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Abstract: Let Y c Py be a non singular hypersurface with N >3, letI" c Y be a transverse hyperplane section and let
A:=Y\I'. In 1966, A. Howard established the following result:
The analytic Picard group of 4 is trivial *)
In 1973, Gerstner and Kaup showed that (*) remained valid if Y has only isolated singularities, say {gx} and

I is merely a non singular hyperplane section, provided {gx}& I' . The purpose of this note is to propose to the latter

result, a counterexample which is a nodal and irreducible 3-dimensional hypersurface Y — P,. Also a geometric charac-
terization of a Non-Kahlerian and non singular resolution 7: m— Y will be established.
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§ 0.- The Motivation

Unless the contrary is explicitly stated, all 3-dimensional (resp. 2-dimensional) connected C-
analytic manifolds will be referred to simply as threefolds (resp. surfaces). For any C-algebraic variety X,

let us denote by Pic(X):= H'(X; 0,*) the analytic Picard group of X, where X is the underlying C-analytic
space associated to X. £ € Pic(X) is called numerically positive if £ .C > 0 for any compact irreducible

curve C c X. Also the finite sum Z:= ¥inCj where nje Z% and Cj c X are irreducible compact curves for
any i, will be called a /- cycle and E is said to be numerically trivial if £.2=0 for any £ €Pic(X)

In 1966, A. Howard established the following result [H] (corollary 2.3)

Proposition 0.1: Let N >3 ,let Yy C Px be a connected and non singular hypersurface and let Y’C

P N be a linear hyperplane intersecting Y, transversely. Let Iy := Yy MY and let Ag:=Y\y Then
Pic(ag)is 0

Also as noticed in [H] (p.213) the hypothesis of transversality of Y’ is crucial here; in fact one has



Example 0.2:: Let Y,:= { x2 + y2 +722+w2=0 }C P4 (x:y:z:w:t) be a quadric hypersurface with
a single (isolated) singular point q = (0:0:0:0:1) and let A2:= Y, M{x# 0}. Then it is clear that A
= {Cz + E_,z +v2 =-1c c4 (€.&,v.,7) is a non singular affine algebraic hypersurface, where {:= y/x
€ := z/x v:i= w/x and T:=t/x Certainly A is homotopically equivalent to A M{t =0} which has the

same homotopy type as the 2-sphere S2; consequently, in contrast with A
Pic(22) =HX(A2,Z)= Z

By steering clear from Example 0.2, in 1973, the following generalization of Proposition 0.1 was
given in [GK] (Satz 1, p.121 & Korollar 3, p.125)

Theorem 0.3: Let N >3, and let YC Py be an irreducible hypersurface with only isolated
singularities, say {q\J. Now, let I'CY be a non singular hypersurface section such that {q} &€ I
andlet A:= Y\I'.Then

(a) ™(A), the fundamental group of A, is finite cyclic, and

(b) Pic(A) = 0, provided I' is a non singular hyperplane section

One of the main purposes of this note is to provide a simple counterexample to Theorem 0.3
(b) (see Counterexamplel.3 below); consequently its fundamental group, in view of Theorem
0.3(a), is non trivial cyclic. It turns out that such a construction also provides a road map for a
geometric characterization of certain Moishezon 3-folds M (resp. compactifiable 1-convex 3-folds

Xc M) which are Non-Kahlerian. That will be the goal of the last section. First of all let us introduce
the following

Definition 0.4: [V1] A C-analytic manifold X is said to be strongly pseudoconvex (or I-convex for
short) if X is a non singular resolution : X — Y of some Stein space Y which has only finitely

many isolated singular points {qx} Henceforth, S:= U, t~ 1(qk) will be referred to as the exceptional
set of X. Furthermore, X is said to be compactifiable if there exist a compact C-analytic manifold M
and a C-analytic subvariety I' = M such that X = M\ T

