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1. Introduction and preliminaries

The equilibrium problem was proposed by Blum and Oettli [4] as a gener-

alization of variational inequalities and optimization problems and includes also

other problems such as the complementarity problem, the Nash equilibrium, the

fixed point and coincidence point problems, the traffic equilibrium problem, etc.

On the other hand Bensoussan, Goursat, and Lions [3], considering random im-

pulse control problems, observed the necessity to investigate the constraint set de-

pending on the state variable. This paper led to the birth of the quasivariational

inequality, and later, of the quasiequilibrium problem. The solution existence was

often of interest first, see e.g. recent papers [2,5-18,21-23] and references therein.

However, the conditions for the existence of exact solutions are often restricted.

Moreover, some problems in practice do not have exact solutions, but possess ε-

solutions (approximate solutions with ε-tolerance), see e.g. Examples 1.1 and 1.2.

Such solutions make sense in practical situations, since the data of the problem

under consideration is obtained approximately by measurements or statistical ways

and hence the mathematically exact solutions are in fact also approximate ones.

Therefore, the demand on the existence of exact solutions may be too costly.

To the best of our knowledge, there are not papers dealing with the exis-

tence of approximate solutions of equilibrium or quasiequilibrium problems in the

literature (the only paper [1] considers the semicontinuity of approximate solution

sets). This motivates our aim in this note: to establish sufficient conditions for the

existence of ε-solutions to quasiequilibrium problems in general spaces. It appears
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that if ε = 0, i.e. for exact solutions, our results are also new, and shown by

examples to be more applicable than existing ones in some cases.

We now outline the remainder of the paper. The rest of this section is devoted

to the problem setting and some preliminaries. The main results are presented in

Section 2. In the final Section 3, some applications are provided.

Throughout the paper, if not otherwise stated, let X and Z be Hausdorff

topological vector spaces and Y be a linear metric space with invariant metric

d(., .). Let A ⊆ X and B ⊆ Z be nonempty compact convex sets. Let C ⊆ Y be

closed with the interior intC 6= ∅ and C 6= Y . Let the multifunctions K : A → 2X ,

T : A → 2B and F : T (A)×X ×A → 2Y have nonempty values. We consider the

following four quasiequilibrium problems:

(QEP1) Find x̄ ∈ A∩clK(x̄) such that ∀y ∈ K(x̄), ∃t̄ ∈ T (x̄),

F (t̄, y, x̄) ∩ (Y \−intC) 6= ∅;

(QEP2) Find x̄ ∈ A∩clK(x̄) such that ∃t̄ ∈ T (x̄), ∀y ∈ K(x̄),

F (t̄, y, x̄) ∩ (Y \−intC) 6= ∅;

(QEP3) Find x̄ ∈ A∩clK(x̄) such that ∀y ∈ K(x̄), ∃t̄ ∈ T (x̄),

F (t̄, y, x̄) ⊆ Y \−intC;

(QEP4) Find x̄ ∈ A∩clK(x̄) such that ∃t̄ ∈ T (x̄), ∀y ∈ K(x̄),

F (t̄, y, x̄) ⊆ Y \−intC.

Observe that any solution of (QEP2) or of (QEP3) solves (QEP1) and any

solution of (QEP4) solves all three other problems. The converses are not valid.

Also, the solutions of (QEP2) and (QEP3) may in general be different.
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Let us use the notations

comp(−intC)ε
1 = {y ∈ Y | d(y, Y \−intC) ≤ ε},

comp(−intC)ε
2 = (Y \−intC) + B̄ε

Y ,

comp(−intC)ε
3 = {y ∈ Y | d(y, Y \−intC) < ε},

where d(y, V ) :=infv∈V d(y, v) is the distance between the point y and the set V ,

B̄ε
Y := {y ∈ Y | d(0, y) ≤ ε} and Bε

Y := {y ∈ Y | d(0, y) < ε}. The notation

”comp(.)” is related to the word ”complement”.

Remark 1.1. (i) We have, for ε > 0,

{y ∈ Y | d(y, Y \−intC) < ε} = (Y \−intC) + Bε
Y .

