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First and second-order necessary conditions and sufficient conditions for optimality in nonsmooth vec-
tor optimization problems with general inequality constraints are established. We use approximations
as generalized derivatives and avoid even continuity assumptions. Convexity conditions are not imposed
explicitly. Examples are provided to show that our theorems are easily applied in situations where many
known results cannot be.

1. Introduction

Applying generalized derivatives to establish optimality conditions in nonsmooth opti-
mization has been one of the most interesting issues with world-wide enormous efforts
and contributions for several last decades. There have been various notions of general-
ized derivatives of mappings with different requirements on the regularity of the map-
pings. Some kinds of derivatives need the mappings under consideration to be locally
Lipschitz. Other ones are developed on continuous mappings, etc. Each of these gener-
alized derivatives is appropriate for a range of problems. In this note we use the notion
of approximations as a generalized derivative, which was introduced in [12] and extended
to the second-order in [1]. Second-order optimality conditions under strict (first-order)
differentiability and compactness assumptions were obtained in [2]. In [13, 14], using first
and second-order approximations we established both necessary conditions and sufficient
conditions of order 1 and 2 for set-constrained vector problems. The reason for us to make
use of approximations as generalized derivatives is that even discontinuous mappings may
have second-order approximations (see [13, Remark 2.1]) and hence the assumptions for
getting optimality conditions are rather relaxed.
The aim of this note is to obtain such optimality conditions, but for nonsmooth vector
problems under general inequality constraints. So the problem under our consideration
is as follows. Let throughout the paper, if not otherwise stated, X, Y and Z be normed
spaces, C and K be closed convex cones in Y and Z, respectively. Let f : X → Y and
g : X → Z be mappings. Consider the vector optimization problem

(P) min f(x), s.t. g(x) ∈ −K.

We will develop Lagrange multiplier rules of orders 1 and 2, with the Lagrange multipliers
depending on the directions, as necessary conditions and sufficient conditions for problem
(P). Comparisons, especially by examples, will show advantages of our results. Note
that our optimality conditions are developed without continuity assumptions. Convexity
assumptions are not necessarily imposed explicitly.
Our notations are basically standard. N = {1, 2, ...n, ...}. For a normed space X, X∗ stands
for the topological dual of X; 〈., .〉 is the canonical pairing; ‖.‖ is used for the norm in any
normed space (from the context no confusion occurs); BX(x, r) = {z ∈ X | ‖x− z‖ < r};
L(X,Y ) denotes the space of the bounded linear mappings from X into Y and B(X,X, Y )
is the space of the bounded bilinear mappings from X × X into Y . For a cone C ⊆ X,
C∗ = {c∗ ∈ X∗ | 〈c∗, c〉 ≥ 0, ∀c ∈ C} is the polar cone of C. For A ⊆ X, intA, clA and
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coA stand for the interior, closure and convex hull of A, respetively; coneA and spanA
denote the cone generated by A and the linear hull of A, i.e.

coneA = {λa | λ ≥ 0, a ∈ A},
spanA = {αa + βb | α, β ∈ R, a, b ∈ A}.

For u ∈ X and a closed convex cone C ⊂ X, set

C(u) = cone (C + u).

o(tk) for t > 0 and k ∈ N denotes a moving point such that o(tk)/tk → 0 as t → 0+. C0,1

is used for the space of the locally Lipschitz mappings (between two given spaces, which
are clear from the context) and C1,1 for the space of the Fréchet differentiable mappings
whose Fréchet derivative is locally Lipschitz.
The layout of the rest of the paper is as follows. Basic definitions and preliminaries are
given in Section 2. First-order optimality conditions are established in Section 3, while
second-order ones are the content of the final Section 4.

2. Preliminaries

Recall that X,Y and Z are normed spaces throughout the paper, if not otherwise specified.
Recall further that a multivalued mapping H : X → 2Y is said to be upper semicontinuous
(usc, for short) at x0 ∈ X if for all open set V ⊇ H(x0), there is a neighborhood U of x0

such that V ⊇ H(U). A mapping h : X → Y is called locally Lipschitz at x0 ∈ X if there
are a neighborhood U of x0 and L > 0 such that, ∀x1, x2 ∈ U ,

‖h(x1)− h(x2)‖ ≤ L‖x1 − x2‖.
h : X → Y is termed calm (see [18]) at x0 ∈ X if there are a neighborhood U of x0 and
L > 0 such that, ∀x ∈ U ,

‖h(x)− h(x0)‖ ≤ L‖x− x0‖.
(The term ”calm” is sometimes replaced by ”weak Lipschitz” in the literature.)

Definition 2.1 [12, 1]. Let x0 ∈ X and h : X → Y .

(i) A set Ah(x0) ⊆ L(X,Y ) is called a first-order approximation of h at x0 if there exists
a neighborhood U of x0 such that, for all x ∈ U ,

h(x)− h(x0) ∈ Ah(x0)(x− x0) + o(‖x− x0‖).
(ii) A pair (Ah(x0), Bh(x0)), with Ah(x0) ⊆ L(X,Y ) and Bh(x0) ⊆ B(X, X, Y ), is said
to be a second-order approximation of h at x0 if Ah(x0) is a first-order approximation of
h at x0 and

h(x)− h(x0) ∈ Ah(x0)(x− x0) + Bh(x0)(x− x0, x− x0) + o(‖x− x0‖2).
Remark 2.2. If h has second Fréchet derivative h

′′
(x0) then (h

′
(x0), 1

2h
′′
(x0)) is a second-

order approximation of h.

Proposition 2.3 [12, 1].

(i) If h : Rn → Rm is locally Lipschitz at x0 then the Clarke Jacobian (see [3]) ∂Ch(x0) is
a first-order approximation of h at x0.

(ii) If h : Rn → Rm is in C1,1 at x0 then (h
′
(x0), 1

2∂2
Cg(x0)) is a second-order approxima-

tion of h at x0, where ∂2
Ch(x0) is the Clarke Hessian of h at x0 (see [8]).

Proposition 2.4 [13].

(i) If h : Rn → Rm is continuous and has an approximate Jacobian mapping ∂h(.) (see
[9]) which is usc at x0, then co∂h(x0) is a first-order approximation of h at x0.

(ii) If h : Rn → Rm is continuously Fréchet differentiable in a neighborhood of x0

and has an approximate Hessian mapping ∂2h(.) (see [10]) which is usc at x0, then
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(h
′
(x0), 1

2co∂2h(x0)) is a second-order approximation of h at x0.

