
 

 

       
            

 

 

                           ON THE ANALYTIC PICARD GROUP OF  CERTAIN  AFFINE 

                                                     ALGEBRAIC HYPERSURFACES. 

 
 
 

                        Vo Van Tan 
 

                  Suffolk University, Department of Mathematics, Beacon Hill, Boston, Massachusetts. 02114, USA 
                                                                                e-mail:  tvovan@suffolk.edu 

 
 

 

Abstract: Let Y ⊂  PN be a non singular hypersurface  with N > 3, let Γ ⊂ Y be a transverse hyperplane section and let 
A:= Y\Γ. In 1966, A. Howard established the following result: 
                                                 The analytic Picard group of A is trivial                                      (*) 
               In 1973, Gerstner and Kaup showed that (*) remained valid if Y  has only isolated singularities, say {qk} and 

Γ is merely a non singular hyperplane section, provided {qk}∉ Γ .  The purpose of this note is to propose to the latter 

result, a counterexample which is a nodal and irreducible 3-dimensional hypersurface Y ⊂  P4 . Also a geometric charac- 
terization of a Non-Kahlerian and non singular resolution π: m → Y will be established. 
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                              § 0.- The Motivation 

 
                        
                         Unless the contrary is explicitly stated, all 3-dimensional (resp. 2-dimensional) connected C-
analytic manifolds will be referred to simply as threefolds (resp. surfaces). For any C-algebraic variety X, 
let us denote by Pic(X):= H1(X, OX*) the analytic Picard group of X, where X  is the underlying C-analytic 
space associated to X. L ∈ Pic(X) is called numerically positive if L .C > 0 for any compact irreducible 

curve C ⊂ X. Also the finite sum Ξ:= ΣiniCi where ni∈ Z+ and Ci ⊂ X are irreducible compact curves for 

any i,  will be called a 1- cycle and Ξ is said to be numerically trivial if L.Ξ= 0 for any  L ∈Pic(X) 
  
 
 
In 1966, A. Howard established the following result [H] (corollary 2.3) 
 

Proposition 0.1: Let N >3 ,let Y0 ⊂ PΝ  be a connected and non singular hypersurface and let Y’⊂ 

PΝ be a linear hyperplane intersecting Y0  transversely. Let  Γ0 := Y0 ∩ Y’ and let A0:=Y0\Γ0  Then  
                                                                 Pic(A0) is  0 
 
Also as noticed in [H] (p.213) the hypothesis of transversality of Y’ is crucial here; in fact one has  
 



Example 0.2:: Let Y2:= { x2 + y2 + z2 + w2 = 0  }⊂ P4 (x:y:z:w:t) be a quadric hypersurface with 

a single (isolated) singular point q = (0:0:0:0:1) and let A2:= Y2 ∩{x≠ 0}. Then it is clear that A2   

≅ {ζ2 + ξ2 + ν2 = -1}⊂ C4 (ζ,ξ,ν,τ) is a non singular affine algebraic hypersurface, where ζ:= y/x  

ξ := z/x ν:= w/x and τ:=t/x  Certainly A2 is homotopically equivalent to A2 ∩{τ = 0} which has the 

same homotopy type as the 2-sphere S2 ; consequently, in contrast with A0  

                                                               Pic(A2) ≅ H2(A 2, Z) =  Z 
 
By steering clear from Example 0.2, in 1973, the following generalization of Proposition 0.1 was 
given in [GK] (Satz 1, p.121 & Korollar 3, p.125) 
 

Theorem 0.3: Let N >3, and let Y⊂ PΝ be an irreducible hypersurface with only isolated 

singularities, say {qk}. Now,  let Γ ⊂ Y be a non singular hypersurface section such that {qk} ∉Γ 

and let A := Y \ Γ . Then  

(a) π(A) , the fundamental group of A,  is finite cyclic,  and 

(b)  Pic(A) = 0, provided Γ  is a non singular hyperplane section  
 
One of the main purposes of this note is to provide a simple counterexample to Theorem 0.3        