§ 1.- The Small Resolution

We are now in a position to proceed to the construction of the following

Example 1.1: For any fixed integer d € Z with d > 3, let Yq be an irreducible hypersurface of
degree d in P4 with only one isolated singular point{ p} which is an ordinary double point. Let I'g

C Y4 be a non singular hyperplane section such that {p} ¢ I'gq
Since {p} is an ordinary singularity, a result in [Kz] tells us that Yq admits an irreducible small

resolution : Mg — Yy, where Mg is a compact 3-fold with Exc(m):= the exceptional locus of T =
P; . Now, Lefschetz hyperplane section theorem and Poincaré duality tell us that
HI(T4,Z)= H; (T4, Z)=0
Certainly, A4 := Yq\Ig, is Stein; hence, in view of Definition 0.4,
X4g:=Mg\ Qg is a compactfiablel-convex 3-fold with exceptional set € = Exe(m) = P, . Q@)
where Oq:= T~ 1(l“d). Since, d >3, {p} is factorial [Ch]: consequently H2 (My, Z) = Hy(My, Z) = Z
Thus, from the following exact sequence



Z=H,04,7Z) —1x—- H/Myg,Z)zZ - H;Mg,0O4 Z) - H;3(047Z)=0
we infer that
H2(Xd, 7Z) =H ,(Mg; Oq, Z) is a finite group for any d > 3 #)

Claim : X4 is non Kdihlerian %)
Assume the contrary and assume that Q is a Kéhler (1,1) form on Xgq upon which one has the
following exact sequence

0>R—-1—> 0> P =0

f - Re f
where O is the analytic structure sheaf of Xq , Pis the sheaf of germs of pluriharmonic functions,

see e.g. [HL] and the map 1 is defined by multiplication by \-1. Hence one obtains the following
exact sequence

Hl x¢.0) = HlxaPp — HZx4R) (1)
Let us consider the following restriction morphism
A=TIXg: Xq — Aq ~)

Since{p}is a rational singularity, we infer from Leray spectral sequence that the left hand side group
in (1) vanishes; and so does its right hand side group, in view of (#). Hence it follows readily that

Hlx4 A =0 2)
On the other hand from the following exact sequence
0—> P > E — K —0 (o)
O > 1999

where E (resp K) is the sheaf of germs of real valued differentiable functions (resp of real valued
differentiable closed (1,1) forms)[HL] one gets, in view of (2), the following exact sequence

[(Xg, B) — T(Xs K — Hl (Xa.P=0 3)
Consequently (3) gives rise to some global differentiable function ¢ on Xq such that
i dddp = Q is positive definite
i.e. Ois strongly plurisubharmonic. Thus, it follows readily from the maximum principle for
plurisubharmonic functions that Xq is free of compact subvarieties of positive dimension; this
contradicts () and our claim is proved.

Remark1.2: It follows readily from ($) that Mg is not projective algebraic. Another proof of this

fact can be found in [M1] (p.174) (see also [C]) where it is shown that € is a null homologous 1-
cycle in My

Counterexample 1.3 For any fixed integer d > 3, the hypersurface Yq C P4 (x:y:z:w:t) considered
in Example 1.1 can be explicitly described by the homogeneous equation, see e.g. [W1][CC],
Q X,y 2z, W) td-2 4+ H, (x, y,z,w)=0 (%)
where Q,(x) (resp Hy(x)) is a non degenerate quadric (resp.a homogeneous equation of degree d) in
P3 (x), where x:=(x,y,z,w). Now let
p:=(0:0:0:0:1) € Pg(x:it) and Y :={t=0}= P3(x)
Certainly
{p} €Y and TIq:=YqMY is non singular by Bertini theorem “4)



Stepl: Let m be the maximal ideal sheaf of {p}.Then a main result in [HR](Theorem1) tells us that
there exists an m-primary ideal sheaf J(\/J -= m) such that ©: Mg — Yq is dominated by the
monoidal transformation Il: B —> Y4 with center J 1i. e. there exists a modification morphism
T: B—> Mg such that wot = II. Since {p} is an ordinary singular point, Q = Exc(I) = P; x P;. In
fact since {p} is the only singular point in Y4, one can assume that