Note that as shown in [9, 10], the approximate Jacobian and Hessian include many other
generalized derivatives of orders 1 and 2, respectively, as special cases. So by Proposition
2.4 the first and second-order approximations also do. Furthermore, Examples 2.1-2.5 in
[13] show that the converse of Proposition 2.4 is not true and under its assumptions we
still have other approximations beside the mentioned one.

Later, if Pn and P are in L(X, Y ) and Pn converges to P pointwisely, then we write
Pn

p−→ P or P = p-lim Pn. A similar notation is adopted for Mn, M ∈ B(X, X, Y ).
We recall [14] that a subset A ⊆ L(X,Y ) (B ⊆ B(X, X, Y )) is called (sequentially)
asymptotically pointwisely compact (p-compact, for short) if
• each norm bounded sequence (Mn) ⊆ A (⊆ B, respectively) has a pointwisely convergent
subsequence with a limit in A (B, respectively).
• if (Mn) ⊆ A (⊆ B, respectively) with lim ‖Mn‖ = ∞, then (Mn/‖Mn‖) has a subse-
quence which pointwisely converges with a nonzero limit.
If the ”pointwise convergence” in the above definition is replaced by ”convergence” then we
say that A (or B) is (sequentially) asymptotically compact. Note that if Y = R, then the
poinwise convergence coincides with the star-weak convergence. The poinwise convergence
is corresponding to a nonmetrizable topology. Hence the mentioned sequential compact-
ness is different from p-compactness. However, the latter notion is not used in this paper
and we omit the term ”sequentially” for short. Note that the asymptotical p-compactness
here is equivalent to the relative p-compactness and asymptotical p-compactness together
defined in [13].

For A ⊆ L(X, Y ) and B ⊆ B(X, X, Y ) we adopt the notations:

p-cl A = {P ∈ L(X,Y ) | ∃(Pn) ⊆ A, P = p-lim Pn}, (1)

p-cl B = {M ∈ B(X,X, Y ) | ∃(Mn) ⊆ B,M = p-limMn}, (2)

A∞ = {P ∈ L(X, Y ) | ∃(Pn) ⊆ A, ∃tn → 0+, P = lim tnPn}, (3)

p-A∞ = {P ∈ L(X, Y ) | ∃(Pn) ⊆ A,∃tn → 0+, P = p-lim tnPn}, (4)

p-B∞ = {M ∈ B(X, X, Y ) | ∃(Mn) ⊆ B, ∃tn → 0+,M = p-lim tnMn}. (5)

The sets (1), (2) are pointwise closures; (3) is just the known definition of the recession
cone of a set A (not necessarily convex). So (4), (5) are pointwise recession cones.

Remark 2.5. (i) Assume that {Pn} ⊆ L(X,Y ) is norm bounded. If xn → x and Pn
p−→ P ,

then Pnxn → Px. Similarly, if xn → x, zn → z, {Mn} ⊆ B(X, X, Y ) is norm bounded
and Mn

p−→ M , then Nn(xn, zn) → N(x, z). Indeed, the conclusions follow directly from
the following inequalities

‖Pnxn − Px‖ ≤ ‖Pnxn − Pnx‖+ ‖Pnx− Px‖ ≤ ‖Pn‖‖xn − x‖+ ‖Pnx− Px‖;
‖Mn(xn, yn)−M(x, y)‖ ≤ ‖Mn(xn, yn)−Mn(xn, y)‖+ ‖Mn(xn, y)−Mn(x, y)‖+
‖Mn(x, y)−M(x, y)‖ ≤ ‖Mn‖‖xn‖‖yn−y‖+‖Mn‖‖xn−x‖‖y‖+‖Mn(x, y)−M(x, y)‖.
(ii) If X is finite dimensional, a convergence occurs if and only if the corresponding

pointwise convergence does, but in general the ”if” does not hold, see [13, Example 3.1].

Definition 2.6. Let x0, v ∈ X and S ⊆ X.

(a) The contingent (or Bouligand) cone of S at x0 is

T (S, x0) = {v ∈ X | ∃tn → 0+, ∃vn → v, ∀n ∈ N, x0 + tnvn ∈ S}.
(b) The second-order contingent set of S at (x0, v), see e.g. [11], is

T 2(S, x0, v) = {w ∈ X | ∃tn → 0+, ∃wn → w, ∀n ∈ N, x0 + tnv + 1
2 t2nwn ∈ S}.

(c) The asymptotic second-order tangent cone of S at (x0, v) [11, 17] (the name is proposed
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by Penot in [17]) is

T
′′
(S, x0, v) = {w ∈ X | ∃(tn, rn) → (0+, 0+) : tn

rn
→ 0, ∃wn → w,

∀n ∈ N, x0 + tnv + 1
2 tnrnwn ∈ S}.

The following assertion can be proved similarly as for Lemma 2.3 of [15].

Lemma 2.7. If K ⊆ Z is a closed convex cone with int K 6= ∅, z0 ∈ −K, z ∈ − int
K(z0) and 1

tn
(zn − z0) → z as tn → 0+, then zn ∈ − int K for all n large enough.

Lemma 2.8 [11]. Assume that X = Rm and x0 ∈ S ⊆ X. If xn ∈ S \ {x0} tends to x0,
then there exists u ∈ T (S, x0) \ {0} and a subsequence, denoted again by xn, such that

(i) 1
tn

(xn − x0) → u, where tn = ‖xn − x0‖;
(ii) either z ∈ T 2(S, x0, u) ∩ u⊥ exists such that (xn − x0 − tnu)/1

2 t2n → z or z ∈
T
′′
(S, x0, u)∩u⊥\{0} and rn → 0+ exist such that tn

rn
→ 0+ and (xn−x0−tnu)/ 1

2 tnrn → z,
where u⊥ is the orthogonal compliment of u ∈ Rm.

Let us now recall notions of solutions to problem (P). A point x0 ∈ g−1(−K) is said to be a
local weakly efficient solution (local efficient solution) of (P) if there exists a neighborhood
U of x0 such that, ∀x ∈ U ∩ g−1(−K),

f(x)− f(x0) 6∈ −int C

(f(x)− f(x0) 6∈ (−C) \ C, respectively).

