mathbf{P}_{4}(\mathrm{x}: \mathrm{y}: \mathrm{z}: \mathrm{w}: \mathrm{t})$ be a quadric hypersurface with a single (isolated) singular point $\mathrm{q}=(0: 0: 0: 0: 1)$ and let $\underline{A}_{2}:=\mathrm{Y}_{2} \cap\{\mathrm{x} \neq 0\}$. Then it is clear that \underline{A}_{2} $\cong\left\{\zeta^{2}+\xi^{2}+v^{2}=-1\right\} \subset \mathbf{C}^{4}(\zeta, \xi, v, \tau)$ is a non singular affine algebraic hypersurface, where $\zeta:=\mathrm{y} / \mathrm{x}$ $\xi:=\mathrm{z} / \mathrm{x} v:=\mathrm{w} / \mathrm{x}$ and $\tau:=\mathrm{t} / \mathrm{x}$ Certainly \underline{A}_{2} is homotopically equivalent to $\underline{A}_{2} \cap\{\tau=0\}$ which has the same homotopy type as the 2 -sphere S^{2}; consequently, in contrast with A_{0}

$$
\operatorname{Pic}\left(\underline{A}_{2}\right) \cong \mathrm{H}^{2}\left(\underline{A}_{2}, \mathbf{Z}\right)=\mathbf{Z}
$$

By steering clear from Example 0.2, in 1973, the following generalization of Proposition 0.1 was given in [GK] (Satz 1, p. 121 \& Korollar 3, p.125)

Theorem 0.3: Let $N>3$, and let $Y \subset \boldsymbol{P}_{N}$ be an irreducible hypersurface with only isolated singularities, say $\left\{q_{\mathrm{k}}\right\}$. Now, let $\Gamma \subset Y$ be a non singular hypersurface section such that $\left\{q_{\mathrm{k}}\right\} \notin \Gamma$ and let $\mathcal{A}:=Y \backslash \Gamma$. Then
(a) $\pi(\mathcal{A})$, the fundamental group of \mathcal{A}, is finite cyclic, and
(b) $\operatorname{Pic}(\mathcal{A})=0$, provided Γ is a non singular hyperplane section

One of the main purposes of this note is to provide a simple counterexample to Theorem 0.3 (b) (see Counterexample 1.3 below); consequently its fundamental group, in view of Theorem $0.3(\mathrm{a})$, is non trivial cyclic. It turns out that such a construction also provides a road map for a geometric characterization of certain Moishezon 3-folds \mathbf{M} (resp. compactifiable 1-convex 3-folds $\mathbf{X} \subset \mathbf{M}$) which are Non-Kahlerian. That will be the goal of the last section. First of all let us introduce the following

Definition 0.4: [V1] A C-analytic manifold X is said to be strongly pseudoconvex (or 1-convex for short) if X is a non singular resolution π : $\mathrm{X} \rightarrow \mathrm{Y}$ of some Stein space Y which has only finitely many isolated singular points $\left\{q_{k}\right\}$ Henceforth, $S:=\cup_{k} \pi^{-1}\left(q_{k}\right)$ will be referred to as the exceptional set of X . Furthermore, X is said to be compactifiable if there exist a compact C -analytic manifold M and a C-analytic subvariety $\Gamma \subset \mathrm{M}$ such that $\mathrm{X} \cong \mathrm{M} \backslash \Gamma$

§ 1.- The Small Resolution

We are now in a position to proceed to the construction of the following
Example 1.1: For any fixed integer $d \in \mathbf{Z}$ with $d \geq 3$, let Y_{d} be an irreducible hypersurface of degree d in \mathbf{P}_{4} with only one isolated singular point $\{p\}$ which is an ordinary double point. Let Γ_{d} $\subset \mathrm{Y}_{\mathrm{d}}$ be a non singular hyperplane section such that $\{\mathrm{p}\} \notin \Gamma_{\mathrm{d}}$
Since $\{p\}$ is an ordinary singularity, a result in $[\mathrm{Kz}]$ tells us that Y_{d} admits an irreducible small resolution $\pi: \mathrm{M}_{\mathrm{d}} \rightarrow \mathrm{Y}_{\mathrm{d}}$, where M_{d} is a compact 3-fold with $\operatorname{Exc}(\pi):=$ the exceptional locus of $\pi \cong$ \mathbf{P}_{1}. Now, Lefschetz hyperplane section theorem and Poincaré duality tell us that

$$
\mathrm{H}^{1}\left(\Gamma_{\mathrm{d}}, \mathbf{Z}\right) \cong \mathrm{H}_{3}\left(\Gamma_{\mathrm{d}}, \mathbf{Z}\right)=0
$$

Certainly, $\boldsymbol{A}_{\mathrm{d}}:=\mathrm{Y}_{\mathrm{d}} \backslash \Gamma_{\mathrm{d}}$, is Stein; hence, in view of Definition 0.4,
$\mathrm{X}_{\mathrm{d}}:=\mathrm{M}_{\mathrm{d}} \backslash \Theta_{\mathrm{d}}$ is a compactfiable1-convex 3-fold with exceptional set $\varepsilon \cong \operatorname{Exc}(\pi)=\mathbf{P}_{1}$.
where $\Theta_{d}:=\pi^{-1}\left(\Gamma_{d}\right)$. Since, $d \geq 3,\{p\}$ is factorial $[C h]$: consequently $H^{2}\left(M_{d}, \mathbf{Z}\right) \cong H_{4}\left(M_{d}, \mathbf{Z}\right) \cong \mathbf{Z}$ Thus, from the following exact sequence

$$
\mathbf{Z} \cong H_{4}\left(\Theta_{\mathrm{d}}, \mathbf{Z}\right)-\imath^{*} \rightarrow \quad \mathrm{H}_{4}\left(\mathrm{M}_{\mathrm{d}}, \mathbf{Z}\right) \cong \mathbf{Z} \quad \rightarrow \quad \mathrm{H}_{4}\left(\mathrm{M}_{\mathrm{d}}, \Theta_{\mathrm{d}} ; \mathbf{Z}\right) \quad \rightarrow \quad \mathrm{H}_{3}\left(\Theta_{\mathrm{d}}, \mathbf{Z}\right)=0
$$

we infer that

$$
H^{2}\left(X_{d}, \mathbf{Z}\right) \cong H_{4}\left(M_{d} ; \Theta_{d}, \mathbf{Z}\right) \text { is a finite group for any } d \geq 3
$$