Indeed, we prove more generally that {y ∈ Y | d(y, Q) < ε} := Qε is equal to

Q + Bε
Y , for any ∅ 6= Q ⊆ Y . To see ”⊃” let y = q + z for some q ∈ Q and

z ∈ Bε
Y . Then, d(y, q) = d(y − q, 0) = d(z, 0) < ε, i.e. y ∈ Qε. For the inverse

inclusion ”⊂”, let y ∈ Qε. Then d(y, Q) := dy < ε. Hence, there is q ∈ Q with

dy < d(y, q) < ε. Consequently, y − q ∈ Bε
Y and y ∈ Q + Bε

Y .

(ii) For ∅ 6= Q ⊆ Y , denote Q̄ε = {y ∈ Y | d(y, Q) ≤ ε}. Then, following

Remark 1.1 of [1], Q + B̄ε
Y ⊆ Q̄ε and one has an equality if Y is finite dimensional

and Q is closed. However, while Y is infinite dimensional Q+ B̄ε
Y may be properly

contained in Q̄ε since Q + B̄ε
Y may be not closed even for a closed set Q, see

Examples 1.1 and 1.2 of [1].

According to Remark 1.1 we have the following definition of three kinds of
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ε-solutions.

Definition 1.1. Each of our four problems (QEP1)-(QEP4) has three kinds of

ε-solutions corresponding to the above three sets comp(−intC)ε
i . For instance

x̄ ∈ A∩clK(x̄) is said to be an ε-solution of type i, i = 1, 2, 3, of problem (QEP1)

if ∀y ∈ K(x̄), ∃t̄ ∈ T (x̄) such that

F (t̄, y, x̄)∩comp(−intC)ε
i 6= ∅.

Note that the ε-solutions of type 1 and 2 were proposed in [1]. Following

Remark 1.1 (ii) each ε-solution of type 2 is an ε-solution of type 1, but the converse

is not true if Y is infinite dimensional.

The following example shows that problem (QEP1) may be unsolvable (in

the exact sense) but ε-solutions exist.

Example 1.1. Let X = Y = Z = R, A = [0, 1], K(x) ≡ [0, 1], C = R+, T (x) =

[0, x] and F (t, y, x) = [−0.1,−0.1 + 0.05x]. Then it is clear that the exact solution

of (QEP1) does not exist. However, for ε ≥ 0.1, each x̄ ∈ [0, 1] is an ε-solution of

type 1.

ε-solution sets depend, in general, on ε as shown in the following example.

Example 1.2. Let X, Y, Z, A, K and C be as in Example 1.1. Let T (x) = {x}

and F (t, y, x) = [−0.1 + x, 1]. Then it is easy to check that the ε-solution set of

(QEP1) is [0.1− ε, 1] for 0 ≤ ε < 0.1 and [0,1] for ε ≥ 0.1.

Our main tool in this paper is the following fixed point theorem, which is a
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slightly weaker version (suitable for our use) of the corresponding theorem in [20].

Theorem 1.1. Let X be a Hausdorff topological vector space, A ⊆ X be nonempty

compact convex and ϕ : A → 2X be a multifunction with nonempty convex values.

Assume that, for each x ∈ A, ϕ−1(x) is open in A. Then there is a fixed point

x̂ ∈ A of ϕ, i.e. x̂ ∈ ϕ(x̂).

We recall now the semicontinuity of multifunctions needed in the sequel.

Let X and Y be topological spaces and H : X → 2Y be a multifunction. H is

called lower semicontinuous (lsc) at x0 ∈ X if, for any open subset U such that

U ∩ H(x0) 6= ∅, there exists a neighborhood N of x0 such that, ∀x ∈ N, U ∩

H(x) 6= ∅. H is termed upper semicontinuous (usc) at x0 ∈ X if, for any open

subset U such that U ⊇ H(x0), there exists a neighborhood N of x0 such that

U ⊇ H(N). H is called lsc (or usc) if H is lsc (usc, respectively) at every point

x ∈ domH := {x ∈ X : H(x) 6= ∅}. H is said to be closed if the graph grH :=

{(x, y) ∈ X × Y | y ∈ H(x)} is closed.