The set of all local weakly efficient solutions of (P) is denoted by LWE(f, g) and that of
local efficient ones by LE(f, g). These sets are basic solution sets considered in vector
optimization.
For m ∈ N, x0 ∈ g−1(−K) is called a local firm efficient solution of order m, denoted
by x0 ∈ LFE(m, f, g) if there are γ > 0 and a neighborhood U of x0 such that, ∀x ∈
U ∩ g−1(−K) \ {x0},

(f(x) + C) ∩BY (f(x0), γ‖x− x0‖m) = ∅,
or, equivalently,

d(f(x)− f(x0),−C) ≥ γ‖x− x0‖m.

Note that, in the literature, instead of ”firm efficient”, other terms as ”strict efficient” and
”isolated efficient” are also used. The term ”firm” was suggested by an anonymous referee
of our paper [15]. Note also that, for p ≥ m,

LFE(m, f, g) ⊆ LFE(p, f, g) ⊆ LE(f, g) ⊆ LWE(f, g).

Hence, necessary conditions for a point to be in the right-most set hold true also for all
other sets and a similar assertion is valid for sufficient conditions and the left-most set.

3. First-order optimality conditions

Theorem 3.1 (Necessary condition). Consider problem (P) with int C 6= ∅ and
int K 6= ∅. Assume that Af (x0) and Ag(x0) are asymptotically p-compact first-order
approximations of f and g, respectively, at x0 with Ag(x0) being normed bounded.
If x0 ∈ LWE(f, g), i.e. x0 is a local weakly efficient solution of (P), then ∀u ∈ X, ∃P ∈
p-clAf (x0)

⋃
(p-Af (x0)∞ \ {0}), ∃Q ∈ p-clAg(x0), ∃(y∗, z∗) ∈ C∗×K∗ \ {(0, 0)} such that

〈y∗, Pu〉+ 〈z∗, Qu〉 ≥ 0,

〈z∗, g(x0)〉 = 0.

Proof. For arbitrary fixed u ∈ X and tn → 0+, by Definition 2.1, there are Pn ∈ Af (x0)
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and Qn ∈ Ag(x0) such that

f(x0 + tnu)− f(x0) = tnPnu + o(tn),

g(x0 + tnu)− g(x0) = tnQnu + o(tn).

By the boundedness of Ag(x0), assume that Qn
p−→ Q, for some Q ∈ p-clAg(x0). Then

1
tn

(g(x0 + tnu)− g(x0) → Qu.

If {Pn} is normed bounded, then we can assume that Pn
p−→ P ∈p-clAf (x0) and

1
tn

(f(x0 + tnu)− f(x0) → Pu.

Suppose that (Pu, Qu) ∈ − intC ×K(g(x0)). Then, for large n ∈ N,

f(x0 + tnu)− f(x0) ∈ − int C, (6)
1
tn

(g(x0 + tnu)− g(x0) → Qu ∈ − int K(g(x0)),

as n → ∞. Taking Lemma 2.7 into account, one sees that g(x0 + tnu) ∈ − int K for
all large n. This together with (6) contradicts the local weak efficiency of x0. Therefore,
(Pu,Qu) 6∈ − int C ×K(g(x0)).
If {Pn} is unbounded one can assume ‖Pn‖ → ∞ and Pn

‖Pn‖
p−→ P ∈ p-Af (x0)∞ \ {0} and

1
tn‖Pn‖ (f(x0 + tnu)− f(x0) → Pu.

By an argument similar to that for the above boundedness case, one obtains (Pu, Qu) 6∈ −
int C ×K(g(x0)). Now employing the separation theorem one gets the conclusion. ¤
Note that the Lagrange multipliers mentioned in Theorem 3.1 depend on the given direc-
tion u ∈ X. In the following example, Theorem 3.1 rejects x0, a suspected point when
finding local weakly efficient solutions, while many known results cannot be applied.

Example 3.2. Let X = Y = Z = R, C = K = R+, x0 = 0, g(x) = x2 − 2x and

f(x) =
{ −1/x if x 6= 0,

0 if x = 0.

Let α < 0 be arbitrary and fixed. Then we have the following first-order approximations of
f and g, which satisfy the assumptions of Theorem 3.1: Af (x0) = (−∞, α) and Ag(x0) =
{−2}. Hence clAf (x0) = (−∞, α], Af (x0)∞ = (−∞, 0]. For u = 1 ∈ X we see that
∀P ∈ clAf (x0)

⋃
(Af (x0)∞ \ {0}), ∀Q ∈ clAg(x0), ∀(y∗, z∗) ∈ C∗ × K∗ \ {(0, 0)} with

〈z∗, g(x0)〉 = 0 one has, since P < 0,

〈y∗, Pu〉+ 〈z∗, Qu〉 = y∗P − 2z∗ < 0.

According to Theorem 3.1, x0 6∈ LWE(f, g). However, f is not locally Lipschitz at x0.
Hence, necessary optimality conditions using the Clarke generalized derivative or the Dini
directional derivative, e.g. in [3, 5], do not work. The Hadamard upper directional deriva-
tive (see [15]) of f at x0 in the direction u defined by

Df(x0, u) := lim sup
t→0+,v→u

1
t [f(x0 + tv)− f(x0)]

:= {y ∈ Y | ∃(tn, un) → (0+, u), y = lim
n→∞

1
tn

(f(x0 + tnun)− f(x0))},
is empty in this case and then Theorem 3.1 of [15] cannot be employed. Furthermore, f
is not continuous at x0 and hence results which make use of the approximate Jacobian,
e.g. in [9, 16] cannot be applied. f does not have directional derivative f

′
(x0, u) and then

results using quasidifferentiability [4] cannot be used either.

Theorem 3.3 (Sufficient condition). Assume that X is finite dimensional, x0 ∈
g−1(−K) and Af (x0) and Ag(x0) are asymptotically p-compact first-order approximations
of f and g, respectively, at x0. Assume that ∀u ∈ X : ‖u‖ = 1, u ∈ T (g−1(−K), x0),
∀P ∈ p-clAf (x0)

⋃
(p-Af (x0)∞ \ {0}), ∀Q ∈ p-clAg(x0)

⋃
(p-Ag(x0)∞ \ {0}), ∃(y∗, z∗) ∈
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C∗ ×K∗ \ {(0, 0)},
〈y∗, Pu〉+ 〈z∗, Qu〉 > 0,

〈z∗, g(x0)〉 = 0.