Claim : $\quad X_{d}$ is non Kählerian
Assume the contrary and assume that Ω is a Kähler $(1,1)$ form on X_{d} upon which one has the following exact sequence

$$
0 \rightarrow \mathbf{R}-\imath \rightarrow \underset{\mathrm{f}}{\mathrm{f}} \underset{\mathrm{H}}{\mathrm{O}} \underset{\operatorname{Ref}}{\boldsymbol{P}} \rightarrow 0
$$

where O is the analytic structure sheaf of X_{d}, \boldsymbol{P} is the sheaf of germs of pluriharmonic functions, see e.g. [HL] and the map t is defined by multiplication by $\sqrt{ }-1$. Hence one obtains the following exact sequence

$$
\begin{equation*}
\mathrm{H}^{1}\left(\mathrm{X}_{\mathrm{d}}, \mathrm{O}\right) \quad \rightarrow \quad \mathrm{H}^{1}\left(\mathrm{X}_{\mathrm{d}} \boldsymbol{P}\right) \quad \rightarrow \quad \mathrm{H}^{2}\left(\mathrm{X}_{\mathrm{d}}, \mathbf{R}\right) \tag{1}
\end{equation*}
$$

Let us consider the following restriction morphism

$$
\lambda:=\pi \mid X_{\mathrm{d}}: \mathrm{X}_{\mathrm{d}} \rightarrow \boldsymbol{A}_{\mathrm{d}}
$$

Since $\{p\}$ is a rational singularity, we infer from Leray spectral sequence that the left hand side group in (1) vanishes; and so does its right hand side group, in view of (\#). Hence it follows readily that

$$
\begin{equation*}
\mathrm{H}^{1}\left(\mathrm{X}_{\mathrm{d}} \boldsymbol{P}\right)=0 \tag{2}
\end{equation*}
$$

On the other hand from the following exact sequence

where $\boldsymbol{E}(\operatorname{resp} \boldsymbol{K})$ is the sheaf of germs of real valued differentiable functions (resp of real valued differentiable closed $(1,1)$ forms)[HL] one gets, in view of (2), the following exact sequence

$$
\begin{equation*}
\Gamma\left(\mathrm{X}_{\mathrm{d}}, \boldsymbol{E}\right) \rightarrow \Gamma\left(\mathrm{X}_{\mathrm{d}}, \boldsymbol{K}\right) \rightarrow \mathrm{H}^{1}\left(\mathrm{X}_{\mathrm{d}}, \boldsymbol{P}\right)=0 \tag{3}
\end{equation*}
$$

Consequently (3) gives rise to some global differentiable function ϕ on X_{d} such that

$$
\mathrm{i} \partial \partial \phi=\Omega \text { is positive definite }
$$

i.e. ϕ is strongly plurisubharmonic. Thus, it follows readily from the maximum principle for plurisubharmonic functions that X_{d} is free of compact subvarieties of positive dimension; this contradicts $\left({ }^{\wedge}\right)$ and our claim is proved.

Remark1.2: It follows readily from (\$) that M_{d} is not projective algebraic. Another proof of this fact can be found in [M1] (p.174) (see also [C]) where it is shown that ε is a null homologous 1 cycle in M_{d}

Counterexample 1.3 For any fixed integer $\mathrm{d} \geq 3$, the hypersurface $\mathrm{Y}_{\mathrm{d}} \subset \mathbf{P}_{4}$ (x:y:z:w:t) considered in Example 1.1 can be explicitly described by the homogeneous equation, see e.g. [W1][CC],

$$
\begin{equation*}
\mathrm{Q}_{2}(\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{w}) \mathrm{t}^{\mathrm{d}-2}+\mathrm{H}_{\mathrm{d}}(\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{w})=0 \tag{*}
\end{equation*}
$$

where $\mathrm{Q}_{2}(\mathbf{x})\left(\operatorname{resp} \mathrm{H}_{\mathrm{d}}(\mathbf{x})\right)$ is a non degenerate quadric (resp.a homogeneous equation of degree d$)$ in $\mathbf{P}_{3}(\mathbf{x})$, where $\mathbf{x}:=(\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{w})$. Now let

$$
\mathrm{p}:=(0: 0: 0: 0: 1) \in \mathbf{P}_{4}(\mathbf{x}: \mathrm{t}) \text { and } \mathrm{Y}^{\prime}:=\{\mathrm{t}=0\} \cong \mathbf{P}_{3}(\mathbf{x})
$$

Certainly

$$
\begin{equation*}
\{\mathrm{p}\} \notin \mathrm{Y}^{\prime} \text { and } \Gamma_{\mathrm{d}}:=\mathrm{Y}_{\mathrm{d}} \cap \mathrm{Y}^{\prime} \text { is non singular by Bertini theorem } \tag{4}
\end{equation*}
$$

