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Abstract. We establish su±cient existence conditions for general quasivaria-

tional inclusion problems, which contain most of variational inclusion problems

and quasiequilibrium problems considered in the literature. These conditions are

shown to extend recent existing results and sharpen even results for particular

cases.
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1. Introduction

Ref. 1 introduced the equilibrium problem as a generalization of variational

inequalities and optimization problems. This problem setting proved to be rather

general, including also many other optimization-related problems such as ¯xed-

point problems, coincidence-point problems, complementarity problems, the Nash

equilibrium problems, minimax problems, tra±c network problems. On the other

hand, this setting proved to be suitable for applying analytic tools in consideration.

For the last decade there have been a number of generalizations of the equilibrium-

problem formulation. A turning point was the introduction of the quasiequilibrium

problem, where the constraint set depended also on the state variable. The staring

point for this kind of constraint sets was Ref. 2, where the authors investigated

random impulse control problems. Further generalizations were the variational

inclusion problem and quasivariational inclusion problem, see e.g. Refs. 3 - 10. It

should be noted that the term "inclusion" appeared in several recent papers also

in another meaning. In Refs. 11, 12 "variational inclusion" means a multivalued

variational inequality. Variational inclusion problems studied in Refs. 13 - 15 are

problems of ¯nding the zeroes of maximal monotone mappings.

For the above-mentioned problems we can observe that the solution existence

was always the ¯rst topic and attracted the attention of most mathematicians. Ex-
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istence results for various types of equilibrium problems were the contributions of

Refs. 16 - 31 among others. For the quasivariational inclusion problems, existence

conditions were developed in Refs. 3 - 8.

The aim of the present paper is to establish new existence results for the

quasivariational inclusion problems studied in Refs. 3, 32. This problem setting

proved to include most of quasivariational inclusion problems and quasiequilibrium

problems in the literature as particular cases. We try to get su±cient conditions

for the solution existence so that when applied to particular cases they are stronger

than some recent results. About the main tools for proving existence results in

quasivariational inclusion problems and their special cases we observe the KKM-

Fan theorem in the ¯rst place, see e.g. Refs. 3, 24, 25, 27, 33, 34. Several

¯xed-point theorems such as that of Kakutani, Tarafdar, Park, Kim - Tan are also

important and convenient tools, see e.g Refs. 6, 8, 16, 26, 34 - 36. Maximal-

element theorems are used in e.g. Refs. 7, 29, 37. Maximax theorems may also

be applied , see e.g. Ref. 35 for applying Kneser's theorem (Ref. 38). Existence

results for problems of other kinds may be applied also to get some corresponding

results, e.g. in Ref. 39 an existence theorem in game theory is applied to prove

existence conditions for quasivariational inequalities. Each tool has advantages in

some appropriate situations. In this paper we make use of a ¯xed-point theorem

in Ref. 40.
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The layout of the paper is as follows. In the rest of this section we state our

problems under consideration and supply some preliminaries. Section 2 is devoted

to the main existence results. In Section 3 we discuss consequences of the main

results in some particular cases as examples for others to explain their advantages

and possibility of applications.

Our problem setting is as follows. In the sequel, if not stated otherwise, let

X, Y and Z be real topological vector spaces; let X be Hausdor® and A;B μ X be

nonempty closed convex subsets. Let C : A ! 2Y , S1 : A ! 2B, S2 : A ! 2Band

T : A £ B ! 2Z be multifunctions such that C(x) is a closed convex cone with

nonempty interior and C(x)6= Y , for each x 2 A. Let F : T (A£B)£B£A! 2Y

and G : T (A £ B) £ A ! 2Y be multifunctions. We consider the following four

kinds of quasivariational inclusion problems:

(IP1) Find ¹x 2 S1(¹x), such that, 8y 2 S2(¹x), 8¹t 2 T (¹x; y),

F (¹t; y; ¹x) μ G(¹t; ¹x);

(IP2) Find ¹x 2 S1(¹x), such that, 8y 2 S2(¹x), 9¹t 2 T (¹x; y),

F (¹t; y; ¹x) μ G(¹t; ¹x);

(IP3) Find ¹x 2 S1(¹x), such that, 8y 2 S2(¹x), 8¹t 2 T (¹x; y),

F (¹t; y; ¹x) \G(¹t; ¹x)6= ;;

(IP4) Find ¹x 2 S1(¹x), such that, 8y 2 S2(¹x), 9¹t 2 T (¹x; y),

F (¹t; y; ¹x) \G(¹t; ¹x)6= ;:
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To ensure the generality of the problem setting we discuss several particular

cases.