Then x0 ∈ LFE(1, f, g), i.e. x0 is a local firm efficient solution of order 1 of (P).

Proof. Reasoning by contraposition, suppose the existence of xn ∈ BX(x0,
1
n ) \ {x0} and

cn ∈ C such that g(xn) ∈ −K and

f(xn)− f(x0) + cn ∈ BY (0, 1
n‖xn − x0‖).

Then, by Definition 2.1, there is Pn ∈ Af (x0) such that, for n ∈ N large enough,

Pn(xn−x0)+o(‖xn−x0‖)+cn ∈ BY (0, 1
n‖xn−x0‖). (7)

Since X is finite dimensional, one can assume that xn−x0
‖xn−x0‖ → u for some u ∈ T (g−1(−K),

x0) with norm one. Then (7) implies the existence of P ∈ p-clAf (x0)
⋃

(p-Af (x0)∞ \ {0})
such that Pu ∈ −C. (For details one can split the consideration into two cases depending
on {Pn} is bounded or not, similarly as in the proof of Theorem 3.1.)
On the other hand,

g(xn)− g(x0) ∈ −K − g(x0) ⊆ −K(g(x0)).

Hence, there is Qn ∈ Ag(x0) such that

Qn(xn−x0)+o(‖xn−x0‖) ∈ −K(g(x0)). (8)

Similarly as for {Pn}, from (8) it follows the existence of Q ∈ p-clAg(x0)
⋃

(p-Ag(x0)∞ \
{0}) such that Qu ∈ −K(g(x0)).
Therefore, for each (y∗, z∗) ∈ C∗ ×K∗ \ {(0, 0)} with 〈z∗, g(x0)〉 = 0, one has

〈y∗, Pu〉+ 〈z∗, Qu〉 ≤ 0,

which is absurd. ¤

The following example explains advantages of Theorem 3.3.

Example 3.4. Let X = Z = R, Y = R2, C = R2
+,K = R+, x0 = 0, f(x) = (x,(sgnx)

√
|x|),

g(x) = 3
√

x4− 2x. Then T (g−1(−K), x0) = [0,∞) and, for any fixed α > 0, f and g admit
first-order approximations Af (x0) = {(1, y) ∈ R2 | y > α} and Ag(x0) = {−2}, respec-
tively. One has clAf (x0) = {(1, y) ∈ R2 | y ≥ α} and Af (x0)∞ = {(0, y) ∈ R2 | y ≥ 0}.
Then one sees that ∀u ∈ T (g−1(−K), x0) with ‖u‖ = 1, ∀P ∈ clAf (x0)

⋃
(Af (x0)∞ \ {0}),

∀Q ∈ clAg(x0)
⋃

(Ag(x0)∞ \ {0}), for (y∗, z∗) = ((0, 1), 0) ∈ C∗×K∗ \ {(0, 0)} one obtains

〈y∗, Pu〉+ 〈z∗, Qu〉 = y > 0,

〈z∗, g(x0)〉 = 0.

By virtue of Theorem 3.3, x0 is a local firm efficient solution of order 1 of (P). Clearly f
is not locally Lipschitz at x0 hence results using this property cannot be applied. f is not
calm at x0, so Theorem 3.2 of [15] cannot either.

4. Second-order optimality conditions

In the sequel we admit the following notations for problem (P). For z∗ ∈ K∗, set

G(z∗) = {x ∈ X | g(x) ∈ −K, 〈z∗, g(x)〉 = 0}.
If f and g have Fréchet derivatives f

′
(x0) and g

′
(x0) then set

C∗0 ×K∗
0 = {(y∗, z∗) ∈ C∗ ×K∗ \ {(0, 0)} | y∗ ◦ f

′
(x0) + z∗ ◦ g

′
(x0) = 0, 〈z∗, g(x0)〉 = 0}.

If f and g have first-order approximations Af (x0) and Ag(x0), respectively, then for x0 ∈
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X, (y∗, z∗) ∈ C∗ ×K∗, we set

P (x0, y
∗, z∗) = {v ∈ X | 〈y∗, Pv〉+ 〈z∗, Qv〉 = 0, ∀P ∈ Af (x0), ∀Q ∈ Ag(x0)}.

4.1. The first-order differentiable case

In this subsection we consider the case where f and g are Fréchet differentiable at x0.

Theorem 4.1 (Necessary condition for the first-order differentiable case). As-
sume that (y∗, z∗) ∈ C∗0 ×K∗

0 . Assume further that (f
′
(x0), Bf (x0)) and (g

′
(x0), Bg(x0))

are asymptotically p-compact second-order approximations of f and g, respectively, at x0

with norm-bounded Bg(x0).
If x0 ∈ LWE(f, g) then, for any v ∈ T (G(z∗), x0), either ∃M ∈ p-clBf (x0), ∃N ∈ p-
clBg(x0) such that

〈y∗,M(v, v)〉+ 〈z∗, N(v, v)〉 ≥ 0,

or ∃M ∈ p-Bf (x0)∞ \ {0} such that

〈y∗, M(v, v)〉 ≥ 0.

Proof. Fix any v ∈ T (G(z∗), x0). Then ∃tn → 0+, ∃vn → v such that x0 + tnvn ∈
G(z∗),∀n ∈ N. On the other hand, (y∗ ◦ f

′
(x0) + z∗ ◦ g

′
(x0), y∗ ◦ Bf (x0) + z∗ ◦ Bg(x0))

is a second-order approximation of the Lagrangian L(., y∗, z∗) := 〈y∗, f(.)〉+ 〈z∗, g(.)〉 for
y∗ ∈ Y ∗ and z∗ ∈ Z∗. Hence, by Definition 2.1, there are Mn ∈ Bf (x0) and Nn ∈ Bg(x0)
such that for large n ∈ N,

L(x0 + tnvn, y∗, z∗)− L(x0, y
∗, z∗) = tn〈y∗ ◦ f

′
(x0) + z∗ ◦ g

′
(x0), vn〉+ t2n〈y∗,Mn(vn, vn)〉

+t2n〈z∗, Nn(vn, vn)〉+ o(t2n).

On the other hand, as x0 + tnvn ∈ G(z∗), for large n,

L(x0 + tnvn, y∗, z∗)− L(x0, y
∗, z∗) = 〈y∗, f(x0 + tnvn)− f(x0)〉

+〈z∗, g(x0 + tnvn)− g(x0)〉 ≥ 0,

y∗ ◦ f
′
(x0) + z∗ ◦ g

′
(x0) = 0.