The convexity assumptions imposed in our theorems are the following relaxed

property. Let X be a vector space and D ⊆ X be nonempty and convex. Let

P, Q, V and W ⊆ V be nonempty sets. Let T : P → 2Q and F : Q ×D → 2V be

multifunctions. For x ∈ P , F is said to be W -quasiconvex relative to T (x) of type

1 if, ∀ξ, η ∈ D, ∀λ ∈ [0, 1],

[F (t, ξ) 6⊆ W and F (t, η) 6⊆ W, ∀t ∈ T (x)]

⇒ [F (t, (1− λ)ξ + λη) 6⊆ W, ∀t ∈ T (x)]. (1)

F is called W -quasiconvex relative to T (x) of type 2 if (1) is replaced by
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[F (t, ξ) ∩W = ∅ and F (t, η) ∩W = ∅,∀t ∈ T (x)]

⇒ [F (t, (1− λ)ξ + λη) ∩W = ∅,∀t ∈ T (x)].

To see the nature of these definitions, consider the simplest case, where X =

D = V = P = Q = R, T (x) ≡ {x0}, W = R+ and F : {x0} × X → R is single-

valued, depending only on x ∈ X. Then the above two types of relaxed convexity

coincide and become: ∀ξ, η ∈ R,∀λ ∈ [0, 1],

[F (ξ) < 0 and F (η) < 0] ⇒ [F ((1− λ)ξ + λη) < 0].

This property is a relaxed 0-level quasiconvexity, since F is called quasiconvex if

∀ξ, η ∈ R,∀λ ∈ [0, 1], F ((1− λ)ξ + λη) ≤ max{F (ξ), F (η)}.

For the special case of the above general quasiconvexity, where T (x) ≡ {x0},

i.e. F depends on only one variable x, we simply say that F is W -quasiconvex of

type 1 or type 2.

2. Main results

In principle we have to investigate the existence of ε-solutions of three types

for four problems (QEP1) - (QEP4). However, it is easy to imagine some simi-

larities. So we only prove sufficient conditions for the existence of several among

these twelve types of ε-solutions.

Theorem 2.1. For problem (QEP1) assume that

(i11) for each x ∈ A, F (., ., x) is comp(−intC)ε
1-quasiconvex relative to T (x)

of type 2 and F (t, x, x)∩comp(−intC)ε
1 6= ∅ for some t ∈ T (x);
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(ii11) for each y ∈ A, F (., y, .) and T (.) are usc and map compact sets to

compact sets;

(iii11) clK(.) is usc; for each x ∈ A, A∩K(x) 6= ∅ and K(x) is convex; for each

y ∈ A, K−1(y) is open in A.

Then, problem (QEP1) has ε-solutions of type 1.

Proof. For x ∈ A set

P (x) = {z ∈ A | ∀t ∈ T (x), F (t, z, x)∩comp(−intC)ε
1 = ∅},

E = {z ∈ A | z ∈ clK(z)}.

By virtue of (i11), P (x) is convex for all x ∈ A. By (iii11) clK(.) is closed and hence

E is a closed set.

We now prove that P−1(y) is open in A,∀y ∈ A. Assume that {xα} ⊆

A\P−1(y) and xα → x̄. Then, tα ∈ T (xα) exists such that we are ensured the

existence of

zα ∈ F (tα, y, xα)∩comp(−intC)ε
1.

Setting L = {xα} ∪ {x̄} we see that T (L) is compact and hence we can assume

that tα → t̄, for some t̄ ∈ T (L). By (ii11), T (.) is closed and then t̄ ∈ T (x̄).

Setting now N = {(tα, y, xα)} ∪ {(t̄, y, x̄)} we see that F (N) is compact and then

we can assume that zα → z̄, for some z̄ ∈ F (N). By the closedness of the map

F (., y, .)∩comp(−intC)ε
1, z̄ ∈ F (t̄, y, x̄)∩comp(−intC)ε

1. Consequently, A\P−1(y)

is closed, i.e. P−1(y) is open in A.
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We define multifunction Q : A → 2A by

Q(x) =

{
K(x) ∩ P (x) if x ∈ E,

A ∩K(x) if x ∈ A\E.