Step1: Let \boldsymbol{m} be the maximal ideal sheaf of $\{p\}$.Then a main result in [HR](Theorem1) tells us that there exists an \boldsymbol{m}-primary ideal sheaf $\boldsymbol{J}(\sqrt{ } \boldsymbol{J}-=\boldsymbol{m})$ such that $\pi: \mathrm{M}_{\mathrm{d}} \rightarrow \mathrm{Y}_{\mathrm{d}}$ is dominated by the monoidal transformation $\Pi: B \rightarrow \mathrm{Y}_{\mathrm{d}}$ with center \boldsymbol{J} i. e. there exists a modification morphism
$\tau: B \rightarrow \mathrm{M}_{\mathrm{d}}$ such that $\pi_{\mathrm{o}} \tau=\Pi$. Since $\{\mathrm{p}\}$ is an ordinary singular point, $\boldsymbol{Q}=\mathbf{E x c}(\Pi) \cong \mathbf{P}_{1} \times \mathbf{P}_{1}$. In fact since $\{p\}$ is the only singular point in Y_{d}, one can assume that

$$
\begin{equation*}
B:=\left\{Q_{2}=H_{d}=0\right\} \subset \mathbf{P}_{3}(\mathbf{x}) \text { is a non singular curve. } \tag{v}
\end{equation*}
$$

Notice that $C::=\left\{(\mathbf{x}, \mathrm{t}) \in \mathrm{Y}_{\mathrm{d}} \mid \mathbf{x} \in \mathrm{B}\right\}$ is the cone of all lines $l \in \mathrm{Y}_{\mathrm{d}}$ passing through $\{\mathrm{p}\}$; hence we infer readily from (*), (\vee) and (4) that

$$
\begin{equation*}
l \cdot{ }_{\mathrm{M}} \Theta_{\mathrm{d}}=l \cdot{ }_{\mathrm{Y}} \Gamma_{\mathrm{d}}=\mathrm{m} \geq 1 \tag{5}
\end{equation*}
$$

where l is the strict transform of l by π. This situation can be summarized by the following diagram

where $\mathcal{R}_{1}:=\pi^{*}(C)$ is the compact surface (singular but irreducible) which is the union of lines \boldsymbol{l} joining ε to $B_{1}:=\pi^{*}(B)$ and \mathcal{R}_{2} is a ruled surface; Notice that one has $\Pi^{-1}(C) \cong Q \cup \mathcal{R}_{2}, \tau(Q) \cong \varepsilon$ and $\mathcal{R}_{1} \cong \tau\left(\mathcal{R}_{2}\right)$

Step $2::$ a) If $\mathrm{d}=3$, it follows readily from (*) and (5) that $\mathrm{m}=1$; consequently (\#) tells us that $\mathrm{H}^{2}\left(\mathrm{X}_{3}, \mathbf{Z}\right)=0$
b) Yet this simple case shows us how to concoct a situation in which the latter group is non trivial, when $\mathrm{d}=2 \mathrm{~N}+1$ for any positive integer N .
Indeed, instead of the defining equation (\bullet), let us consider, the nodal hypersurface $\ddot{Y}_{2 N+1}$, defined by

$$
\mathrm{t}^{2 \mathrm{~N}+1} \mathrm{Q}_{2}(\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{w})+\mathrm{t} \mathrm{Q}_{2} \mathrm{~N}_{(\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{w})}+\mathrm{H}_{2 \mathrm{~N}+1}(\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{w})=0
$$

where $\mathrm{Q}_{2}(\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{w})$ (resp. $\mathrm{H}_{2 \mathrm{~N}+1}(\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{w})$) is a non degenerate quadric (resp. a generic homogeneous polynomial of degree $2 \mathrm{~N}+1$) in \mathbf{P}_{3} (x:y:z:w). Then in view of [CC] (section II, p.288) $\ddot{\mathrm{Y}}_{2 \mathrm{~N}+1}$ carries the same cone of lines, which in view of $(\cdot \boldsymbol{*})$, meets the hyperplane section $\Gamma_{2 \mathrm{~N}+1}$ along the non reduced N -uple curve

$$
\check{c}:=\left\{\mathrm{Q}_{2} \mathrm{~N}=\mathrm{H}_{2 \mathrm{~N}+1}=0\right\} \subset \mathbf{P}_{3}(\mathbf{x})
$$

From, $(\boldsymbol{\vee})$ and (5) one can check that $m=N$. We infer from (\#) that

$$
\mathrm{H}^{2}\left(\mathrm{X}_{2 \mathrm{~N}+1}, \mathbf{Z}\right)=\mathbf{Z} / \mathrm{N} \mathbf{Z}
$$

Notice that, although $\Gamma_{2 \mathrm{~N}+1}$ is non singular, it is not in general a transverse hyperplane section
Step3: From the morphism (\sim), let us consider the following commutative diagram with exact rows

$$
\begin{align*}
& \mathrm{H}^{1}(\varepsilon, \mathbf{Z}) \quad \rightarrow \quad \mathrm{H}^{2}\left(\mathrm{X}_{\mathrm{d}}, \varepsilon ; \mathbf{Z}\right) \quad \rightarrow \quad \mathrm{H}^{2}\left(\mathrm{X}_{\mathrm{d}}, \mathbf{Z}\right) \quad \rightarrow \quad \mathrm{H}^{2}(\varepsilon, \mathbf{Z}) \\
& \begin{array}{cccc}
\uparrow \lambda_{1} & \uparrow \lambda_{2} & \uparrow \lambda_{3} & \uparrow \lambda_{4}
\end{array} \tag{^}\\
& 0 \cong \mathrm{H}^{1}(\{\mathrm{p}\}, \mathbf{Z}) \rightarrow \mathrm{H}^{2}\left(\boldsymbol{A}_{\mathrm{d}},\{\mathrm{p}\} ; \mathbf{Z}\right) \rightarrow \mathrm{H}^{2}\left(\boldsymbol{A}_{\mathrm{d}}, \mathbf{Z}\right) \rightarrow \mathrm{H}^{2}(\{\mathrm{p}\}, \mathbf{Z}) \cong 0
\end{align*}
$$