Consequently, for large n,

〈y∗,Mn(vn, vn)〉+〈z∗, Nn(vn, vn)〉+ o(t2n)
t2n

≥ 0. (9)

By the boundedness of Bg(x0), we can assume that Nn
p−→ N ∈ p-clBg(x0).

If {Mn} is norm bounded, then we assume that Mn
p−→ M ∈ p-clBf (x0). Letting n →∞

in (9) gives

〈y∗,M(v, v)〉+ 〈z∗, N(v, v)〉 ≥ 0.

If {Mn} is unbounded, we can assume that ‖Mn‖ → ∞ and Mn

‖Mn‖
p−→ M ∈ p-Bf (x0)∞\{0}.

Dividing (9) by ‖Mn‖ and passing to the limit we obtain 〈y∗, M(v, v)〉 ≥ 0. ¤
In the following example, applying Theorem 4.1 we can reject the suspected x0, but many
recent results cannot be employed.

Example 4.2. Let X = R2, Y = Z = R, C = R+,K = {0}, x0 = (0, 0) and

f(x, y) = − 2
3 |x|

3
2 + 1

2y2,

g(x, y) = x2 − y.

Then f
′
(x0) = (0, 0), g

′
(x0) = (0,−1),

Bf (x0) =
{(

α 0
0 1

2

)
| α < −1

}
,

clBf (x0) =
{(

β 0
0 1

2

)
| β ≤ −1

}
,
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Bf (x0)∞ =
{(

γ 0
0 0

)
| γ ≤ 0

}
,

Bg(x0) =
{(

1 0
0 0

)}
,

C∗0 ×K∗
0 = {(y∗, 0) | y∗ ∈ R+ \ {0}},

G(z∗) = {(x, y) ∈ R2 | x2 − y = 0} for z∗ = 0.

Choosing (y∗, z∗) = (1, 0) ∈ C∗0 ×K∗
0 and v = (1, 0) ∈ T (G(z∗), x0) = R× R+, we have

〈y∗,M(v, v)〉+ 〈z∗, N(v, v)〉 = α ≤ −1 < 0

for all M ∈ clBf (x0) and all N ∈ clBg(x0), and

〈y∗,M(v, v)〉 = γ < 0

for all M ∈ Bf (x0)∞ \ {0}. Therefore, following Theorem 4.1, x0 is not a local weakly
efficient solution of problem (P). However, since int K 6= ∅, Theorem 4.1 of [15] does not
work. f is not in C1,1 at x0 and hence the results based on this class of functions, e.g. in
[6, 7], cannot be employed.

Remark 4.3. In [12], second-order approximations are used to derive second-order neces-
sary conditions for scalar optimization problems with general inequality constraints. When
applied to scalar problems our Theorem 4.1 is different from the corresponding results in
[12]. However, there is some mistakes in the proof of Theorem 3.2.2, one of the main
results in [12]. The following example shows that the conclusion of Theorem 3.2.2 is false.

Example 4.4. Let X = Z = R2, Y = R, C = R+, K = R2
+, x0 = (0, 0), f(x1, x2) =

x2
1 + x2

2 − x2 and g(x1, x2) = (x2, x
2
1 − 2x2

2 + 1
2x2). Then, it is clear that x0 is a (global

efficient) solution of problem (P). The mentioned Theorem 3.2.2 states for (P) as follows.
Assume that f and g are Fréchet differentiable, that (f

′
(x0), Bf (x0)) and (g

′
(x0), Bg(x0))

are compact and that x0 is a (efficient) solution of (P). Then ∀z∗ ∈ R2
+ with f

′
(x0) + z∗ ◦

g
′
(x0) = 0, ∀v ∈ T (G(z∗), x0), ∃M ∈ Bf (x0), ∃N ∈ Bg(x0) such that

M(v, v) + 〈z∗, N(v, v)〉 ≥ 0,

where G(z∗) = g−1(−K) (see [12]).
For this example, by direct computations we have

f
′
(x0) = (0,−1), g

′
(x0) =

{(
0 1
0 1

2

)}
,

G(z∗) = {(x1, x2) ∈ R2 | x2
1 − 2x2

2 + 1
2x2 ≤ 0, x2 ≤ 0},

T (G(z∗), x0) = {(x1, x2) ∈ R2 | x2 ≤ 0},

Bf (x0) =
{(

1 0
0 1

)}
, Bg(x0) = {N},

where N : R2 × R2 → R2 is the 2× 2× 2 matrix

N =
{(

0 0 1 0
0 0 0 −2

)}
,

i.e. N(v, v) = (0, u1v1 − 2u2v2), ∀(u1, u2), (v1, v2) ∈ R2.
We see that all assumptions of Theorem 3.2.2 are satisfied, but, for z∗ = (0, 2) and
v = (0,−1) ∈ T (G(z∗), x0) we have

M(v, v) + 〈z∗, N(v, v)〉 = −3 < 0.

Theorem 4.5 (Sufficient condition for the first-order differentiable case). As-
sume that X is finite dimensional, x0 ∈ g−1(−K) and (f

′
(x0), Bf (x0)) and (g

′
(x0), Bg(x0))

are asymptotically p-compact second-order approximations of f and g, respectively, at x0

with Bg(x0) being norm bounded. Assume further the existence of (y∗, z∗) ∈ C∗0 ×K∗
0 such
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that, ∀v ∈ T (g−1(−K), x0) with ‖v‖ = 1 and 〈y∗, f ′(x0)v〉 = 〈z∗, f ′(x0)v〉 = 0,

(i) ∀M ∈ p-clBf (x0), ∀N ∈ p-clBg(x0),

〈y∗,M(v, v)〉+ 〈z∗, N(v, v)〉 > 0,

(ii) ∀M ∈ p-Bf (x0)∞ \ {0},
〈y∗, M(v, v)〉 > 0.

Then x0 is a local firm efficient solution of order 2, i.e. x0 ∈ LFE(2, f, g).