Then, ∀x ∈ A, Q(x) is convex. We have, for y ∈ A,

Q−1(y) = {x ∈ E | x ∈ K−1(y) ∩ P−1(y)} ∪ {x ∈ A\E | x ∈ K−1(y)}

= K−1(y) ∩ [P−1(y) ∪ (A\E)].

Therefore,

A\Q−1(y) = [A\K−1(y)] ∪ [(A\P−1(y)) ∩ E].

Since K−1(y) and P−1(y) are open in A, this implies the openness of Q−1(y) in A,

for all y ∈ A. From (i11), x 6∈ P (x) and then x 6∈ Q(x), for all x ∈ A. Applying The-

orem 1.1 to multifunction Q, one gets x̂ ∈ A such that Q(x̂) = ∅. Since A∩K(x̂) 6=

∅, x̂ ∈ E and K(x̂) ∩ P (x̂) = ∅. Thus, x̂ ∈ A∩clK(x̂) and , ∀y ∈ K(x̂), y 6∈

P (x̂), i.e., F (t̂, y, x̂)∩comp(−intC)ε
1 6= ∅ and x̂ is an ε-solution of type 1 of

(QEP1). �

Remark 2.1

(a) If the set C in problem (QEP1) depends on x ∈ A, i.e. C : A → 2Y is a

multifunction, then it is not hard to check that Theorem 2.1 is still valid with C

replaced by C(x), for each x and with the additional assumption that Y \−intC(.)

is usc.

(b) If, A is not compact but the following coersive assumption is additionally

imposed:
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(iv1
1) there exists a nonempty compact subset D ⊆ A such that for each finite

subset M ⊆ A, there is a compact convex subset LM of A, containing

M , such that ∀x ∈ LM\D, ∃y ∈ LM ∩K(x), ∀t ∈ T (x),

F (t, y, x)∩comp(−intC)ε
1 = ∅;

then Theorem 2.1 is still valid.

(c) The special case of Theorem 2.1 with ε = 0 and the additional assump-

tions mentioned in (a) and (b) is a result stronger than Theorem 4.13 of [16], since

our quasiconvexity assumption is more relaxed than the corresponding assumption

there.

The next example indicates that an ε-solution of type 1 may exist even

though ε-solutions of type 3 do not exist.

Example 2.1. Let X = Y = Z = R, A = [0, 1], K(x) ≡ [0, 1], C = R+, T (x) =

{x} and F (t, y, x) ≡ {−0.1}. Then it is evident that problem (QEP1) does not

have ε-solutions of type 3 for ε = 0.1. However, all assumptions of Theorem 2.1

are fulfilled and hence ε-solutions of type 1 exist.

Using similar techniques we can prove the following sufficient conditions for

the existence of the other two types of solutions of problem (QEP1).

Theorem 2.2. For problem (QEP1) assume (iii11) as in Theorem 2.1 and assume

further

(i21) for each x ∈ A, F (., ., x) is comp(−intC)ε
2-quasiconvex relative to T (x)
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of type 2 and F (t, x, x)∩comp(−intC)ε
2 6= ∅ for some t ∈ T (x);

(ii21) for each y ∈ A, the set {x ∈ A | ∃t ∈ T (x), F (t, y, x)∩comp(−intC)ε
2 6=

∅} is closed.

Then, ε-solutions of type 2 exist for (QEP1).

Theorem 2.3. For problem (QEP1) assume (iii11) as in Theorem 2.1 and replace

the other assumptions by

(i31) for each x ∈ A, F (., ., x) is comp(−intC)ε
3-quasiconvex relative to T (x)

of type 2 and F (t, x, x)∩comp(−intC)ε
3 6= ∅ for some t ∈ T (x);

(ii31) for each y ∈ A, the set {x ∈ A | ∃t ∈ T (x), F (t, y, x)∩comp(−intC)ε
3 6=

∅} is closed.