(a) Let A = B, C(x) ´ C, G(t; x) = F (t; x; x) + C, where C μ Y is a

closed convex cone. Then (IP1) collapses to the quasivariational inclusion problem

studied in Ref. 4:

(IP) Find ¹x 2 S1(¹x) such that, 8y 2 S2(¹x), 8¹t 2 T (¹x; y),

F (¹t; y; ¹x) μ F (¹t; ¹x; ¹x) + C:

If T has the special form (x; y)7! T (x; x), (IP) is a quasivariational inclusion

problem of the Minty type (MP). While if T is of the form (x; y)7! T (y; y), (IP)

is a quasivariational inclusion problem of the Stampacchia type. For instance,

if Y = R;C = R+ and G(t; x) ´ R+, then (IP) becomes the quasiequilibrium

problem of the Minty type dealt with in Ref. 19.

(b) With the following special forms of the involved multifunction: A = B,

S1(x) = S2(x) := S(x) and C(x) ´ C, G(t; x) = F (t; x; x) + C and T is given by

(x; y)7! T (x; x) := T (x), (IP1) becomes the upper variational inclusion problem

investigated in Ref. 5:

(UIP) Find ¹x 2 S(¹x) such that, 8y 2 S(¹x), 8¹t 2 T (¹x),

F (¹t; y; ¹x) μ F (¹t; ¹x; ¹x) + C:

(c) Consider the following general quasiequilibrium problem studied by many
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authors:

(QEP) Find ¹x 2 S(¹x) such that, 8y 2 S(¹x), 8¹t 2 T (¹x),

F (¹t; y; ¹x) μ C.

It is clear that (IP) and (UIP) do not include (QEP), without severe assumptions

on F . However, our (IP1) does contain it (by choosing special forms of involved

multifunctions as in (b), except G which now is G(t; x) ´ C).

(d) If A = B;S1(x) = S2(x) := S(x); T is of the form (x; y) 7! T (x; x) :=

T (x) and G(t; x) = C(x), then (IP1) and (IP4) coincide with the following gener-

alized quasiequilibrium problems, respectively, considered in Ref. 28:

(EP1) Find ¹x 2 A, such that, ¹x 2 S(¹x) and, 8y 2 S(¹x), 8¹t 2 T (¹x),

F (¹t; y; ¹x) μ C(¹x);

(EP2) Find ¹x 2 A, such that, ¹x 2 S(¹x) and, 8y 2 S(¹x), 8¹t 2 T (¹x),

F (¹t; y; ¹x) \ C(¹x)6= ;:

If we replace the above form of G by G(t; x) = Y n¡intC(x), then (IP1) and (IP4)

collapse to the other equilibrium problems in Ref. 28:

(EP3) Find ¹x 2 A, such that, ¹x 2 S(¹x) and, 8y 2 S(¹x), 8¹t 2 T (¹x),

F (¹t; y; ¹x) μ Y n¡intC(¹x);

(EP4) Find ¹x 2 A, such that, ¹x 2 S(¹x) and, 8y 2 S(¹x), 8¹t 2 T (¹x),

F (¹t; y; ¹x) \ Y n¡intC(¹x)6= ;:

For the more special case, where A = B ´ S1(x) = S2(x) := S(x), we have
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the corresponding four problems (EP1)-(EP4) investigated in Ref. 18.