B:={Q, = Hy = 0}C P3 (x) is a non singular curve. (v)

Notice that C::= {(x,t) e Yql x € B} is the cone of all lines [ € Yq passing through {p}; hence we
infer readily from (&), (v) and (4) that

[.yOg=LyTg=m>1 5
where [ is the strict transform of / by w .This situation can be summarized by the following diagram

R
M
PixPiz0 C B
Tl I1
Pize CMy —n—> Yg C Py,
U O
B, C R, pe Co>B C P3

where ®; :=*(C) is the compact surface (singular but irreducible) which is the union of lines /
joining € to Bj:=w*(B).and ®, is a ruled surface; Notice that one has H_l(C) ZQUR,T(Q)=¢
and ®; = (Ry)

Step2:: a) If d = 3, it follows readily from (&) and (5) that m = 1; consequently (#) tells us that
H2(x3,Z) =0
b) Yet this simple case shows us how to concoct a situation in which the latter group is non trivial,
when d = 2N + 1 for any positive integer N. )
Indeed, instead of the defining equation (&), let us consider, the nodal hypersurface Y,y,, defined
by

EN+HLQ, (x, y, 2, W) +tQN(x, y, 2, W) + Honit (%, ¥, 2, W) = 0 (#4)
where Q,(X, y, z, w) (resp. Hyny1 (X, ¥, Z, W)) is a non degenerate quadric (resp. a generic
homogeneous polynomial of degree 2N + 1) in P3(x:y:z:w). Then in view of [CC] (section II,
p.288) Y, carries the same cone of lines, which in view of (s&), meets the hyperplane section
[Ny along the non reduced N-uple curve

&= {QN=Hn,=0} © P3(x) (vv)
From,(vw) and (5) one can check that m = N. We infer from (#) that
H2(xoN+1, Z) = ZINZ (%)

Notice that, although I,y is non singular, it is not in general a transverse hyperplane section
Step3: From the morphism (~), let us consider the following commutative diagram with exact rows
Hle, 2) - H2(x4,&; Z) — H2(Xg,Z) — H2(@E Z)

T?xl T?xz T?x3 T?x4 ™
0=Hl({p},Z) » H2A,(p};Z) » H2A4,Z) — HZ({p},Z) =0



By construction Xq\ € = A4\ {p}, it follows readily that A, is an isomorphism. Therefore, from the
above diagram one obtains the following exact sequence

0=Hle,Z) > H2A4,Z) — H2(Xg,Z) — p*' > H2(e,2)=Z

In view of ($), X4 is Non Kihlerian; hence we infer from a main result in [V1] (Theorem III) that

the restriction application p“is the zero map. Hence our desired construction is complete, provided
one takes (%) into account.

§.2. The Borel- Moore Homology

The major shortcoming in the proof of Theorem 0.3(b) stems from the erroneous assertion that the
affine algebraic hypersurface 4 is simply connected which we shall discuss next. But first of all let
us introduce the following:

Definition 2.1: ([K1] p.3) Let Y, 4and I be as in Theorem 0.3.. Then, for any k > 0, let
H(A):= Hy (Y, I Z)

where Hy (Y, I'; Z) stands for the relative singular homology of the pair (Y, I)

H(A) is the so called kth Borel-Moore integral homology of A.