Then, problem (QEP1) has ε-solutions of type 3.

Now we pass to problem (QEP3) before the other two problems, since it is

closer to (QEP1).

Theorem 2.4. For problem (QEP3) assume that

(i13) for each x ∈ A, F (., ., x) is comp(−intC)ε
1-quasiconvex relative to T (x)

of type 1 and F (t, x, x) ⊆comp(−intC)ε
1 for some t ∈ T (x);

(ii13) for each y ∈ A, F (., y, .) is lsc; T (.) is usc and T (H) is compact if H ⊆ A

is compact;

(iii13) clK(.) is usc; for each x ∈ A, A∩K(x) 6= ∅ and K(x) is convex; for each

y ∈ A, K−1(y) is open in A.
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Then, there exist ε-solutions of type 1 of problem (QEP3).

Proof. For x ∈ A set

P (x) = { z ∈ A | ∀t ∈ T (x), F (t, z, x) 6⊆comp(−intC)ε
1 = ∅},

E = {z ∈ A | z ∈ clK(z)}.

By (i13) and (iii13), P (x) is convex for each x ∈ A and E is closed. We claim that

P−1(y) is open in A,∀y ∈ A. Indeed, if a net {xα} ⊆ My := A\P−1(y) with

xα → x̄. Then, by the definition of P , there is tα ∈ T (xα) such that

F (tα, y, xα) ⊆comp(−intC)ε
1. (2)

Let L = {xα} ∪ {x̄}. By the compactness of T (L) we can assume that tα → t̄ for

some t̄ ∈ T (L). By (ii13), t̄ ∈ T (x̄). As F (., y, .) is lsc, for any z̄ ∈ F (t̄, y, x̄), there

is zα ∈ F (tα, y, xα) such that zα → z̄. By (2) and the closedness of comp(−intC)ε
1,

z̄ ∈ comp(−intC)ε
1. Hence

F (t̄, y, x̄) ⊆comp(−intC)ε
1,

i.e. x̄ ∈ My. So My is closed and P−1(y) is open in A.

Defining now multifunction Q : A → 2A as in the proof of Theorem 2.1 we

also see that Q(x) is convex for each x ∈ A, that Q−1(y) is open in A for each

y ∈ A and that x 6∈ Q(x), for each x ∈ A. Theorem 1.1 implies that there exists

x̂ ∈ A with Q(x̂) = ∅. Since A ∩ K(x̂) 6= ∅ by (iii13), one sees that x̂ ∈ E and

K(x̂) ∩ P (x̂) = ∅. Hence, x̂ ∈ A∩clK(x̂) and y 6∈ P (x̂), for each y ∈ K(x̂). The

later means that, for some t̂ ∈ T (x̂),

F (t̂, y, x̂) ⊆comp(−intC)ε
1,
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i.e. x̂ is an ε-solution of type 1 of (QEP3). �

For the other two types of solutions of this problem we have the following

sufficient conditions for the existence. The proof are analogous to that of Theorem

2.4.

Theorem 2.5. For problem (QEP3) assume (iii13) as in Theorem 2.4 and replace

(i13), (ii13) by the following, respectively,

(i23) for each x ∈ A, F (., ., x) is comp(−intC)ε
2-quasiconvex relative to T (x)

of type 1 and F (t, x, x) ⊆comp(−intC)ε
2 for some t ∈ T (x);

(ii23) for each y ∈ A, the set {x ∈ A | ∃t ∈ T (x), F (t, y, x) ⊆comp(−intC)ε
2}

is closed.

Then, ε-solutions of type 2 exist for (QEP3).

Theorem 2.6. ε-solutions of type 3 for problem (QEP3) exist under assumption

(iii13) as in Theorem 2.4 and under the following assumptions, replacing (i13), (ii13),

(i33) for each x ∈ A, F (., ., x) is comp(−intC)ε
3-quasiconvex relative to T (x)

of type 1 and F (t, x, x) ⊆comp(−intC)ε
3 for some t ∈ T (x);

(ii33) for each y ∈ A, the set {x ∈ A | ∃t ∈ T (x), F (t, y, x) ⊆comp(−intC)ε
3}

is closed.