By construction $X_{d} \backslash \varepsilon \cong \boldsymbol{A}_{\mathrm{d}} \backslash\{\mathrm{p}\}$, it follows readily that λ_{2} is an isomorphism. Therefore, from the above diagram one obtains the following exact sequence

$$
0 \cong \mathrm{H}^{1}(\varepsilon, \mathbf{Z}) \rightarrow \mathrm{H}^{2}\left(\boldsymbol{A}_{\mathrm{d}}, \mathbf{Z}\right) \quad \rightarrow \mathrm{H}^{2}\left(\mathrm{X}_{\mathrm{d}}, \mathbf{Z}\right)-\rho^{*} \rightarrow \mathrm{H}^{2}(\varepsilon, \mathbf{Z}) \cong \mathbf{Z}
$$

In view of (\$), X_{d} is Non Kählerian; hence we infer from a main result in [V1] (Theorem III) that the restriction application ρ^{*} is the zero map. Hence our desired construction is complete, provided one takes (\%) into account.

§.2. The Borel- Moore Homology

The major shortcoming in the proof of Theorem 0.3(b) stems from the erroneous assertion that the affine algebraic hypersurface \mathcal{A} is simply connected which we shall discuss next. But first of all let us introduce the following:

Definition 2.1: ([K1] p.3) Let Y, \mathcal{A} and Γ be as in Theorem 0.3.. Then, for any $\mathrm{k} \geq 0$, let

$$
\mathcal{H}_{k}(\mathcal{A}):=\mathrm{H}_{\mathrm{k}}(\mathrm{Y}, \Gamma ; \mathbf{Z})
$$

where $\mathrm{H}_{\mathrm{k}}(\mathrm{Y}, \Gamma ; \mathbf{Z})$ stands for the relative singular homology of the pair (Y, Γ)
$\mathcal{H}_{k}(\mathcal{A})$ is the so called $k^{\text {th }}$ Borel-Moore integral homology of \mathcal{A}.
In [GK] (Korollar 3, p.124), a strategy to prove Theorem 0.3 (b) followed exactly the same pattern as the one in [H]. In particular, it was established, by using the universal coefficient theorem

$$
\mathrm{H}^{2}(\mathcal{A} ; \mathbf{Z}) \cong \operatorname{Hom}\left(\mathrm{H}_{2}(\mathcal{A}, \mathbf{Z}) ; \mathbf{Z}\right) \oplus \operatorname{Tor} \mathrm{H}_{1}(\mathcal{A}, \mathbf{Z})
$$

and, by quoting (as explicitly mentioned in Korollar 2, p123 in [GK]) the fact that

$$
\mathcal{H}_{l}(\mathcal{A})=0
$$

a proof of which was given in [K2] (Korollar 2.8 (ii)); however, in general

$$
\mathcal{H}_{l}(\mathcal{A}) \neq \mathrm{H}_{1}(\mathcal{A}, \mathbf{Z})
$$

namely the Borel-Moore homology is not necessarily the same as the singular one..
In fact, this is true if Y is non singular. Indeed, if Y is non singular, we have

$$
\mathcal{H}_{1}(\mathcal{A}):=\mathrm{H}_{1}(\mathrm{Y}, \Gamma: \mathbf{Z}) \cong \mathrm{H}^{2 \mathrm{~N}-3}(\mathrm{Y}, \Gamma ; \mathbf{Z}) \cong \mathrm{H}_{1}(\mathcal{A}, \mathbf{Z})
$$

in view of the Poincaré (resp. Alexander-Lefschetz) duality., since \mathbf{R}-dimension $\mathrm{Y}=2 \mathrm{~N}-2$. On the other hand, when the ambient space Y is singular, this is not always the case;

Remark 2.2: Counterexample 1.3 is , in some extent rare, as shown by the following result which was kindly communicated to us by Prof. P. Deligne.

Theorem 2.3: Let $Y_{d} \subset \boldsymbol{P}_{4}(x: y: z: w: t)$ be the nodal hypersurface defined by equation (*) in section 1.3 above. For generic $H_{d}(x, y, z, w)$, let $\Gamma_{d} \subset Y_{d}$ be a transverse hyperplane section and let $\boldsymbol{A}_{\mathrm{d}}:=Y_{d} \backslash \Gamma_{d}$. Then

$$
\operatorname{Pic}\left(\boldsymbol{A}_{\mathrm{d}}\right) \cong H^{2}\left(\boldsymbol{A}_{\mathrm{d}}, \boldsymbol{Z}\right)=0 \quad \text { for any } d .
$$

Proof: Since $\mathrm{H}_{\mathrm{d}}(\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{w})$ is generic, one gets, by perturbation a differentiable 3-fold \boldsymbol{M} such that

$$
\begin{equation*}
M \approx Y \tag{6}
\end{equation*}
$$

where \boldsymbol{Y} is some non singular hypersurface of degree d in \mathbf{P}_{4} and \approx stands for diffeomorphism, and that, \boldsymbol{M} carries a vanishing cycle $\delta \cong S^{3}$ the 3 -sphere, which can be contracted topologically to $\{p\}$.
Precisely there exists a topological morphism $\mathrm{f}: \boldsymbol{M} \rightarrow \mathrm{Y}_{\mathrm{d}}$ such that

$$
\begin{equation*}
M \backslash S^{3} \approx Y_{\mathrm{d}} \backslash\{\mathrm{p}\} \tag{!}
\end{equation*}
$$