Proof. Reasoning ad absurdum, suppose the existence of xn ∈ BX(x0,
1
n ) and cn ∈ C

such that g(xn) ∈ −K and

f(xn)− f(x0) + cn ∈ BY (0, 1
n‖xn − x0‖2). (10)

As dimX is finite we can assume the existence of v ∈ T (g−1(−K), x0) with ‖v‖ = 1
such that xn−x0

‖xn−x0‖ → v. Dividing (10) by ‖xn − x0‖ and passing to the limit we get

f
′
(x0)v ∈ −C and hence

〈y∗, f ′(x0)v〉 ≤ 0.

On the other hand

g(xn)− g(x0) ∈ −K − g(x0) ⊆ −K(g(x0)). (11)

Dividing this by ‖xn − x0‖ we get in the limit g
′
(x0)v ∈ −K(g(x0)). Hence

〈z∗, g′(x0)v〉 ≤ 0. (12)

Since (y∗, z∗) ∈ C∗0 ×K∗
0 , (11) and (12) together imply that

〈y∗, f ′(x0)v〉 = 〈z∗, f ′(x0)v〉 = 0.

By the definition of the second-order approximation, for large n, there are Mn ∈ Bf (x0)
and Nn ∈ Bg(x0) such that (setting tn = ‖xn − x0‖) we have for the Lagrangian

L(xn, y∗, z∗)− L(x0, y
∗, z∗) = 〈y∗ ◦ f

′
(x0) + z∗ ◦ g

′
(x0), xn − x0〉

+〈y∗,Mn(xn−x0, xn−x0)〉+〈z∗, Nn(xn−x0, xn−x0)〉+o(t2n). (13)

As 〈z∗, g(x0)〉 = 0 it follows from (10) that

L(xn, y∗, z∗)− L(x0, y
∗, z∗) = 〈y∗, f(xn)− f(x0)〉+ 〈z∗, g(xn)〉 − 〈z∗, g(x0)〉 ≤ 〈y∗, dn〉

for some dn ∈ BY (0, 1
n t2n). Hence from (13) we obtain

〈y∗,Mn(xn − x0, xn − x0)〉+ 〈z∗, Nn(xn − x0, xn − x0)〉+ o(t2n) ≤ 〈y∗, dn〉.
This, in a similar way as in the proof of Theorem 4.1, implies that either ∃M ∈ p-clBf (x0),
∃N ∈ p-clBg(x0) such that

〈y∗,M(v, v)〉+ 〈z∗, N(v, v)〉 ≤ 0,

or ∃M ∈ p-Bf (x0)∞ \ {0} such that

〈y∗, M(v, v)〉 ≤ 0,

both of which are impossible. ¤
The following example gives a case where Theorem 4.5 can be applied but the correspond-
ing Theorem 4.2 of [15] and many other results cannot.

Example 4.6. Let X = Z = R, Y = R2, C = R2
+,K = R+, x0 = 0 and

f(x) = (|x| 43 , x2),

g(x) = −x + x2.

Then f
′
(x0) = (0, 0), g

′
(x0) = −1, Bf (x0) = {(α, 1) | α > 1}, clBf (x0) = {(β, 1) | β ≥ 1},

Bf (x0)∞ = {(γ, 0) | γ ≥ 0}, Bg(x0) = {1}, g−1(−K) = [0, 1], C∗0 ×K∗
0 = {(y∗, 0) | y∗ ∈

R2
+ \ {0}}, T (g−1(−K), x0) = [0,∞).
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Choosing (y∗, z∗) = ((1, 0), 0) ∈ C∗0 ×K∗
0 , ∀v ∈ T (g−1(−K), x0) with ‖v‖ = 1, i.e. v = 1,

we see that, ∀M ∈ clBf (x0), ∀N ∈ clBg(x0),

〈y∗,M(v, v)〉+ 〈z∗, N(v, v)〉 = β ≥ 1 > 0,

and, ∀M ∈ Bf (x0)∞ \ {0},
〈y∗,M(v, v)〉 = γ > 0.

According to Theorem 4.5, x0 ∈ LFE(2, f, g). However, since f
′
is not calm at x0, Theorem

4.2 of [15] is out of use. f 6∈ C1,1 at x0 and hence the results in e.g. [6, 7] cannot be
employed.

4.2. The nondifferentiable case

Now we pass to the general nondifferentiable case.

Theorem 4.7 (Necessary condition for the nondifferentiable case). Assume that
(Af (x0), Bf (x0)) and (Ag(x0), Bg(x0)) are asymptotically p-compact second-order approx-
imations of f and g, respectively, at x0, with Af (x0), Ag(x0) and Bg(x0) being norm
bounded. Assume that (y∗, z∗) ∈ C∗ ×K∗ such that 〈z∗, g(x0)〉 = 0. If x0 ∈ LWE(f, g)
then

(i) ∀v ∈ T (G(z∗), x0), ∃P ∈ p-clAf (x0), ∃Q ∈ p-clAg(x0) such that

〈y∗, Pv〉+ 〈z∗, Qv〉 ≥ 0;

(ii) ∀v ∈ P (x0, y
∗, z∗), we have

(a) ∀w ∈ T 2(G(z∗), x0, v), either ∃P ∈ p-clAf (x0), ∃Q ∈ p-clAg(x0), ∃M ∈ p-clBf (x0),
∃N ∈ p-clBg(x0) such that

〈y∗, Pw〉+ 〈z∗, Qw〉+ 2〈y∗,M(v, v)〉+ 2〈z∗, N(v, v)〉 ≥ 0

or ∃M ∈ p-Bf (x0)∞ \ {0} such that

〈y∗, M(v, v)〉 ≥ 0;

(b) ∀w ∈ T
′′
(G(z∗), x0, v), either ∃P ∈ p-clAf (x0), ∃Q ∈ p-clAg(x0), ∃M ∈ p-Bf (x0)∞

such that

〈y∗, Pw〉+ 〈z∗, Qw〉+ 〈y∗,M(v, v)〉 ≥ 0

or ∃M ∈ p-Bf (x0)∞ \ {0} such that

〈y∗, M(v, v)〉 ≥ 0.

Proof. (i) It is a special case of (ii) with v = 0.

(ii) (a) For arbitrary v ∈ P (x0, y
∗, z∗) and w ∈ T 2(G(z∗), x0, v), by the definition of the

second-order tangent set, ∃tn → 0+, wn → w, ∀n ∈ N,

xn := x0 + tnv + 1
2 t2nwn ∈ G(z∗).