Passing to problems (QEP2) and (QEP4), which are close to each other,

we investigate in details another solution type, namely ε-solutions of type 3 for
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problem (QEP4).

Theorem 2.7. For problem (QEP4) assume that

(i34) for each (t, x) ∈ B ×A, F (t, ., x) is comp(−intC)ε
3-quasiconvex of type 1

and F (t, x, x) ⊆ comp(−intC)ε
3;

(ii34) F is usc; the F -image of a compact set is compact; T has nonempty

convex values and T−1(z) is open in A for all z ∈ B; for each y ∈ A, the

set {(t, x) ∈ B × A | F (t, y, x) ⊆comp(−intC)ε
3} is closed ;

(iii34) clK(.) is usc; ∀x ∈ A, A ∩K(x) 6= ∅ and K(x) is nonempty convex and

K(M) is compact if M ⊆ A is compact; ∀y ∈ A, K−1(y) is open in A.

Then, there exist ε-solutions of type 3 of problem (QEP4).

Proof. For t, x ∈ B × A set

P (t, x) = {z ∈ A | F (t, z, x) 6⊆comp(−intC)ε
3},

E = {(t, x) ∈ B × A | K(x) ∩ P (t, x) 6= ∅},

S(t, x) =

{
K(x) ∩ P (t, x) if (t, x) ∈ E,

A ∩K(x) if (t, x) ∈ (B × A)\E,

Q(t, x) = (T (x), S(t, x)).

By (i34), P (t, x) is convex and so is Q(t, x) for all (t, x) ∈ B ×A. We claim that E

is closed. Indeed,

E = {(t, x) ∈ B × A | ∃y ∈ K(x), F (t, y, x) 6⊆comp(−intC)ε
3}.

Assume that (tα, xα) ∈ E and (tα, xα) → (t∗, x∗). Then, there is yα ∈ K(xα) such

that we have a point

14



zα ∈ F (tα, yα, xα) ∩ (Y \comp(−intC)ε
3).

Set L = {xα}∪{x∗}. Then T (L) is compact and we can assume that yα → y∗. By

the closedness of K(.), y∗ ∈ K(x∗). Set N = {(tα, yα, xα)} ∪ {(t∗, y∗, x∗)}. Then

F (N) ∩ (Y \comp(−intC)ε
3) is compact, and hence we can assume that zα → z∗.

Since F (., ., .) ∩ (Y \comp(−intC)ε
3) is a closed multifunction,

z∗ ∈ F (t∗, y∗, x∗) ∩ (Y \comp(−intC)ε
3),

which indicates that (t∗, x∗) ∈ E and hence E is closed.

Now we have, for y ∈ A and z ∈ B,

S−1(y) = {(t, x) ∈ E | x ∈ K−1(y), (t, x) ∈ P−1(y)}

∪{(t, x) ∈ (B × A)\E | x ∈ K−1(y)}

= [E ∩ P−1(y) ∩ (B ×K−1(y))] ∪ [((B × A)\E) ∩ (B ×K−1(y))]

= [((B × A)\E) ∪ P−1(y)] ∩ [B ×K−1(y)],

Q−1(z, y) = {(t, x) ∈ B × A | x ∈ T−1(z), (t, x) ∈ S−1(y)}

= S−1(y) ∩ (B × T−1(z)).

Therefore,

(B × A)\Q−1(z, y) = [(B × A)\S−1(y)] ∪ [(B × A)\(B × T−1(z))]

= [(B × A)\S−1(y)] ∪ [B × (A\T−1(z))]

= [E ∩ ((B × A)\P−1(y))] ∪ [B × (A\K−1(y))]

∪[B × (A\T−1(z))]. (3)

We see also that
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(B × A)\P−1(y) = {(t, x) ∈ B × A | F (t, y, x) ⊆comp(−intC)ε
3}

is closed, by (ii34). This together with the openness in A of K−1(y) and T−1(z)

and with (3) show that Q−1(z, y) is open in B × A,∀(z, y) ∈ B × A. By virtue of

Theorem 1.1, there exists a fixed point (t̄, x̄), i.e. (t̄, x̄) ∈ Q(t̄, x̄). Suppose that

(t̄, x̄) ∈ E. Then x̄ ∈ P (t̄, x̄) contradicting (i34). Thus (t̄, x̄) 6∈ E. Consequently, by

the definitions of E, S and Q,

x̄ ∈ K(x̄), t̄ ∈ K(x̄), K(x̄) ∩ P (t̄, x̄) = ∅.