(e) If A = B = S1(x) = S2(x), T has the form (x; y) 7! T (x; x) := T (x),

Z = L(X; Y ) (the space of the linear continuous mappings of X into Y equipped

with either the topology of pointwise convergence or that of bounded convergence),

F is single-valued and G(t; x) = Y n¡intC(x), then (IP2) and (IP4) become the

implicit vector variational inequality investigated in Refs. 35, 36:

(IVI) Find ¹x 2 A such that, 8y 2 A, 9¹t 2 T (¹x),

F (¹t; y; ¹x)62 ¡int C(¹x).

(f) The following quasivariational inequality commonly interested in the lit-

erature, see e.g. Ref. 30:

(QVI) Find ¹x 2 S(¹x) such that, 8y 2 S(¹x), 9¹t 2 T (¹x),

(¹t; y ¡ ¹x)62 ¡intC(¹x).

where (t; x) denotes the image of t 2 L(X;Y ) at x, is clear a particular case of our

problems (IP2) and (IP4).

We recall semicontinuity properties of a multifunction I : X ! 2Y , where

X and Y are topological spaces. I is said to be upper semicontinuous (usc) at

x0 2 X if, for each open subset U containing I(x0), there is a neighborhood N

of x0 such that I(N) μ U . I : X ! 2Y is called lower semicontinuous (lsc) at
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x0 2 X if, for each open subset U with I(x0) \ U 6= ;, there is a neighborhood

N of x0 such that, 8x 2 N; I(x) \ U 6= ;. I : X ! 2Y is termed closed at x0 if,

8x® ! x0;8y® 2 I(x®): y® ! y0, y0 2 I(x0). If I closed at 8x 2 A μ X we say

that I is closed in A. In particular, if A = domI := fx 2 X : I(x)6= ;g we say

simply that I is closed. A similar saying is adopted for the other properties of I.

Our main tool for proving the existence conditions in this paper is the

following ¯xed-point theorem.

Theorem 1.1 (Ref. 40). Let X be a Hausdor® topological vector space,

A μ X be nonempty convex and D μ A be a nonempty compact subset. Let

S : A! 2A and L : A! 2A be multifunctions. Assume that

(a) 8x 2 A;L(x) is convex and S(x) μ L(x);

(b) 8x 2 D;S(x)6= ;;

(c) 8y 2 A : S¡1(y) is open in A;

(d) for each ¯nite subset N of A and, there is a compact, convex subset LN

such that, N μ LN μ A and, 8x 2 LNnD, S(x) \ LN 6= ;.

Then L has ¯xed points.

Remark 1.1. The coercivity condition (d) in Theorem 1.1 can be replaced

by the following coercivity assumption:

(d') There is a nonempty compact convex subset K μ A such that, 8x 2

9



AnD; 9y 2 K;x 2 S¡1(y).

Indeed, assume (d') and let N μ A be ¯nite. Take LN = co(K [ N), then

8x 2 LNnD μ AnD;9y 2 K μ LN with x 2 S¡1(y). Hence y 2 S(x) \ K μ

S(x) \ LN , i.e. (d) is satis¯ed.

2. The main results

Theorem 2.1. For (IP1) assume the existence of a multifunction H : T (A£

B)£B £A! 2Y satisfying the following conditions

(i) if, 8t 2 T (x; y); H(t; y; x) μ G(t; x), then, 8t 2 T (x; y); F (t; y; x) μ

G(t; x);

(ii) 8x 2 A, the set fy 2 A j 9t 2 T (x; y); H(t; y; x)6μ G(t; x)g is convex

and, 8t 2 T (x; x); H(t; x; x) μ G(t; x);

(iii) 8y 2 A, the set fx 2 A j 8t 2 T (x; y); H(t; y; x) μ G(t; x)g is closed;

(iv) S1(:) is closed and, 8x; y 2 A, co(S2(x)) μ S1(x), S2(x) \A6= ; and

S¡12 (y) is open in A;

(v) there is a nonempty, compact subset D μ A such that, for each ¯nite

subset N of A, a compact convex subset LN with N μ LN μ A exists

satisfying, 8x 2 LNnD, S2(x) \ LN 6= ; and, for x 2 S1(x) \ (LNnD),

there is y 2 S2(x) \ LN with H(t; y; x)6μ G(t; x) for some t 2 T (x; y).
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Then problem (IP1) has solutions.