Hence, for large n,

L(xn, y∗, z∗)− L(x0, y
∗, z∗) = 〈y∗, f(xn)− f(x0)〉+ 〈z∗, g(xn)〉 − 〈z∗, g(x0)〉 ≥ 0.

Consequently, by the definition of the second-order approximation and as v ∈ P (x0, y
∗, z∗),

∃Pn ∈ Af (x0), ∃Qn ∈ Ag(x0), ∃Mn ∈ Bf (x0), ∃Nn ∈ Bg(x0),

〈y∗, Pnwn〉+ 〈z∗, Qnwn〉+ 2〈y∗, Mn(v + 1
2 tnwn, v + 1

2 tnwn)〉
+2〈z∗, Nn(v + 1

2 tnwn, v + 1
2 tnwn)〉+ o(t2n)

1
2 t2n

≥ 0. (14)

By the boundedness of Af (x0), Ag(x0) and Bg(x0), we can assume the existence of P ∈ p-
clAf (x0), Q ∈ p-clAg(x0) and N ∈ p-clBg(x0) such that Pn

p−→ P , Qn
p−→ Q and Nn

p−→ N .
If {Mn} is norm bounded it may be assumed to converge to some M ∈ p-clBf (x0). Passing
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(14) to the limit we obtain

〈y∗, Pw〉+ 〈z∗, Qw〉+ 2〈y∗,M(v, v)〉+ 2〈z∗, N(v, v)〉 ≥ 0.

If {Mn} is unbounded, we can assume that Mn

‖Mn‖
p−→ M ∈ p-Bf (x0)∞ \ {0}. From (14) we

get after dividing by ‖Mn‖ and passing to the limit

〈y∗, M(v, v)〉 ≥ 0.

(b) For any v ∈ P (x0, y
∗, z∗) and w ∈ T

′′
(G(z∗), x0, v), there are (tn, rn) → (0+, 0+) and

wn → w such that tn

rn
→ 0+ and, ∀n ∈ N,

xn := x0 + tnv + 1
2 tnrnwn ∈ G(z∗).

Hence, for large n, ∃Pn ∈ Af (x0), ∃Qn ∈ Ag(x0), ∃Mn ∈ Bf (x0) and ∃Nn ∈ Bg(x0) such
that (as v ∈ P (x0, y

∗, z∗))

( 2
tnrn

(L(xn, y∗, z∗)− L(x0, y
∗, z∗)) = 〈y∗, Pnwn〉+ 〈z∗, Qnwn〉

+〈y∗, ( 2tn

rn
)Mn(v + 1

2rnwn, v + 1
2rnwn)〉+ 〈z∗, ( 2tn

rn
)Nn(v + 1

2rnwn, v + 1
2rnwn)〉

+ 2o(t2n)
tnrn

≥ 0. (15)

As Bg(x0) is bounded, ( 2tn

rn
)Nn → 0. Since Af (x0) and Ag(x0) are bounded we can assume

the existence of P ∈ p-clAf (x0) and Q ∈ p-clAg(x0) such that Pn
p−→ P and Qn

p−→ Q.
There are three possibilities (using subsequences if necessary).

• ( 2tn

rn
)Mn → 0. Passing (15) to the limit one gets

〈y∗, Pw〉+ 〈z∗, Qw〉 ≥ 0.

• ‖( 2tn

rn
)Mn‖ → a > 0. Then ‖Mn‖ → ∞ and one can assume that Mn

‖Mn‖
p−→ M ∈

p-Bf (x0)∞ \ {0}. From (15) one gets in the limit

〈y∗, Pw〉+ 〈z∗, Qw〉+ 〈y∗, aM(v, v)〉 ≥ 0.

• ‖( 2tn

rn
)Mn‖ → ∞. Then ‖Mn‖ → ∞ and one can assume that Mn

‖Mn‖
p−→ M ∈ p-

Bf (x0)∞ \ {0}. Passing (15) to limit gives

〈y∗,M(v, v)〉 ≥ 0. ¤
Example 4.8. Let X = Y = R2, Z = R, C = R2

+, K = {0}, x0 = (0, 0), f(x, y) =
(−y, x + |y|) and g(x, y) = −x3 + y2. Then we have the following approximations

Af (x0) =
{(

0 −1
1 ±1

)}
, Bf (x0) = {0},

Ag(x0) = {0}, Bg(x0) =
{(

0 0
0 1

)}
.

Let y∗ = (1, 0) ∈ C∗, z∗ = 0 ∈ K∗ and v = (1, 0) ∈ P (x0, y
∗, z∗). Then

G(z∗) = {(x, y) ∈ R2 | −x3 + y2 = 0},
T 2(G(z∗), x0, v) = ∅, T

′′
(G(z∗), x0, v) = R2.

Now for w = (0, 1) ∈ T
′′
(G(z∗), x0, v), ∀P ∈ clAf (x0), ∀Q ∈ clAg(x0), ∀M ∈ Bf (x0)∞,

one has

〈y∗, Pw〉+ 〈z∗, Qw〉+ 〈y∗,M(v, v)〉 = −1 < 0.

Taking into account Theorem 4.7 one sees that x0 6∈ LWE(f, g). It is not hard to check
that all the corresponding necessary conditions in [7, 5, 6, 15] are satisfied and hence no
conclusion about the possible weak efficiency of x0 can be made. In this case, because int
K = ∅ and f is not differentiable at x0, Theorems 3.1 and 4.1 cannot be used.

Theorem 4.9 (Sufficient condition for the nondifferentiable case). Let X be finite
dimensional, x0 ∈ g−1(−K), (y∗, z∗) ∈ C∗×K∗ with 〈z∗, g(x0)〉 = 0. Let (Af (x0), Bf (x0))
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and (Ag(x0), Bg(x0)) are asymptotically p-compact second-order approximations of f and
g, respectively, at x0 such that Af (x0), Ag(x0) and Bf (x0) are norm bounded. Then x0 ∈
LFE(2, f, g) if the following conditions hold

(i) ∀v ∈ T (g−1(−K), x0),∀P ∈ Af (x0), ∀Q ∈ Ag(x0), one has

〈y∗, Pv〉+ 〈z∗, Qv〉 = 0;

(ii) ∀v ∈ T (g−1(−K), x0) : ‖v‖ = 1 such that ∃P ∈ p-clAf (x0) : Pv ∈ −C, ∃Q ∈ p-
clAg(x0) : Qv ∈ −K(g(x0)) and ∀M ∈ p-Bf (x0)∞ \ {0}, one has

〈y∗,M(v, v)〉 > 0

and
(a) ∀w ∈ T 2(g−1(−K), x0, v) ∩ v⊥, ∀P ∈ p-clAf (x0), ∀Q ∈ p-clAg(x0), ∀M ∈ p-clBf (x0),
∀N ∈ p-clBg(x0), one has

〈y∗, Pw〉+ 〈z∗, Qw〉+ 2〈y∗,M(v, v)〉+ 2〈z∗, N(v, v)〉 > 0.