(b) (see Counterexample1.3 below); consequently its fundamental group, in view of Theorem 
0.3(a), is non trivial cyclic. It turns out that such a construction also provides a road map for a 
geometric characterization of certain Moishezon 3-folds M (resp. compactifiable 1-convex 3-folds 
X⊂ M) which are Non-Kahlerian. That will be the goal of the last section. First of all let us introduce 
the following 
 

Definition 0.4: [V1] A C-analytic manifold X  is said to be  strongly pseudoconvex (or 1-convex for 

short) if X is a non singular resolution π: X → Y of some Stein space Y which has only finitely 

many isolated singular points {qk} Henceforth, S:= ∪k π−1(qk) will be referred to as the exceptional 
set of X. Furthermore, X is said to be compactifiable if there exist a compact C-analytic manifold M 
and a C-analytic subvariety Γ ⊂  M such that X ≅ M \ Γ 

 
 

§ 1.- The Small Resolution 
 

 
We are now in a position to proceed to the construction of the following 
 

Example 1.1: For any fixed integer d ∈Z with d ≥ 3, let Yd be an irreducible hypersurface of 

degree d in P4 with only one isolated singular point{ p} which is an ordinary double point. Let Γd 

⊂ Yd be a non singular hyperplane section such that {p} ∉  Γd  
Since {p} is an ordinary singularity, a result in [Kz] tells us that Yd admits an irreducible small 

resolution π: Md → Yd,  where Md is a compact 3-fold with Exc(π):= the exceptional locus of π ≅ 

P1 . Now, Lefschetz hyperplane section theorem and Poincaré duality tell us that 

                                                      H1(Γd, Z) ≅  H3 (Γd, Z) = 0                  

Certainly, Ad := Yd \ Γd, is Stein; hence, in view of Definition 0.4,  

   Xd:= Md \ Θd  is a compactfiable1-convex 3-fold with exceptional set ε ≅ Exc(π) =  P1 .         (^) 

where Θd:= π−1(Γd). Since, d ≥ 3, {p} is factorial [Ch]: consequently H2 (Md, Z) ≅ H4(Md, Z) ≅ Z  
Thus, from the following exact sequence  



               Z ≅ H 4 (Θd, Z)   −  ι∗ →     H4 (Md, Z) ≅ Z   →     H4 (Md, Θd;  Z)    →       H3 (Θd, Z) = 0 
we infer that  

                                    H2(Xd, Z) ≅ H 4(Md; Θd, Z)  is a finite group for any d ≥ 3             (#) 
 

Claim :          Xd is non Kählerian                                                                                         ($) 

Assume the contrary and assume that Ω is a Kähler (1,1) form on Xd upon which one has the 
following exact sequence 

                                                 0 → R  − ι →  O   →   PPPP    →  0 
                                                                               f    |→       Re f 
where O is the analytic structure sheaf of Xd , PPPP is the sheaf of germs of pluriharmonic functions, 
see e.g. [HL] and the map ι is defined by multiplication by √-1. Hence one obtains the following 
exact sequence 

                              H1 (Xd, O)    →   H1(Xd PPPP)    →     H2 (Xd, R)                  (1) 
Let us consider the following restriction morphism 
                                                λ:=π|Xd : Xd  →  Ad                                                      (~) 
Since{p}is a rational singularity, we infer from Leray spectral sequence that the left hand side group 
in (1) vanishes; and so does its right hand side group, in view of (#). Hence it follows readily that 

                                                              H1(Xd PPPP) = 0                                                            (2) 
On the other hand from the following exact sequence 

                                           0 →  PPPP     → EEEE        →    KKKK    → 0                                     (♦) 
                                                                   φ   |→       ι ∂∂φ     
where    EEEE    (resp KKKK) is the sheaf of germs of real valued differentiable functions (resp of real valued 
differentiable  closed (1,1) forms)[HL]  one gets, in view of (2),  the following exact sequence 

                                         Γ(Xd, EEEE)   −→     Γ(Xd,  KKKK)   −→   H1 (Xd,PPPP) = 0                            (3) 

Consequently (3) gives rise to some  global differentiable function φ on Xd such that    

                                                    i ∂∂φ =  Ω is positive definite  
i.e. φ is strongly plurisubharmonic. Thus, it follows readily from the maximum principle for 
plurisubharmonic functions that Xd is free of compact subvarieties of positive dimension; this 
contradicts (^) and our claim is proved. 
 