Now, let $g: \boldsymbol{M} \backslash \mathrm{f}^{-1}\left(\Gamma_{\mathrm{d}}\right)=: \boldsymbol{A} \rightarrow \boldsymbol{A}_{\mathrm{d}}$ be the restriction topological modification morphism. We infer from (!) that

$$
\begin{equation*}
\mathbf{A} \backslash S^{3} \approx \boldsymbol{A}_{\mathrm{d}} \backslash\{p\} \tag{!!}
\end{equation*}
$$

Consequently, by taking (!!) into account, similar commutative diagram as the one of (\uparrow), in section 1.3, applies to the morphism g in this situation and one gets the following exact sequence

$$
\begin{equation*}
0 \cong \mathrm{H}^{1}(\delta, \mathbf{Z}) \quad \rightarrow \mathrm{H}^{2}\left(\boldsymbol{A}_{\mathrm{d}} \mathbf{Z}\right)-\mathrm{g} * \rightarrow \mathrm{H}^{2}(\mathbf{A}, \mathbf{Z}) \tag{7}
\end{equation*}
$$

In view of a result in $[\mathrm{H}]$ (corollary 2.3) and (6) it follows readily that $\mathrm{H}^{2}(\boldsymbol{A}, \mathbf{Z})=0$; hence our conclusion will follow from (7).
Q.E.D.

§3. The Threefold Paradigm.

Notice that the previous examples only occurred in dimension 3 and this is by no means accidental as shown by the following

Proposition 3.1: Let $Y \subset \boldsymbol{P}_{v}$ be a (strict) complete intersection with only isolated singularities, say $\left\{\mathrm{p}_{\mathrm{i}}\right\}$ and let $\pi: M \rightarrow Y$ be a non singular resolution. Assume that
(1) $\boldsymbol{E x c}(\pi)$ is of pure dimension one and
(2) $\operatorname{dim} . Y>3$.

Then such a resolution does not exist

Proof: Assume the contrary that such a resolution does exist.
Let $\cup_{i} C_{i}$ be an irreducible decomposition of $\operatorname{Exc}(\pi)$, and let K be the canonical bundle of M. Let $\Gamma \subset \mathrm{Y}$ be a non singular hyperplane section such that $\left\{p_{i}\right\} \notin \Gamma$ and let $\mathrm{X}:=\mathrm{M} \backslash \Theta$ where $\Theta:=$ $\pi^{-1}(\Gamma)$. Since X is 1-convex with exceptional set $S \cong \mathbf{E x c}(\pi)$ and since with C-dim X ≥ 4 and dim $S=1$, it follows readily that
(a) KIS is ample (Theorem 1.5 in [V2]) and
(b) for any irreducible and positive dimensional compact subvariety $Z \subset M$ such that $Z \neq C_{i}$, for any i, necessarily $Z \cap \Theta \neq \varnothing$. Hence we infer from Moishezon-Nakai criterion that for some $N \gg 0$, $K \otimes \mathrm{~L}^{\mathrm{N}}$ is ample where L is the line bundle on M determined by Θ.
Consequently, M is projective algebraic .Therefore GAGA type theorem implies that π is actually a projective morphism. By virtue of our hypothesis (2), $\left\{p_{i}\right\}$ are algebraically factorial [G] (XI 3.1.4); hence van der Waerden theorem tells us that S is of pure codimension one. Contradiction ! Q.E.D.

In sharp contrast to this situation, its 3-fold analogue is completely characterized by the following
Theorem 3.2: Let $\pi: M \rightarrow Y$ and X be as in Proposition 3.1 with C-dim. $Y=3$.
Assume that

$$
\begin{equation*}
S:=\boldsymbol{E x c}(\pi) \text { is of pure dimension one } \tag{†}
\end{equation*}
$$

Then the following conditions are equivalent:
(α) M is non-Kählerian
(β) M carries a null homologous 1-cycle $\boldsymbol{\Xi}$

(γ) X carries a null homologous 1-cyle $\boldsymbol{\Lambda} \cong \Xi$

Proof: $(\alpha)===>(\beta)$
Step 1: We shall follow here closely an idea in [HL]. Let us consider the following homomorphism of Frechet spaces :

$$
\begin{equation*}
\mathrm{d}: \mathbb{E}^{1,1}(\mathrm{M}) \quad \rightarrow \quad \mathcal{E}^{2,1}(\mathrm{M}) \oplus \mathscr{E}^{1,2}(\mathrm{M}) \tag{8}
\end{equation*}
$$

where for any non negative pair of integers p and $q, \mathscr{E}^{p, q}(M)$ denotes the Frechet space of global, real-valued, smooth (p, q) forms on M and let $\mathscr{D}^{p, q}(\mathrm{M})$, be its dual space,. Notice that (8) induces a dual homomorphism

$$
\begin{equation*}
\partial .+\partial: \mathscr{D}^{1,2}(\mathrm{M}) \oplus \mathscr{D}^{2,1}(\mathrm{M}) \rightarrow \mathcal{D}^{1,1}(\mathrm{M}) \tag{9}
\end{equation*}
$$

Now let

$$
\begin{aligned}
& P:=\left\{\phi \in \mathcal{E}^{1,1}(\mathrm{M}) \mid \phi>0\right\} \quad \text { and } \\
& \mathcal{K}:=\left\{\phi \in \mathbb{E}^{1,1}(\mathrm{M}) \operatorname{dd} \phi=0\right\}
\end{aligned}
$$

By hypothesis $P \cap \mathcal{K}=\varnothing$. Following Hahn- Banach Theorem, one can find a continuous linear form say T , on $\mathcal{E}^{1,1}(\mathrm{M})$ separating \mathscr{P} from \mathcal{K}, i.e. a current $\mathrm{T} \in \mathcal{D}^{1,1}(\mathrm{M})$ such that
(a) $\mathrm{T}(\phi)>0$ for any $\phi \in \mathscr{P}$ i.e. T is a positive current and
(b) $\mathrm{T}(\phi)=0$ for every $\phi \in \mathcal{K}$ i.e. $\quad \imath \partial \partial \mathrm{T}=0$

Since $\left.M \backslash S \cong Y \backslash\left(\cup_{k} p_{k}\right)\right\}$ is quasi projective, (a) implies that $\operatorname{Supp}(T) \subset S$. In view of (b), a result in [HL](Lemma 32) tells us that $T=\Sigma_{i} r_{i} \quad C_{i}$ where C_{i} are irreducible components of S and $r_{1} \in \mathbf{R}^{+}$.