(b) ∀w ∈ T
′′
(g−1(−K), x0, v) ∩ v⊥ \ {0}, ∀P ∈ p-clAf (x0), ∀Q ∈ p-clAg(x0), ∀M ∈ p-

Bf (x0)∞, one has

〈y∗, Pw〉+ 〈z∗, Qw〉+ 〈y∗,M(v, v)〉 > 0.

Proof. Suppose xn ∈ BX(x0,
1
n ) \ {x0} and cn ∈ C exist such that g(xn) ∈ −K and

dn := f(xn)− f(x0)+ cn ∈ BY (0, 1
n t2n), (16)

where tn = ‖xn−x0‖. We can assume that 1
tn

(xn−x0) → v for some v ∈ T (g−1(−K), x0)
with norm one. For large n, there are P

′
n ∈ Af (x0) and Q

′
n ∈ Ag(x0) such that

f(xn)− f(x0) = P
′
n(xn − x0) + o(tn),

g(xn)− g(x0) = Q
′
n(xn − x0) + o(tn) ∈ −K(g(x0)). (17)

We can assume the existence of P
′ ∈ p-clAf (x0) and Q

′ ∈ p-clAg(x0) such that P
′
n

p−→ P
′

and Q
′
n

p−→ Q
′
. Dividing (16), (17) by tn we get in the limit

P
′
v ∈ −C, Q

′
v ∈ −K(g(x0)).

On the other hand

L(xn, y∗, z∗)− L(x0, y
∗, z∗) = 〈y∗, f(xn)− f(x0)〉+ 〈z∗, g(xn)− 〈z∗, g(x0)〉
≤ 〈y∗, dn− cn〉 ≤ 〈y∗, dn〉. (18)

By Lemma 2.8, there are two possibilities now.

(α) wn := (xn−x0−tnv)
1
2 t2n

→ w ∈ T 2(g−1(−K), x0, v) ∩ v⊥. By virtue of (18) and the
definition of the second-order approximation for large n, there are Pn ∈ Af (x0), Qn ∈
Ag(x0),Mn ∈ Bf (x0) and Nn ∈ Bg(x0) such that

〈y∗, Pn(tnv + 1
2 t2nwn)〉+ 〈z∗, Qn(tnv + 1

2 t2nwn)〉+ 〈y∗,Mn(tnv + 1
2 t2nwn, tnv + 1

2 t2nwn)〉
+〈z∗, Nn(tnv + 1

2 t2nwn, tnv + 1
2 t2nwn)〉+ o(t2n) ≤ 〈y∗, dn〉.

Therefore, by assumption (i),

〈y∗, Pnwn〉+ 〈z∗, Qnwn〉+ 2〈y∗, Mn(v + 1
2 tnwn, v + 1

2 tnwn)〉

+2〈z∗, Nn(v+ 1
2 tnwn, v+ 1

2 tnwn)〉+ o(t2n)
1
2 t2n

≤ 〈y∗,dn〉
1
2 t2n

. (19)

We can assume Pn
p−→ P ∈ p-clAf (x0), Qn

p−→ Q ∈ p-clAg(x0) and Nn
p−→ N ∈ p-clBg(x0)

by the assumed norm boundedness.

Now if {Mn} is also norm bounded then Mn
p−→ M ∈ p-clBf (x0), then from (19) we get
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in the limit the following contradiction with assumption (ii) (a):

〈y∗, Pw〉+ 〈z∗, Qw〉+ 2〈y∗,M(v, v)〉+ 2〈z∗, N(v, v)〉 ≤ 0.

If {Mn} is unbounded, without loss of generality assume that ‖Mn‖ → ∞ and Mn

‖Mn‖
p−→

M ∈ p-Bf (x0)∞ \ {0}. Dividing (19) by ‖Mn‖ we obtain in the limit 〈y∗,M(v, v)〉 ≤ 0,
contradicting (ii).

(β) wn := (xn−x0−tnv)
1
2 tnrn

→ w ∈ T
′′
(g−1(−K), x0, v)∩v⊥\{0}, where rn → 0+ and tn

rn
→ 0+.

Consequently, by (i), we get similarly as (19)

〈y∗, Pnwn〉+ 〈z∗, Qnwn〉+ ( 2tn

rn
)〈y∗,Mn(v + 1

2rnwn, v + 1
2rnwn)〉

+(2tn

rn
〈z∗, Nn(v+ 1

2rnwn, v+ 1
2rnwn)〉+ o(t2n)

1
2 tnrn

≤ 〈y∗,dn〉
1
2 tnrn

. (20)

Similarly as before, Pn
p−→ P ∈ p-clAf (x0) and Qn

p−→ Q ∈ p-clAg(x0). As Bg(x0) is
bounded, ( 2tn

rn
)Nn → 0. Now we have the following three subcases.

• ( 2tn

rn
)Mn → 0. From (20) we get in the limit the contradiction with (ii) (b)

〈y∗, Pw〉+ 〈z∗, Qw〉 ≤ 0.

• ‖(2tn

rn
)Mn‖ → a > 0. Then, since we can assume that ‖Mn‖ → ∞ and Mn

‖Mn‖
p−→ M ∈

p-Bf (x0)∞ \ {0}, (20) implies that

〈y∗, Pw〉+ 〈z∗, Qw〉+ 〈y∗, aM(v, v)〉 ≤ 0.

Since p-Bf (x0)∞ is a cone, this contradicts (ii) (b).

• ‖(2tn

rn
)Mn‖ → ∞. Then, ‖Mn‖ → ∞ and Mn

‖Mn‖
p−→ M ∈ p-Bf (x0)∞ \ {0}. Dividing (20)

by ( 2tn

rn
)‖Mn‖ and passing to the limit we get a contradiction that 〈y∗,M(v, v)〉 ≤ 0. ¤
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