Proof. For x 2 A and i = 1; 2, set

E = fx 2 A j x 2 S1(x)g,

P1(x) = fy 2 A j 9t 2 T (x; y); F (t; y; x)6μ G(t; x)g;

P2(x) = fy 2 A j 9t 2 T (x; y); H(t; y; x)6μ G(t; x)g;

©i(x) =

(
S2(x) \ Pi(x); ifx 2 E;
A \ S2(x); ifx 2 AnE;

Q(x) =

(
(coS2(x)) \ P2(x); ifx 2 E;
A \ coS2(x); ifx 2 AnE:

We will apply Theorem 1.1 with L = Q and S = ©2, showing that Q has

no ¯xed point and assumptions (a), (c) and (d) of this theorem are satis¯ed and

hence assumption (b) must be violated. For (a) we see from (i) of Theorem 2.1

that, 8x 2 A;P1(x) μ P2(x), whence ©1(x) μ ©2(x) μ Q(x) by the de¯nition of

Q. Moreover, Q(x) is convex by (ii).

For (c) we have, 8y 2 A,

©¡12 (y) = [E \ S¡12 (y) \ P¡12 (y)] [ [(AnE) \ S¡12 (y)]

= [(AnE) [ P¡12 (y)] \ S¡12 (y):

Consequently,

An©¡12 (y) = [E \ (AnP¡12 (y))] [ (AnS¡12 (y)): (1)

It su±ces to verify that this set is closed. By the closedness of S1(:) assumed in
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(iv) it is not hard to see that E is closed. AnS¡12 (y) is closed also by (iv). The rest

term in (1) is

AnP¡12 (y) = fx 2 A j 8t 2 T (x; y); H(t; y; x) μ G(t; x)g,

which is closed by (iii). Thus, An©¡12 (y) is closed.

To see (d) we have D and LN for each N by assumption (v). Let x 2 LNnD

be arbitrary. If x 2 AnE then ©2(x)\LN = A\ S2(x)\LN = S2(x)\LN 6= ; by

(v). If x 2 E, then x 2 S1(x) \ (LNnD) and, by (v), there is y 2 S2(x) \ LN such

that y 2 P2(x). Hence y 2 ©2(x) and ©2(x) \ LN 6= ;.

Finally, suppose that Q has a ¯xed point x0 2 A. If x0 2 E, then x0 2

P2(x0), i.e. 9t 2 T (x0; x0); H(t; x0; x0)6μ G(t; x0), contradicting (ii). If x0 2 AnE,

then x0 2 co(S2(x0)) μ S1(x0), i.e. x0 2 E, a contradiction.

The above argument implies that (b) of Theorem 1.1 must be violated,

i.e. there is x0 2 D μ A such that ©2(x0) = ; and hence ©1(x0) = ;. If

x0 2 AnE then A \ S2(x0) = ©1(x0) = ;, contradicting (iv). So x0 2 E

and ; = ©1(x0) = S2(x0) \ P1(x0). Consequently, 8y 2 S2(x0); y 62 P1(x0),

i.e., 8t 2 T (x0; y),F (t; y; x0) μ G(t; x0), which means that x0 is a solution of

(IP1). ¤

Remark 2.1.

(i) (v) is a coercivity condition. If A is compact, (v) is satis¯ed with D = A.

So we can omit (v). Moreover, due to Remark 1.1, assumption (v) can be replaced
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by

(v') there are nonempty compact convex subset K μ A and nonempty com-

pact subset D μ A such that, 8x 2 AnD, S2(x)\K6= ; and, if x 2 S1(x)\(AnD),

9y 2 S2(x) \K, 9t 2 T (x; y), H(t; y; x)6μ G(t; x).

(ii) If, 8y 2 A; T (:; y) and H(:; y; :) are lsc and G is closed, then the following

set is closed:

M1 = fx 2 A j 8t 2 T (x; y); H(t; y; x) μ G(t; x)g.