Step 2: On the other hand from the Leray spectral sequence associated to the morphism π, one obtains the following exact sequence

$$
\begin{equation*}
\mathrm{H}^{2}\left(\mathrm{Y}, \mathrm{O}_{\mathrm{Y}}\right) \rightarrow \mathrm{H}^{2}\left(\mathrm{M}, \mathrm{O}_{\mathrm{M}}\right) \rightarrow \Gamma\left(\mathrm{Y}, \mathbb{R}^{2}\left(\pi_{*}\left(\mathrm{O}_{\mathrm{M}}\right)\right)\right. \tag{10}
\end{equation*}
$$

Notice that in (10) the first homology group vanishes in view of [S] (Prop.5(b), p.273); so does the third one, in view of the hypothesis $(\dot{\dagger})$. Consequently $\mathrm{H}^{2}\left(\mathrm{M}, \mathrm{O}_{\mathrm{M}}\right)=0$ and an extension of the exact sequence (1) will give rise to the following one

$$
\mathrm{H}^{1}(\mathrm{M}, \boldsymbol{P})-\rho \rightarrow \mathrm{H}^{2}(\mathrm{M}, \mathbf{R}) \rightarrow \quad \mathrm{H}^{2}\left(\mathrm{M}, \mathrm{O}_{\mathrm{M}}\right) \cong 0
$$

On the other hand, from the exact sequence (\bullet) in section 1 and the definition $(\bullet \bullet)$ above, one has $H^{1}(M, \boldsymbol{P}) \cong \mathcal{K} / \iota \partial \partial \mathcal{E}^{0,0}(M)$; therefore, one deduces from (b) and the surjectivity of ρ, that $T(\phi)=0$ for any $\phi \in H^{2}(M, \mathbf{R})$. Hence, by duality, T is a null-homologous 1-cycle in $H_{2}(M, \mathbf{R}):=H_{2}(M$, $\mathbf{Z}) \otimes \mathbf{R}$ which is finitely generated. Thus, there exist integers $n_{i} \in \mathbf{Z}^{+}$such that $\Xi:=\Sigma_{\mathrm{i}} n_{\mathrm{i}} \mathrm{C}_{\mathrm{i}}$ is the desired null homologous 1-cycle
(β) $===>(\gamma)$
In view of Lefschetz hyperplane section theorem, $\mathrm{H}_{3}(\Gamma, \mathbf{R})=0$. Consequently, one obtains the following natural map of vector spaces

$$
\begin{equation*}
\mathrm{H}_{4}(\mathrm{M}, \mathbf{R}) \rightarrow \quad \mathrm{H}_{4}(\mathrm{M}, \Gamma ; \mathbf{R}) \rightarrow \quad \mathrm{H}_{3}(\Gamma, \mathbf{R})=0 \tag{11}
\end{equation*}
$$

By duality

$$
\begin{equation*}
\mathrm{H}^{2}(\mathrm{M}, \mathbf{R}) \cong \mathrm{H}_{4}(\mathrm{M} ; \mathbf{R}) \quad \text { and } \quad \mathrm{H}^{2}(\mathrm{X}, \mathbf{R}) \cong \mathrm{H}_{4}(\mathrm{M}, \Gamma ; \mathbf{R}) \tag{12}
\end{equation*}
$$

From (12) and the dual of finite dimensional vector spaces, the surjectivity of (11) is equivalent to the injectivity of

$$
\mathrm{H}_{2}(\mathrm{X}, \mathbf{R}) \rightarrow \quad \mathrm{H}_{2}(\mathrm{M} ; \mathbf{R})
$$

Consequently Ξ is homologous to zero in $\mathrm{H}_{2}(\mathrm{X}, \mathbf{R})$

However, when $\operatorname{dim} \cdot \operatorname{Exc}(\pi)=2$, the situation is quite delicate, since $\operatorname{Pic}(\mathrm{M})($ resp. $\operatorname{Pic}(X))$ would be, in general no longer isomorphic to $H^{2}(M, \mathbf{R})\left(\right.$ resp. $\left.H^{2}(X, \mathbf{R})\right)$ unless $\left\{p_{i}\right\}$ are rational singularities However, we have the following result

Proposition 3.3: Let $\pi: M \rightarrow Y$ be as in Theorem 3.2.
Assume that, for any $r \neq s$,

$$
E_{r} \cap E_{s}=\varnothing \quad(\dagger \dagger)
$$

where $E_{r} \in \boldsymbol{S}:=\boldsymbol{\operatorname { E x c }}(\pi)$ with $1 \leq r, s \leq p$, are irreducible 2-dimensional components Then M is Kahlerian iff M is free of numerically trivial 1-cycles

Proof: Step1: Assume that M is non-Kahlerian and that $\mathrm{C}-\operatorname{dim} \cdot \operatorname{Exc}(\pi)=2$. (such a non Kahlerian 3-fold does exist, see Examples below $)$. Certainly $\mathrm{M} \backslash \operatorname{Exc}(\pi) \cong Y \backslash\left(\cup_{\mathrm{k}} \mathrm{p}_{\mathrm{k}}\right)$ is quasi projective. Hence a main result in [M2] (see also [Hi]) tells us that there exist an ideal sheaf $\mathcal{J} \subset O_{M}$ and a monoidal transformation $\mu: \mathrm{W} \rightarrow \mathrm{M}$ with center \mathcal{I} such that
(a) support of $\mathcal{J}=: C=\cup_{j} C_{j}$, where each C_{j} is a compact non singular curve $\subset \mathrm{S}$ with $1 \leq \mathrm{j} \leq \mathrm{q}$
(b) W is projective algebraic