Remark1.2: It follows readily from ($) that Md is not projective algebraic. Another proof of this 

fact can be found in [M1] (p.174) (see also [C]) where it is shown that ε is a null homologous 1-
cycle in Md                                     
 

Counterexample 1.3 For any fixed integer d ≥ 3, the hypersurface Yd ⊂ P4 (x:y:z:w:t)  considered 
in Example 1.1 can be explicitly described by the homogeneous equation, see e.g. [W1][CC],  

                                              Q2 (x, y, z, w) td-2  + Hd (x, y, z, w) = 0   (♣) 
where Q2(x) (resp Hd(x))  is a non degenerate quadric (resp.a homogeneous equation of degree d) in 
P3 (x), where x:=(x,y,z,w). Now let                      

                          p:= (0:0:0:0:1) ∈  P4 (x:t)   and     Y’ := {t = 0} ≅  P3(x)    
Certainly 

               {p} ∉Y’ and   Γd := Yd ∩Y’ is non singular by Bertini theorem                           (4) 
 



 Step1:  Let m be the maximal ideal sheaf of {p}.Then a main result in [HR](Theorem1) tells us that 

there exists an m-primary ideal sheaf JJJJ(√JJJJ -= m) such that π: Md → Yd is dominated by the 

monoidal transformation Π: BBBB    → Yd with center JJJJ  i. e. there exists a modification morphism  

τ: BBBB → Md such that π ο τ = Π. Since {p} is an ordinary singular point, Q = Exc(Π) ≅ P1 x P1. In 
fact since {p} is the only singular point in Yd, one can assume that  

                                         B:={Q2 = Hd = 0}⊂ P3 (x) is a non singular curve.               (♥) 

Notice that C::= {(x,t) ∈Yd| x ∈ B} is the cone of all lines l ∈ Yd passing through {p}; hence we 
infer readily from (♣), (♥) and (4)  that 

l. M    Θd =  l. Y Γd = m ≥ 1    (5) 

where l is the strict transform of l by π  .This situation can be summarized by the following diagram 
 

                          R2 

                     ∩ 
P1xP1≅Q    ⊂        BBBB 

                          τ↓             Π 

        P1  ≅ ε  ⊂ Md   −− π −→  Yd     ⊂   P4,        
                                                             ∪                     ∪ 
                                         B1 ⊂ R 1                           p∈ C  ⊃ B ⊂   P3   
 

where R1 := π∗(C ) is the compact surface (singular but irreducible) which is the union of lines l 

joining ε to B1:= π∗(B).and R2  is a ruled surface; Notice that one has Π−1(C ) ≅ Q  ∪ R2 , τ (Q ) ≅ ε 

and R1 ≅ τ(R2)  
 
Step2:: a) If d = 3, it follows readily from (♣) and (5) that m = 1; consequently (#) tells us that 

H2(X3, Z)   = 0  
b) Yet this simple case shows us how to concoct a situation in which the latter group is non trivial, 
when d = 2N + 1 for any positive integer N.  
Indeed, instead of the defining equation (♣), let us consider, the nodal  hypersurface Ÿ2N+1, defined 
by                            

                   t2N+1 Q2 (x, y, z, w)  + t Q2
N(x, y, z, w) +  H2N+1 (x, y, z, w)  =  0             (♣♣) 

 where Q2(x, y, z, w) (resp. H2N+1 (x, y, z, w)) is a non degenerate quadric (resp. a  generic 
homogeneous polynomial of degree 2N + 1) in P3(x:y:z:w). Then in view of [CC] (section II, 
p.288) Ÿ2N+1carries the same cone of lines, which in view of (♣♣), meets the hyperplane section 

Γ2N+1 along  the non reduced N-uple curve  

                                            č:=  {Q2
N = H2N+1 = 0}  ⊂     P3 (x)                                (♥♥) 

From,(♥♥) and (5) one can check that m = N. We infer from (#) that  

                                                 H2(X2N+1, Z)  =  Z/NZ                                         (%) 

Notice that,  although Γ2N+1 is non singular,  it is not in general  a transverse hyperplane section 
 