In [GK] (Korollar 3, p.124), a strategy to prove Theorem 0.3 (b) followed exactly the same
pattern as the one in [H]. In particular, it was established, by using the universal coefficient
theorem

H2 (2,Z) = Hom (H,(4,Z); Z) ® TorHy (A,Z)
and, by quoting (as explicitly mentioned in Korollar 2, p123 in [GK]) the fact that
H)(A)=0
a proof of which was given in [K2] (Korollar 2.8 (ii)); however, in general
H(A)# Hi (A, Z)
namely the Borel-Moore homology is not necessarily the same as the singular one..
In fact, this is true if Y is non singular. Indeed, if Y is non singular, we have

Hi(A) = H (Y, "1 Z)= B3 (Y, T';Z) =H (4, Z)
in view of the Poincaré (resp. Alexander-Lefschetz) duality., since R—dimension Y = 2N — 2. On
the other hand, when the ambient space Y is singular, this is not always the case;

Remark 2.2: Counterexample 1.3 is, in some extent rare, as shown by the following result which
was kindly communicated to us by Prof. P. Deligne.

Theorem 2.3: Let Yq C Py(x:y:z:w:t) be the nodal hypersurface defined by equation (%) in section
1.3 above. For generic Hy(x, y, z, w), let I g CYq be a transverse hyperplane section and let
Ag:=Yas\l 4 Then

Pic(Ay) = H2 (A, Z) =0 for any d.

Proof: Since Hy(x, y, z, w) is generic, one gets, by perturbation a differentiable 3-fold M such that
M=Y (6)



where Y is some non singular hypersurface of degree d in P4 and = stands for diffeomorphism, and
that, M carries a vanishing cycle o = S3 the 3-sphere, which can be contracted topologically to {p}.
Precisely there exists a topological morphism f: M —> Y4 such that
M\S3 =Yq\{p}. ()
Now, let g: M\ f‘l(Fd) =:A —> A, be the restriction topological modification morphism. We infer
from (!) that
A\S3 = A4\ {p} (I

Consequently, by taking (!!) into account, similar commutative diagram as the one of (), in section
1.3, applies to the morphism g in this situation and one gets the following exact sequence

0 = HI 3,20 — HZAZ) — g+— H2(A,Z) (7)
In view of a result in [H](corollary 2.3) and (6) it follows readily that H2(A, Z) = 0; hence our
conclusion will follow from (7). Q.E.D.

§3. The Threefold Paradigm.

Notice that the previous examples only occurred in dimension 3 and this is by no
means accidental as shown by the following

Proposition 3.1: Let Y C P, be a (strict) complete intersection with only isolated singularities,
say{pi} and let 7w: M — Y be a non singular resolution. Assume that

(1) Exc(7r) is of pure dimension one and
(2) dim.Y > 3.
Then such a resolution does not exist

Proof: Assume the contrary that such a resolution does exist.
Let U C; be an irreducible decomposition of Exe(7), and let & be the canonical bundle of M. Let
' C Y be a non singular hyperplane section such that {p;} € I" and let X:= M\ ® where @:=

Tt‘l(F). Since X is 1-convex with exceptional set S = Exe(7) and since with C-dim X >4 and dim
S =1, it follows readily that
(a) KIS is ample (Theorem 1.5 in [V2]) and

(b) for any irreducible and positive dimensional compact subvariety Z — M such that Z# C;, for any
i, necessarily Z N ® # @. Hence we infer from Moishezon-Nakai criterion that for some N>>0,
K®LN is ample where L is the line bundle on M determined by ©.

Consequently, M is projective algebraic .Therefore GAGA type theorem implies that 7 is actually a
projective morphism. By virtue of our hypothesis (2), {p;} are algebraically factorial [G] (XI 3.1.4);
hence van der Waerden theorem tells us that S is of pure codimension one. Contradiction ! Q.E.D.