Consequently, in view of (b),

$$
\begin{equation*}
\mathrm{M} \backslash C \cong \mathrm{~W} \backslash \mu^{-1}(C) \text { is quasi-projective. } \tag{13}
\end{equation*}
$$

Step 2: In view of (b), let $\mathrm{H} \in \operatorname{Pic}(\mathrm{W})$ be a very ample divisor and let $\mu_{*}(\mathrm{H})=: \mathbf{H} \in \operatorname{Pic}(\mathrm{M})$. Now let $\mathcal{L}_{r} \in \operatorname{Pic}(\mathrm{M})$ be determined by E_{r}. Then we have the following alternatives:
(i) Assume that there exists a component $C^{\prime} \subset C$ such that for some $\mathrm{r}, C^{\prime} \subset E_{r}$ and that $\mathcal{L}_{r} . C^{\prime}=0$, Then certainly C^{\prime} is a null homologous 1-cycle in view of $(\not+\dagger)$ and the fact that $\operatorname{Pic}(\mathrm{Y})=\mathbf{Z}$. (ii) Assume that there exists an $\mathcal{L} \in \operatorname{Pic}(\mathrm{M})$ such that $\mathcal{L} \mid \mathrm{C}_{\mathrm{j}}>0$ (resp. $\mathcal{L} \mid \mathrm{C}_{\mathrm{j}}<0$) for any j . Then, in view of (13), for some integer $\mathrm{N} \gg 0, \mathcal{E}:=\mathcal{L} \otimes \boldsymbol{H}^{\mathrm{N}}\left(\right.$ resp. $\left.\mathscr{E}^{\prime}:=\mathcal{L}^{\star} \otimes \boldsymbol{H}^{\mathrm{N}}\right)$ is numerically positive . Therefore, we infer from a result in [Ko] (Corollary 5.1.5) that M is projective algebraic; contradiction to the hypothesis that M is Non-Kahlerian
(iii) Consequently it remains the mixed case, and we can consider only the components E_{V} with $v \in$ $\{1, \ldots, p\}$ such that each such E_{V} contains or meets at least two of the C_{j} In view of (i) and (ii), one can find positive integers v_{m} such that $\mathcal{L}_{v} \cdot Z_{v}=0$ where $Z_{v}:=\Sigma_{m} v_{m} C_{m}$.Since there are only finitely many such E_{V}, from the fact that $\operatorname{rank} \operatorname{Pic}(\mathrm{Y})=1$ and the hypothesis $(\dagger \dagger)$, it follows that $\Xi:=\Sigma_{V} Z_{v}$ is the desired numerically trivial 1-cycle
Q.E.D.

In order to illustrate the above results, we would like to exhibit the following concrete examples which mirror certain peculiar aspects of Moishezon 3-folds.

Example 3.4: For any fixed integer $\mathrm{d} \geq 3$, let $\pi: \mathrm{M}_{\mathrm{d}} \rightarrow \mathrm{Y}_{\mathrm{d}}$ be an irreducible small resolution as in
Example 1.1. Let $\lambda: \mathrm{M}_{0} \rightarrow \mathrm{M}_{\mathrm{d}}$ be the blow up of M_{d} along $\varepsilon \cong \mathbf{P}_{1}$. Then one can check that M_{0} is projective algebraic with $\operatorname{Exc}(\lambda) \cong \mathbf{P}_{1} \times \mathbf{P}_{1}$. Notice that rank $\operatorname{Pic}\left(\mathrm{M}_{0}\right)=2$
On the other hand let $\kappa: M_{1} \rightarrow M_{d}$ be the blow up of M_{d} along $\cup_{j} a_{j} \in \varepsilon$ where $\left\{a_{j}\right\}$, with $1 \leq j \leq k$, are k distinct points. Let σ (resp. $\mathrm{E}_{\mathrm{j}} \cong \mathbf{P}_{2}$) be the strict transform of ε (resp. a_{j}) by κ Then one can check that $\Lambda:=\sigma+\Sigma_{j} C_{j}$ is a null-homologous 1-cycle, where $\mathbf{P}_{1} \cong C_{j} \subset E_{j}$. Notice that $E_{i} \cap E_{j}=\varnothing$ and rank $\operatorname{Pic}\left(\mathrm{M}_{1}\right)=\mathrm{k}+1$

Example 3.5: Let $\hat{Y}:=\mathbf{H}_{1} \cap \mathbf{H}_{2}$, where \mathbf{H}_{i}, ($\mathrm{i}=1$ or 2) are quadric hypersurfaces in \mathbf{P}_{5}, such that \hat{Y} contains exactly 1 singular point $\{p\}[F]$ which is locally defined by $\left\{x^{2}+y^{2}+z^{2}+w^{4}=0\right\}$ in $\mathbf{C l}^{4}(\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{w})$.Then one can check that \hat{Y} admits a non singular resolution π : $\mathrm{M}_{2} \rightarrow \hat{Y}$ such that
(a) $\mathcal{R}:=\operatorname{Exc}(\pi) \cong \mathbf{F}_{2}$, a Hirzebruch ruled surface
(b) R carries a rational 1-cycle $\Xi:=\zeta+\xi$ which is null homologous in \mathbf{M}_{2}, where $\zeta \cong \mathbf{P}_{1}$ and $\xi \cong \mathbf{P}_{1}$ are 2 disjoint sections in \mathbf{F}_{2}, such that $\xi^{2}=-\xi^{2}=2$, and
(c) $\operatorname{rank} \operatorname{Pic}\left(\mathrm{M}_{2}\right)=2$