Step3:  From the morphism (∼), let us consider the following commutative diagram with exact rows 
             

                             H1(ε, Z)     →            H2(Xd, ε;  Z)    →   H2(Xd, Z)      →    H2(ε, Z)          
 
                               ↑λ1                         ↑λ2                      ↑λ3                             ↑λ4                                   (♠)                     

                     0 ≅ H1({p}, Z)   →      H2(Ad, {p}; Z)   →    H2(Ad, Z)    →    H2({p}, Z)  ≅ 0       



  
 By construction Xd \ ε  ≅ Ad \ {p}, it follows readily that λ2 is an isomorphism. Therefore, from the 
above diagram one obtains the following exact  sequence 

                  0 ≅ H1(ε, Z)   →    H2 (Ad , Z)    →  H2 (Xd, Z)   −  ρ∗ →  H2(ε, Z) ≅ Z            
                                                                                                                                           : 
In view of ($), Xd is Non Kählerian; hence we infer from a main result in [V1] (Theorem III) that 

the restriction application ρ∗ is  the zero map. Hence our desired construction is complete, provided 
one takes (%) into account. 
. 
                           

                              §.2. The Borel- Moore Homology  
 
 
The major shortcoming in the proof of Theorem 0.3(b) stems from the erroneous assertion that the 
affine algebraic hypersurface A  is simply connected which we shall discuss next. But first of all let 
us introduce the following: 
 

Definition 2.1: ([K1] p.3) Let Y, A and  Γ  be as in Theorem 0.3.. Then, for any k ≥ 0, let  
                                                     Hk(A):=   Hk (Y, Γ;  Z) 

where Hk (Y, Γ;  Z) stands for the relative singular homology of the pair (Y, Γ)  

 Hk(A)  is the so called   kth Borel-Moore integral homology of A.    
 

      In [GK] (Korollar 3, p.124), a strategy to prove Theorem 0.3 (b) followed exactly the same 
pattern as the one in [H]. In particular, it was established, by using  the universal coefficient 
theorem  
                               H2 (A; Z)   ≅   Hom (H 2(A, Z);  Z) ⊕  Tor H1 ( A , Z)                   
and,  by quoting  (as explicitly mentioned in Korollar 2, p123 in [GK]) the fact that  
                                                       H1(A) = 0 
a proof of which was given in [K2] (Korollar 2.8 (ii)); however, in general 
                                             H1(A) ≠  H1 (A , Z)                    
namely the Borel-Moore homology is not necessarily the same as the singular one.. 
In fact, this is true if Y is non singular. Indeed, if Y is non singular, we have 
                                         H1(A) :=  H 1(Y, Γ : Z) ≅  H2N-3 (Y, Γ ; Z) ≅ H 1(A, Z) 
in view of the Poincaré (resp. Alexander-Lefschetz) duality., since R–dimension Y = 2N – 2. On 
the other hand, when the ambient space Y is singular, this is not always the case;  
 

Remark 2.2:  Counterexample 1.3 is , in some extent rare, as shown by the following result which 
was  kindly communicated to us by Prof. P. Deligne. 
 

Theorem 2.3: Let Yd ⊂ P4(x:y:z:w:t) be the nodal hypersurface defined by equation (♣) in section 

1.3 above. For generic Hd(x, y, z, w),  let Γd ⊂ Yd  be a  transverse hyperplane section and let 

 Ad:= Yd \Γd. Then                                     

                                                     Pic(Ad) ≅  H2 (Ad, Z) = 0              for any d. 
 

Proof:  Since Hd(x, y, z, w) is generic, one gets, by perturbation a differentiable 3-fold M such that  
                                                           M ≈ Y                                                           (6) 



where Y is some non singular hypersurface of degree d in P4 and ≈ stands for diffeomorphism, and 

that, M carries a vanishing cycle δ ≅ S3 the 3-sphere, which can be contracted topologically to {p}. 

Precisely there exists a topological morphism  f:  M → Yd such that   

                                                         M \ S3  ≈ Yd \{p}.                                                 (!) 