Therefore, for all y ∈ K(x̄), we have y 6∈ P (t̄, x̄), i.e.

F (t̄, y, x̄) ⊆comp(−intC)ε
3,

which means that x̄ is an ε-solution of type 3 of (QEP4). �

We first state without proofs similar results for the other two types of ε-

solutions of problem (QEP4).

Theorem 2.8. For problem (QEP4) assume that

(i14) for each (t, x) ∈ B ×A, F (t, ., x) is comp(−intC)ε
1-quasiconvex of type 1

and F (t, x, x) ⊆ comp(−intC)ε
1;

(ii14) ∀y ∈ A, F (., y, .) is lsc and the set {(t, x) ∈ B×A | ∃y ∈ K(x), F (t, y, x) 6⊆

comp(−intC)ε
1} is closed; T has nonempty convex values and T−1(z) is

open in A for all z ∈ B;

(iii14) ∀x ∈ A, A∩K(x) 6= ∅ and K(x) is nonempty convex; ∀y ∈ A, K−1(y) is

open in A.
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Then, there exist ε-solutions of type 1 of problem (QEP4).

Remark 2.2. For the special case ε = 0, i.e. we are concerned with the (exact)

solution of problem (QEP4). [7,18] contain results different from Theorem 2.8. The

following example gives a case where Theorem 2.8 is applicable but the mentioned

results are not.

Example 2.2. Let X = Y = Z = R, A = B = [0, 1], C = R+, T (x) = [0, x] and

F (t, y, x) ≡ [0.5, 1] and

K(x) =

{
0 if x = 0 or x = 1,

[0, x) if 0 < x < 1.

Then all assumptions of Theorem 2.8 are satisfied for ε = 0 and hence solutions

of problem (QEP4) exist. However, since K(.) is not continuous, Theorem 3.1 of

[18] and Theorem 1 of [7] cannot be employed.

Theorem 2.9. For problem (QEP4) assume (iii14) of Theorem 2.8 and replace (i14)

and (ii14) by the following, respectively,

(i24) for each (t, x) ∈ B × A, F (., ., x) is comp(−intC)ε
2-quasiconvex of type 1

and F (t, x, x) ⊆ comp(−intC)ε
2;

(ii24) T has nonempty convex values and T−1(z) is open in A for all z ∈ B;

{(t, x) ∈ B × A | ∃y ∈ K(x), F (t, y, x) 6⊆comp(−intC)ε
2} and {(t, x)

∈ B × A | F (t, y, x) ⊆comp(−intC)ε
2} are closed, ∀y ∈ A.
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Then, there exist ε-solutions of type 2 of problem (QEP4).

Passing finally to problem (QEP2), we formulate the following three existence

results, which can be proved by similar techniques as that for Theorem 2.7.

Theorem 2.10. Consider problem (QEP2). Assume (iii14) of Theorem 2.8 and

assume further that

(i12) for each (t, x) ∈ B ×A, F (t, ., x) is comp(−intC)ε
1-quasiconvex of type 2

and F (t, x, x)∩ comp(−intC)ε
1 6= ∅;

(ii12) T has nonempty convex values and T−1(z) is open in A for all z ∈ B;

∀y ∈ A, {(t, x) ∈ B × A | F (t, y, x)∩comp(−intC)ε
1 6= ∅} and {(t, x) ∈

B × A | ∃y ∈ K(x), F (t, y, x)∩comp(−intC)ε
1 = ∅} are closed.

Then, problem (QEP2) has ε-solutions of type 1.