Example 3.6: Let $\ddot{Y}:=H_{1} \cap \boldsymbol{H}_{2}$, where H_{i}, (ii=1 or 2) are quadric hypersurfaces in \mathbf{P}_{5}, such that \ddot{Y} contains exactly 1 singular point $\{q\}$ [W2](Beispiel 1, p .25) which is locally defined by $\left\{\mathrm{x}^{2}+\mathrm{y}^{2}+\right.$ $\left.\mathrm{z}^{2}+\mathrm{w}^{6}=0\right\}$ in \mathbf{C}^{4} but which is not factorial. Then one can check that \ddot{Y} admits a non singular projective resolution $\tau: \mathrm{M}_{3} \rightarrow \ddot{Y}$ such that $\operatorname{Exc}(\tau) \cong \mathbf{P}_{1}$ and $\operatorname{rank} \operatorname{Pic}\left(\mathrm{M}_{3}\right)=2$

Example 3.7: In [Ko] (Example 4.3.1) was exhibited a normal 3 dimensional Moishezon space \mathbf{M} with only isolated rational singularities $\left\{q_{i}\right\}$. Furthermore, \boldsymbol{M} contains 2 compact non singular curves, say, C and D such that
(i) C is rational, D is of arbitrary genus and $\mathrm{C} \cap \mathrm{D}=\varnothing$
(ii) The 1-cycle $C+D$ is numerically trivial, and
(iii) $\cup_{i} q_{i} \subset C$

Now let $\pi: \mathbf{M}_{4} \rightarrow \mathbf{M}$ be the blow-up of \mathbf{M} with center $\cup_{i} q_{i}$, let C (resp. $\left.\mathcal{D}\right)$ be the strict transform of C (resp.D) by π and let $E_{i}:=\pi^{-1}\left\{q_{i}\right\} \cong \mathbf{P}_{2}$. Notice that $E_{i} \cap E_{j}=\varnothing$. Then certainly
(a) M_{4} is a Moishezon 3-fold
(b) M_{4} carries a null-homologous 1-cycle $\Lambda:=C+\sum_{i} \mathrm{~m}_{\mathrm{i}} \mathrm{C}_{\mathrm{i}}+\mathcal{D}$
where $\mathrm{m}_{\mathrm{i}}:=$ multiplicity of q_{i}, and $\mathbf{P}_{1} \cong \mathrm{C}_{\mathrm{i}} \subset \mathrm{E}_{\mathrm{i}}$

References

[CC] Ceresa.G. \& Collino,A.: Some remarks on algebraic equivalence of cycles. Pacific J. math. 105 (1983) 285-290
[Ch] Cheltsov, I: On factoriality of nodal threefolds, J.Alg.Geom.14, (2005) 663-690
[C] Cornalba,M.: Two theorems on modifications of analytic spaces,Invent. Math. 20 (1973) 227-247
[F] Furushima, M: An example of a non-projective smooth compactification of C^{3} with second Betti number equal to one. Math.Ann. 300,(1994) 89-96
[GK] Gerstner, O.\& Kaup,L.: Homotopiegruppen von Hyperflächenschnitten. Math.Ann. 204 (1973) 105-130
[G] Grothendieck, A.: Cohomologie locale des faisceaux cohérents et Théorèmes de Lefschetz locaux et globaux. SGA 2, North Holland, (1968)
[HL] Harvey,R \& Lawson,B.: An intrinsic characterization of Kähler manifolds, Invent.Math. 74 (1983) 169-198
[Hi] Hironaka,H.: Flattening theorem in complex analytic geometry, Amer. J. Math. 97 (1975) 473-507
[HR] Hironaka, H. \& Rossi, H.: on the equivalence of imbeddings of exceptional complex spaces, Math. Ann. 156, (1964) 313-333
[H] Howard, A.: On the homotopy groups of an affine algebraic hypersurface. Ann.of Math. 84 (1966) 197-216
[Kz] Katz,S.: Small resolutions of Gorenstein threefold singularities, in Contemp. Math Vol 116, AMS Providence RI (1991) 61-70
[K] Kaup, L.: 1) Poincaré Dualität für Räume mit Normalisierung, Ann.Sc. N.S. Pisa Math., 26 (1972) 1-31
2) Zur Homologie projektiv algebraischer Varietäten, Ann. Sc. N.S. Pisa Math., 26 (1972) 479-513
[Ko] Kollar,J.: Flips, Flops, Minimal models, etc. Surveys in Differential Geometry, 1. (1991) 113-199
[M] Moishezon, B.G.: 1) On n-dimensional compact algebraic varieties with n algebraically independent meromorphic functions I, II, III. AMS Translations Ser. 2, 63 (1967) 51-177
2) Resolution theorems for compact complex spaces with sufficiently large field of meromorphic functions. Math USSR-Izv, I (1967) 1331-1356
[S] Serre, J.P.: Faisceaux algebriques coherents, Ann. Math., 61, (1955) 197-278
[V] Vo Van, T.: 1) On the embedding problems for 1 -convex spaces, Trans. AMS 256 (1979) 185-197
2) On the Kählerian geometry of 1-convex threefolds, Forum.Math.7,(1995)131-146
[W] Werner,J.: 1)Kleine Auflösungen spezieller dreidimensionaler Varietäten, Bonner Math. Schriften, 186 (1987)
2) Vollständige Durchschnitte zweier Quadrike in $P^{5}(C)$ und ihre kleine Auflösungen, Math. Göttingen Schriften des Sonder. Geom. Anal. 13 (1988)