Now, let g: M \ f-1(Γd) =:A →  Ad be the restriction topological modification morphism. We infer 
from (!)  that  

                                                              A\ S3 ≈  Ad \ {p}                                                    (!!) 
Consequently, by taking (!!) into account, similar commutative diagram as the one of (♠), in section 
1.3, applies to the morphism g in this situation and one gets the following exact sequence  

                            0    ≅    H1 (δ, Z)     →   H2 (Ad Z)   −  g∗ →  H2 (A , Z)                          (7) 

 In view of a result in [H](corollary 2.3) and (6) it follows readily that H2(A, Z) = 0; hence our 
conclusion will follow from (7).                                                                                          Q.E.D. 
 
                    

                                §3.  The Threefold Paradigm. 

 

 
                             Notice that the previous examples only occurred in dimension 3 and this is by no 
means accidental as shown by the following 
 

Proposition 3.1: Let Y  ⊂ Pν  be a (strict) complete intersection with only isolated singularities, 

say{pi} and let  π : M →  Y be a non singular resolution.  Assume that 

(1) Exc(π) is of pure dimension one and  
(2) dim.Y > 3. 

 Then such a resolution does not exist 
 

Proof: Assume the contrary that such a resolution does exist.  

Let ∪i Ci be an irreducible decomposition of Exc(π),  and let K be the canonical bundle of M. Let  

Γ ⊂  Y be a non singular hyperplane section such that {pi}  ∉ Γ  and let X:= M \ Θ  where Θ:= 

 π-1(Γ).  Since X is 1-convex with exceptional set S ≅ Exc(π) and since with C-dim X ≥ 4 and dim 
S = 1, it follows readily that 
(a)   K |S is ample (Theorem 1.5 in [V2]) and 
(b)  for any irreducible and positive dimensional compact subvariety Z ⊂ M such that Z≠ Ci, for any 

i, necessarily Z ∩ Θ ≠  ∅. Hence we infer from Moishezon-Nakai criterion that for some N>>0, 

K⊗ LN  is ample where L is the line bundle on M determined by Θ.                                                                                         
Consequently, M is projective algebraic .Therefore GAGA type theorem implies that π is actually a 
projective morphism. By virtue of our hypothesis (2), {pi} are algebraically factorial [G] (XI 3.1.4); 
hence van der Waerden theorem tells us that S is of pure codimension one. Contradiction ! Q.E.D.                       

 
In sharp contrast to this situation, its 3-fold analogue is completely characterized by the following  
 

Theorem 3.2: Let  π : M →  Y  and  X be as in Proposition 3.1 with C-dim. Y = 3.  
Assume that  
                                  S:= Exc(π) is of pure dimension one                        (†) 
Then the following conditions are equivalent: 
(α) M is  non-Kählerian 
(β) M carries a null homologous 1-cycle ΞΞΞΞ 



(γ)  X  carries a null homologous 1- cyle  ΛΛΛΛ ≅ Ξ ≅ Ξ ≅ Ξ ≅ Ξ 
 

Proof: (α) ===> (β) 
Step 1: We shall follow here closely an idea in [HL]. Let us consider the following homomorphism 
of Frechet spaces : 

                      d: E1,1(M)     →      E2,1 (M) ⊕  E1,2 (M)                                 (8) 
where for any non negative pair of integers p and q,  Ep,q (M) denotes the Frechet space of global, 
real-valued,  smooth (p,q) forms on M and let Dp,q (M), be its dual space,. Notice that (8) induces a 
dual homomorphism 

                      ∂.+ ∂ : D1,2 (M) ⊕  D2,1 (M) → D1,1 (M)                                  (9) 
Now let  
                                 P :={φ ∈ E1,1(M) |φ > 0}        and  
                             K:={ φ∈E1,1(M) |dφ = 0}                                                      (♦♦) 
 
By hypothesis P ∩ K = ∅. Following Hahn- Banach Theorem, one can find a continuous linear form  
say T,  on E1,1(M) separating P from K, i.e. a current T ∈D1,1 (M) such that 

(a)  T(φ) > 0 for any φ ∈ P  i.e. T is a positive current and  

(b) T(φ) = 0 for every  φ ∈ K   i.e.   ι∂∂ T = 0   
 

Since M\S ≅Y\ ( ∪k pk) } is quasi projective, (a) implies that Supp(T) ⊂  S. In view of (b),  a result 

in [HL](Lemma 32) tells us that T = Σiri Ci where Ci are irreducible components of S and ri∈ R+. 