In sharp contrast to this situation, its 3-fold analogue is completely characterized by the following

Theorem 3.2: Let w: M — Y and X be as in Proposition 3.1 with C-dim. Y = 3.
Assume that
S:= Exc(7) is of pure dimension one (#)
Then the following conditions are equivalent:
(&) M is non-Kdhlerian
(B) M carries a null homologous 1-cycle &



(7) X carries a null homologous 1- cyle A= &

Proof: (o) ===> ()
Step 1: We shall follow here closely an idea in [HL]. Let us consider the following homomorphism
of Frechet spaces :

de' M - ') e EFM) (8)
where for any non negative pair of integers p and q, £ (M) denotes the Frechet space of global,
real-valued, smooth (p,q) forms on M and let ©*% (M), be its dual space,. Notice that (8) induces a
dual homomorphism

9.49: D2 M@ o' M) » o' (M) 9)
Now let

P:={0e "' M) 1¢>0}  and

K={ o £"'(M) ldo = 0} (e9)

By hypothesis # " K = @. Following Hahn- Banach Theorem, one can find a continuous linear form
say T, on £"'(M) separating @from X, i.e. a current T € "' (M) such that

(a) T(¢) >0 forany ¢ € @ i.e. T is a positive current and

(b) T(¢p) =0 forevery ¢ K ie. 100 T=0

Since M\S =Y\ ( Uy py) } is quasi projective, (a) implies that Supp(T) C S. In view of (b), a result
in [HL](Lemma 32) tells us that T = £j5 Cj where Cj are irreducible components of S and rie RY.

Step 2: On the other hand from the Leray spectral sequence associated to the morphism 7, one
obtains the following exact sequence

H2 (Y,0y) » H2 (M, op) = T (Y, R2(. (Om)) (10)

Notice that in (10) the first homology group vanishes in view of [S] (Prop.5(b), p.273); so does the
third one, in view of the hypothesis (7). Consequently H2 (M, Opm) = 0 and an extension of the
exact sequence (1) will give rise to the following one

HIM,p— p>H2(M,R) > H2(M, oM =0
On the other hand, from the exact sequence (¢ ) in section 1 and the definition (e ¢) above, one has
Hl(M,FD =K /1 0OE ’O(M); therefore, one deduces from (b) and the surjectivity of p, that T(¢) =0
for any ¢ € H2(M, R). Hence, by duality, T is a null-homologous 1-cycle in H, (M, R):= H,(M,
7Z)® R which is finitely generated. Thus, there exist integers nje Z* such that Z:= ¥i#iCj is the
desired null homologous 1-cycle

By ==
In view of Lefschetz hyperplane section theorem, H3 (I', R) = 0. Consequently, one obtains the
following natural map of vector spaces

H MR) - H M, T'; R) - H;(I', R)=0 an
By duality

HZ (M,R) = H,M; R) and HZ(X,R) = H, (M, T"; R) (12)

From (12) and the dual of finite dimensional vector spaces, the surjectivity of (11) is equivalent to
the injectivity of

H, X,R) - H, M; R)
Consequently & is homologous to zero in H, (X, R)



() ===> () s trivial Q.E.D.

However, when dim.Exc(T) = 2, the situation is quite delicate, since Pic(M) (resp. Pic(X))

would be, in general no longer isomorphic to H2 (M, R) (resp. H2 (X, R)) unless {p;}are rational
singularities However, we have the following result

Proposition 3.3: Let 7: M — Y be as in Theorem 3.2.
Assume that, for any r # s,
E,NE; =0 (1)
where E,e S:=Exc(n)with I <r,s < p, are irreducible 2-dimensional components
Then M is Kahlerian iff M is free of numerically trivial 1-cycles

Proof: Stepl: Assume that M is non-Kahlerian and that C-dim.Exc(1) = 2. (such a non Kahlerian
3-fold does exist, see Examples below ). Certainly M \ Exc(m) =Y \ ( Uy px ) 1S quasi projective.
Hence a main result in [M2] (see also [Hi]) tells us that there exist an ideal sheaf < Oy and a
monoidal transformation p: W — M with center 7such that

(a) support of J=: ¢ =U;C;, where each C;is a compact non singular curve c S with 1<j<q

(b) W is projective algebraic
Consequently, in view of (b),

M\C =W\ u_l(C) is quasi-projective. (13)

Step 2: In view of (b), let H € Pic(W) be a very ample divisor and let L. (H)=: He Pic(M) . Now let
£, € Pic(M) be determined by E, . Then we have the following alternatives:

(i) Assume that there exists a component C'c C such that for somer, 'c E, and that £,.C’=0,.
Then certainly C’ is a null homologous 1-cycle in view of (#1) and the fact that Pic(Y) = Z.