Theorem 2.11. For problem (QEP2) assume (iii14) of Theorem 2.8 and replace

the other assumptions there by

(i22) for each (t, x) ∈ B ×A, F (t, ., x) is comp(−intC)ε
2-quasiconvex of type 2

and F (t, x, x)∩ comp(−intC)ε
2 6= ∅;

(ii22) T has nonempty convex values and T−1(z) is open in A for all z ∈ B;

∀y ∈ A, {(t, x) ∈ B × A | F (t, y, x)∩comp(−intC)ε
2 6= ∅} and {(t, x) ∈

B × A | ∃y ∈ K(x), F (t, y, x)∩comp(−intC)ε
2 = ∅} are closed.

Then, problem (QEP2) has ε-solutions of type 2.

Theorem 2.12. For problem (QEP2) assume that

18



(i32) for each (t, x) ∈ B ×A, F (t, ., x) is comp(−intC)ε
3-quasiconvex of type 2

and F (t, x, x)∩ comp(−intC)ε
3 6= ∅;

(ii32) F is lsc; T has nonempty convex values and T−1(z) is open in A for all

z ∈ B; ∀y ∈ A, {(t, x) ∈ B × A | F (t, y, x)∩comp(−intC)ε
3 6= ∅} is

closed;

(iii32) K is usc; ∀x ∈ A, A ∩K(x) 6= ∅ and K(x) is compact and convex;

∀y ∈ A, K−1(y) is open in A.

Then, there exist ε-solutions of type 3 of problem (QEP2).

3. Applications

It is well-known that quasiequilibrium problems include as special cases many

optimization-related problems (see Section 1). Therefore, our results in Section 2

have direct consequences for these special cases. Here we provide as examples only

two such consequences.

3.1. Approximate quasivariational inequalities

Let X, Y, A,B and K be as in Section 1. Let C be a closed cone with nonempty

interior. Let Z = L(X,Y ), the space of the bounded linear mappings from X

into Y . Let g : X → X be a continuous mapping. The following quasivariational

inequality has been considered by many authors, see e.g. [10,12]:

(QVI) Find x̄ ∈ A∩clK(x̄) such that, ∀y ∈ K(x̄),
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(T (x̄), y − g(x̄)) ∩ (Y \−intC) 6= ∅,

where (t, y) stands for the value of linear mapping t ∈ L(X, Y ) at y ∈ X.

Now we investigate the following approximate quasivariational inequality:

(QVIε) Find x̄ ∈ A∩clK(x̄) such that, ∀y ∈ K(x̄),

(T (x̄), y − g(x̄))∩ comp(−intC)ε
1 6= ∅.

Applying Theorem 2.1 with F (t, y, x) = (t, y−g(x)) one obtains the following

new existence result.

Corollary 3.1. For problem (QVIε) assume that T is usc, has nonempty compact

values and comp(−intC)ε
1 is convex. Then, problem (QVIε) has solutions.

3.2. Approximate quasioptimization problems

Let X, Y, A,B,K and C be as in Subsection 3.1. Let G : A → B be a mapping.

The following quasioptimization problem has been studied, e.g. in [9,19]:

(QOP) Find x̄ ∈K(x̄) such that, ∀y ∈ K(x̄),

G(y)−G(x̄) ∈ Y \−intC.

(Then x̄ is called a weakly efficient solution.)

Let us consider the following approximate quasioptimization problem

(QOPε) Find x̄ ∈K(x̄) such that, ∀y ∈ K(x̄),

G(y)−G(x̄) ∈ comp(−intC)ε
3.

Corollary 3.2. For (QOPε) assume that

(i) ∀b ∈ B, G(.)− b is comp(−intC)ε
3-quasiconvex of type 1;
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(ii) G is continuous; ∀y ∈ A, {x ∈ A | G(y)−G(x) ∈ comp(−intC)ε
3} is

closed;

(iii) assume (iii34) of Theorem 2.7.

Then, problem (QOPε) has solutions.

Proof. The corollary is obtained from Theorem 2.7 with

T (x) ≡ B,

F (t, y, x) = G(y)−G(x). �
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