 
Step 2: On the other hand from the Leray spectral sequence associated to the morphism π , one 
obtains the following exact sequence 

                                       H2 (Y,OY) → H2 (M, OM) →  Γ (Y, R 2(π∗ (OM))             (10) 
Notice that in (10) the first homology group vanishes in view of [S] (Prop.5(b), p.273); so does the 

third one, in view of the hypothesis (†). Consequently H2 (M, OM)  = 0 and an extension of the 
exact sequence (1)  will give rise to the following one  

                                  H1(M,PPPP) −  ρ → H2 (M, R)   →    H2 (M, OM) ≅ 0 
On the other hand, from the exact sequence (♦) in section 1 and the definition (♦♦) above, one has  

H1(M,PPPP) ≅ K /ι ∂∂E0,0(M); therefore, one deduces  from (b) and the  surjectivity of ρ,  that T(φ) = 0 

for any φ ∈ H2(M, R). Hence, by duality, T is a null-homologous 1-cycle in H2 (M, R):= H 2(M, 

Z) ⊗ R   which is finitely generated. Thus, there exist integers ni∈ Z+ such that Ξ:= ΣiniCi is the 

desired null homologous 1-cycle 
  
(β) ===> (γ) 
 In view of Lefschetz  hyperplane section theorem, H3 (Γ, R) = 0. Consequently, one obtains the 
following natural map of vector spaces  
                                     H4 (M, R)   →     H4 (M, Γ ;  R)    →     H3 ( Γ ,  R) = 0                      (11) 
By duality   

                                     H2 (M, R)  ≅  H4(M;  R)    and    H2 (X, R)  ≅  H4 (M, Γ ;  R)         (12) 
 
From (12) and the dual of finite dimensional vector spaces, the surjectivity of (11) is equivalent to 
the injectivity of  
                                                      H2 (X, R)  →     H2 (M;  R)     

Consequently Ξ is homologous to zero in H2 (X, R) 
 



(γ) ===> (α)    is trivial                                                                                                       Q.E.D. 
              
             However, when dim.Exc(π) = 2, the situation is quite delicate, since Pic(M) (resp. Pic(X)) 

would be, in general  no longer isomorphic to H2 (M, R) (resp. H2 (X, R)) unless {pi}are rational 
singularities However, we have the following result 
 

Proposition 3.3: Let  π : M →  Y  be as in Theorem 3.2. 
 Assume that, for any r ≠ s,  
                Er ∩ Es =∅                                                            (††) 

 where Er ∈ S:= Exc(π) with 1 ≤ r,s  ≤  p,  are irreducible 2-dimensional components  
Then M is Kahlerian  iff  M is free of numerically trivial 1-cycles 
    

Proof: Step1:  Assume that M is non-Kahlerian and that C-dim.Exc(π) = 2. (such a non Kahlerian 

3-fold does exist, see Examples below ). Certainly M \ Exc(π) ≅Y \ ( ∪k pk ) is quasi projective. 
Hence a main result in [M2] (see also [Hi]) tells us that there exist an ideal sheaf J ⊂ OM and a 

monoidal transformation  µ: W  →  M with center J such that  

(a) support of  J =: C  = ∪j Cj, where each Cj is a compact non singular curve ⊂ S with 1≤ j ≤ q  
(b) W is projective algebraic 

Consequently, in view of (b),  

                                        M \ C  ≅ W \ µ−1(C ) is quasi-projective.                                    (13)  
 