Indeed, let x® 2 M1 and x® ! x0. By the assumed lower semicontinuity,

8t0 2 T (x0; y);8w0 2 H(t0; y; x0);9t® 2 T (x®; y) : t® ! t0;9w® 2 H(t®; y; x®) μ

G(t®; x®) : w® ! w0. Since G is closed, w0 2 G(t0; x0). Hence, 8 t0 2 T (x0; y);

H(t0; y; x0) μ G(t0; x0), i.e. x0 2M1.

(iii) If we replace, in assumptions (ii), (iii) and (v) of Theorem 2.1, multi-

function H by F , then we can omit assumption (i) to get a consequence, called

Theorem 2.1F for our convenience in the later use. This Theorem 2.1F is di®er-

ent from Theorem 3.1 of Ref. 3 for the same problem (IP1) and may be more

applicable in some cases as shown by the following example.

Example 2.1. Let X = Y = Z = R; A = B = (¡1; 1]; S1(x) = S2(x) ´

(¡1; 1]; T (x; y) = fxg; G(t; x) ´ R+ and

F (t; y; x) =

(
y2; if y < 0;

xy; if 0 · y · 1:
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Since A is not compact, Theorem 3.1 of Ref. 3 cannot be applied. For assumptions

of Theorem 2.1F , only the coercivity condition is not clear and needs to be checked.

Take D = [0; 1]. For any ¯nite subset N μ A, choose LN = fx 2 A j 1 ¸ x ¸

minNg. Then for each x 2 LNnD;S2(x) \ LN = LN 6= ; and, for y = 1 2

S2(x) \ LN ; F (t; y; x) = xy 6μ G(t; x) = R+, as x < 0. Now that all assumptions

of Theorem 2.1F are satis¯ed, (IP1) has solutions. (Direct computations give the

solution set being [0,1].)

Moreover, with assumption (v') replacing (as mentioned in Remark 2.1 (i))

the coercivity condition of Theorem 2.1F , by Remark 2.1 (ii) we see that Theorem

2.1F sharpens Theorem 4.2 of Ref. 28, since the semicontinuity assumptions of

Theorem 4.2 are stronger than the corresponding assumptions of Theorem 2.1F .

The following example yields a special case of quasiequilibrium problems where

Theorem 2.1F can be applied but Theorem 4.2 of Ref. 28 cannot.

Example 2.2. Let X = Y = Z = R; A = B = [0; 1]; S1(x) = S2(x) ´

[0; 1]; G(t; x) ´ R+,

T (x; y) =

(
[0; 0:5]; if 0 · x < 0:5;
[0:5; 1]; if 0:5 · x · 1;

F (t; y; x) =

(
[0; 0:5]; if 0 · y < 0:5;
[1; 1:5]; if 0:5 · y · 1:

It clear that, for any y 2 [0; 1]; T (:; y) and F (:; y; :) is not lsc in [0,1]. Consequently,

Theorem 4.2 of Ref. 28 cannot be employed. On the other hand, it is equally
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evident that all assumptions of Theorem 2.1F are ful¯lled. By direct calculations

we see that the solution set of (IP1) is [0,1].

By a similar technique of proof we obtain the following existence conditions

for our problems (IP2) - (IP4).

Theorem 2.2. For (IP2) assume that H : T (A£ B) £ B £ A ! 2Y exists

satisfying (iv) of Theorem 2.1 and the following conditions

(i) if, 9t 2 T (x; y); H(t; y; x) μ G(t; x), then, 9t 2 T (x; y); F (t; y; x) μ

G(t; x);

(ii) 8x 2 A, the set fy 2 A j 8t 2 T (x; y); H(t; y; x)6μ G(t; x)g is convex

and, 9t 2 T (x; x); H(t; x; x) μ G(t; x);

(iii) 8y 2 A, the set fx 2 A j 9t 2 T (x; y); H(t; y; x) μ G(t; x)g is closed;

(v) it is (v) of Theorem 2.1 with "for some t" replaced by "for all t".