(ii) Assume that there exists an £ € Pic(M) such that £1C; >0 (resp. £1C; < 0) for any j. Then, in
view of (13), for some integer N>>0, =L ® N (resp. E= L*® N ) is numerically positive .
Therefore, we infer from a result in [Ko] (Corollary 5.1.5) that M is projective algebraic;
contradiction to the hypothesis that M is Non-Kahlerian

(iii) Consequently it remains the mixed case, and we can consider only the components E, with v €
{1,...p} such that each such E, contains or meets at least two of the C;

In view of (i) and (ii), one can find positive integers v, such that £y.Z, =0 where Z ;=% v,, C,
Since there are only finitely many such E,, from the fact that rank Pic(Y) = 1 and the hypothesis
(#1), it follows that Z:= Xy Z , is the desired numerically trivial 1-cycle Q.E.D.

In order to illustrate the above results, we would like to exhibit the following concrete examples
which mirror certain peculiar aspects of Moishezon 3-folds.

Example 3.4: For any fixed integer d > 3, let T: Mg — Yq be an irreducible small resolution as in

Example 1.1 . Let A: Mg — Mg be the blow up of Mq along € = P; . Then one can check that Mg is
projective algebraic with Exc(A) = P1x P1. Notice that rank Pic(Mg)= 2

On the other hand let k: M| — Mg be the blow up of My along Uj aj € € where {a;}, with 1 <j <Kk,
are k distinct points. Let o (resp.E; = P,) be the strict transform of € (resp. a;) by ¥ Then one can

check that A:= 6 + X; C; is a null-homologous 1-cycle, where P1= C; c E;. Notice that E; N E;= &
and rank Pic(M )=k + 1



Example 3.5: Let ¥ := H; N Hp, where Hj, (i = 1 or 2) are quadric hypersurfaces in Ps, such that ¥
contains exactly 1 singular point {p} [F] which is locally defined by{ x2 + y2 + z2 + w* = 0} in
C4(x, y, z, w).Then one can check that Y admits a non singular resolution 7t: M, — Y such that
(a) R:=Exc(r) = F,, a Hirzebruch ruled surface
(b) R carries a rational 1-cycle & := { + & which is null homologous in M, , where { = Py and
€ = Py are 2 disjoint sections in Fy, such that £2 =- €2 =2, and
(¢) rank Pic(M,) =2

Example 3.6: Let ¥ := H; N Hy, where H;, (i = 1 or 2) are quadric hypersurfaces in Ps, such that ¥
contains exactly 1 singular point {q} [W2](Beispiel 1, p.25) which is locally defined by{ x2 + y2 +
z2 + w0 = 0} in C4 but which is not factorial. Then one can check that ¥ admits a non singular
projective resolution T: M5 — ¥ such that Exe(t) = Py and rank Pic(M;)= 2

Example 3.7: In [Ko] (Example 4.3.1) was exhibited a normal 3 dimensional Moishezon space M
with only isolated rational singularities{q;}. Furthermore, M contains 2 compact non singular
curves, say, C and D such that

@) Cisrational , D is of arbitrary genus and CND =@
(i1) The 1-cycle C + D is numerically trivial, and

Now let t: My — M be the blow-up of M with center U; g; , let C (resp. @) be the strict

transform of C (resp.D) by T and let E;:= nl {ai}= P2 . Notice that E; N E; =& . Then certainly
(a) My is a Moishezon 3-fold

(b) My carries a null-homologous 1-cycle A:= ¢ + X, mC; + D
where m; := multiplicity of g;, and P1= C;C E;
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