 Step 2: In view of (b), let H ∈Pic(W) be a very ample divisor and let µ∗ (H)=: H ∈Pic(M) . Now let 
Lr ∈ Pic(M) be determined by Er  . Then we have the following alternatives: 
(i) Assume that there exists a component C’ ⊂ C  such that for some r, C’ ⊂ Er  and that L r.C ’= 0,. 
Then certainly C ’ is a null homologous 1-cycle in view of (††) and the fact that Pic(Y) = Z. 
(ii) Assume that there exists an L ∈ Pic(M) such that  L | Cj > 0 (resp. L | Cj < 0) for any j. Then, in 

view of (13),  for some integer N >> 0 ,  E:= L ⊗ HN (resp. E’:= L*⊗ HN ) is numerically positive . 
Therefore, we infer from a result in [Ko] (Corollary 5.1.5) that M is projective algebraic; 
contradiction to the hypothesis that M is Non-Kahlerian 
(iii) Consequently it remains the mixed case, and we can consider only the components Eν  with ν ∈ 

{1,..,p} such that each such Eν  contains or meets at least two of the  Cj  

In view of (i) and (ii), one can find positive integers νm such that Lν.Zν = 0 where Z ν:= Σm νm Cm 

.Since there are only finitely many such Eν , from the fact that rank Pic(Y) = 1 and the hypothesis 

(††), it follows that Ξ:= Σν Z ν is the desired numerically trivial 1-cycle                            Q.E.D. 
 
In order to illustrate the above results, we would like to exhibit the following concrete examples 
which mirror certain peculiar aspects of Moishezon 3-folds. 

 

Example 3.4: For any fixed integer d ≥ 3, let π: Md → Yd be an irreducible small resolution as in 

Example 1.1 . Let λ: M0 → Md be the blow up of Md along ε ≅ P1 . Then one can check that M0 is 

projective algebraic with Exc(λ) ≅ P1x P1. Notice that rank Pic(M0)= 2 

On the other hand let κ: M1 → Md be the blow up of Md along ∪j aj ∈ ε where {aj}, with 1 ≤ j ≤ k,  

are k distinct points. Let σ (resp.Ej ≅ P2) be the strict transform of ε (resp. aj) by κ  Then one can 

check that Λ:= σ + Σj Cj is a null-homologous 1-cycle, where P1≅ Cj ⊂ Ej. Notice that Ei ∩ Ej = ∅    

and rank Pic(M1)= k + 1 
 



Example 3.5: Let Ŷ := H1 ∩ H2, where Hi, (i = 1 or 2) are quadric hypersurfaces in P5, such that Ŷ 

contains exactly 1 singular point {p} [F] which is locally defined by{ x2 + y2 + z2 + w4 = 0} in  
C4(x, y, z, w).Then one can check that Ŷ admits a non singular resolution π: M2 →  Ŷ such that 

(a) R :=Exc(π) ≅ F2, a Hirzebruch ruled surface  

(b) R carries a rational 1-cycle Ξ  := ζ +  ξ which is null homologous in M2 , where ζ ≅ P1 and 

ξ ≅ P1 are 2 disjoint sections in F2, such that ξ2 = - ξ2 = 2,  and 

(c) rank Pic(M2) = 2 

  
Example 3.6: Let Ÿ := H1 ∩ H2, where Hi, (i = 1 or 2) are quadric hypersurfaces in P5, such that Ÿ 

contains exactly 1 singular point {q} [W2](Beispiel 1, p.25) which is locally defined by{ x2 + y2 + 
z2 + w6 = 0} in C4 but which is not factorial. Then one can check that Ÿ admits a non singular 
projective resolution τ: M3 →  Ÿ such that Exc(τ) ≅ P1 and rank Pic(M3)= 2 
  
Example 3.7: In [Ko] (Example 4.3.1) was exhibited a normal 3 dimensional Moishezon space M 
with only isolated rational singularities{qi}. Furthermore,  M contains 2 compact non singular 
curves, say, C and D such that 

(i) C is rational ,  D is of arbitrary genus and C∩D = ∅ 
(ii) The 1-cycle C + D is numerically trivial, and 

(iii) ∪i qi ⊂  C 

       Now let π : M4 →   M be the blow-up of  M with center ∪i qi , let C  (resp. D ) be the strict  

transform of C (resp.D) by π  and let Ei:= π-1{qi}≅ P2 . Notice that Ei ∩ Ej =∅ . Then certainly 
(a) M4  is  a Moishezon 3-fold 

(b) M4 carries a null-homologous 1-cycle Λ:= C  + Σi miCi  + D 

where mi := multiplicity of qi, and  P1≅ Ci ⊂ Ei  
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