Then problem (IP2) is solvable.

Proof. Use similar arguments as that for Theorem 2.1 with the following

new multifunctions P1 and P2:

P1(x) = fy 2 A j 8t 2 T (x; y); F (t; y; x)6μ G(t; x)g;

P2(x) = fy 2 A j 8t 2 T (x; y); H(t; y; x)6μ G(t; x)g. ¤

Remark 2.2.
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(i) Assumption (v) of Theorem 2.2 can be replaced by

(v') it is (v') in Remark 2.1 (i) with "9t 2 T (x; y)" replaced by "8t 2 T (x; y)".

(ii) If, 8y 2 A; T (:; y) is usc and has compact images; H(:; y; :) is lsc and G

is closed, then the following set is closed:

M2 = fx 2 A j 9t 2 T (x; y); H(t; y; x) μ G(t; x)g.

(iii) We have a consequence of Theorem 2.2 called Theorem 2.2F when replac-

ing H by F in assumptions (ii), (iii), (v) and omitting assumption (i) of Theorem

2.2. For the data given in Example 2.1 we consider problem (IP2). Then simi-

larly as reasoning in Example 2.1, Theorem 3.2 of Ref. 3 cannot be employed but

Theorem 2.2F can.

Theorem 2.3. For problem (IP3) assume the existence of H : T (A£B)£

B £A! 2Y satisfying (iv) of Theorem 2.1 and the following conditions

(i) if, 8t 2 T (x; y); H(t; y; x) \G(t; x)6= ;, then, 8t 2 T (x; y); F (t; y; x) \

G(t; x)6= ;;

(ii) 8x 2 A, the set fy 2 A j 9t 2 T (x; y); H(t; y; x) \G(t; x) = ;g is convex

and, 8t 2 T (x; x); H(t; x; x) \G(t; x)6= ;;

(iii) 8y 2 A, the set fx 2 A j 8t 2 T (x; y); H(t; y; x) \G(t; x)6= ;g is closed;

(v) it is (v) of Theorem 2.1 with "H(t; y; x)6μ G(t; x)" replaced by "H(t; y; x)

\G(t; x) = ;".
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Then problem (IP3) has a solution.

Proof. The arguments are similar to that for Theorem 2.1 with the following

new P1 and P2:

P1(x) = fy 2 A j 9t 2 T (x; y); F (t; y; x) \G(t; x) = ;g;

P2(x) = fy 2 A j 9t 2 T (x; y); H(t; y; x)\G(t; x) = ;g. ¤

Remark 2.3.

(i) Assumption (v) of Theorem 2.3 can be replaced by

(v') It is (v') in Remark 2.1 (i) with "H(t; y; x) 6μ G(t; x)" replaced by

"H(t; y; x) \G(t; x) = ;".

(ii) If, 8y 2 A; T (:; y) is lsc; H(:; y; :) is usc and has compact images and G

is closed, then the following set:

M3 = fx 2 A j 8t 2 T (x; y); H(t; y; x) \G(t; x)6= ;g.

is closed.

(iii) We have a consequence of Theorem 2.3 called Theorem 2.3F while replac-

ing H by F in assumptions (ii), (iii), (v) and removing assumption (i) of Theorem

2.3. Similarly as in Remark 2.2, Example 2.1 gives also a case where Theorem 2.3F

can be applied but Theorem 3.3 of Ref. 3 cannot.

Theorem 2.4. For (IP4) assume that H : T (A£ B) £ B £ A ! 2Y exists

satisfying (iv) of Theorem 2.1. Assume further assumptions (i), (ii) and (v) of
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Theorem 2.3 with the following changes:

(i) both "8t" are replaced by "9t";

(ii) "9t" and "8t" change the places for each other;

(iii) "8t" is replaced by "9t";

(v) "for some t" is replaced by "for all t".

Then problem (IP4) has solutions.

Proof. Use arguments similar to that for Theorem 2.1 with the following

new multifunctions P1 and P2:

P1(x) = fy 2 A j 8t 2 T (x; y); F (t; y; x) \G(t; x) = ;g;

P2(x) = fy 2 A j 8t 2 T (x; y); H(t; y; x)\G(t; x) = ;g. ¤

Remark 2.4.

(i) Assumption (v') replacing (v) is (v') in Remark 2.3 with "9t" replaced by

"8t";

(ii) If, 8y 2 A; T (:; y) and H(:; y; :) are usc and have compact images and G

is closed, then the following set is closed:

M4 = fx 2 A j 9t 2 T (x; y); H(t; y; x) \G(t; x)6= ;g.

(iii) The corresponding consequence of Theorem 2.4 called Theorem 2.4F is

obtained from Theorem 2.4 when replacing H by F in assumptions (ii), (iii), (v)

and omitting assumption (i). Example 2.1 yields also a case, where Theorem 2.4F

18



can be used to prove the existence of solutions of (IP4) but Theorem 3.4 of Ref. 3

cannot.

3. Particular cases

The main results in Section 2 imply clearly existence conditions for various

particular cases mentioned in Section 1. Here we derive only several consequences

and compare them with recent papers to see advantages of our existence conditions.

We ¯rst discuss equilibrium problems (EP1) and (EP2) encountered in Sec-

tion 1 (d) and studied in Ref. 28.

Corollary 3.1. For problem (EP1) assume the existence of H : T (A)£A£

A! 2Y satisfying the following conditions

(i) if, 8t 2 T (x); H(t; y; x) μ C(x), then, 8t 2 T (x); F (t; y; x) μ C(x);

(ii) 8x 2 A, the set fy 2 A j 9t 2 T (x); H(t; y; x)6μ C(x)g is convex and,

8t 2 T (x); H(t; x; x) μ C(x);

(iii) 8y 2 A, the set fx 2 A j 8t 2 T (x); H(t; y; x) μ C(x)g is closed;

(iv) S(:) is closed and, 8y 2 A, S¡1(y) is open in A;

(v) there is a nonempty compact subset D μ A such that, for each ¯nite

subset N of A, a compact convex subset LN of A exists containing N

and satisfying, 8x 2 LNnD, 9y 2 LN with H(t; y; x)6μ C(x) for some
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t 2 T (x).

Then problem (EP1) is solvable.

Proof. We simply apply Theorem 2.1 with A = B;S1(x) = S2(x); T (x; y) =

T (x) andG(t; x) = C(x). ¤

Corollary 3.2. For problem (EP2) assume assumption (iv) of Corollary 3.1

and that H : T (A)£A£A! 2Y exists satisfying

(i) if, 9t 2 T (x); H(t; y; x)\C(x)6= ;, then, 9t 2 T (x); F (t; y; x)\C(x)6= ;;

(ii) 8x 2 A, the set fy 2 A j 8t 2 T (x); H(t; y; x)\C(x)6= ;g is convex and,

9t 2 T (x); H(t; x; x) μ C(x);

(iii) 8y 2 A, the set fx 2 A j 9t 2 T (x); H(t; y; x) \ C(x)6= ;g is closed;

(v) it is (v) of Corollary 3.1 with "H(t; y; x)6μ C(x) for some t 2 T (x)"

replaced by "H(t; y; x) \ C(x) = ; for all t 2 T (x)".

Then problem (EP2) has solutions.

Remark 3.1. Corollaries 3.1 and 3.2 sharpen Theorems 4.11, 4.12, respec-

tively, of Ref. 18. Corollary 3.1 improves Theorem 4.2 of Ref. 28. The convexity

and semicontinuity assumptions in these theorems are stricter than the correspond-

ing assumptions in our corollaries. That is why these theorems are not applicable
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in the following example while our corollaries are.

Example 3.1. Let X = Y = Z = R; A = [0; 1]; C(x) ´ R+; T (x) = fxg

and F (t; y; x) = f1 ¡ (y ¡ 0:5)2g. Then F is not C(x)¡quasiconvex for x 2 A

as assumed in Ref. 28. (Recall that, see Ref. 31, a multifunction y 7! Q(y; x) is

called C(x)¡quasiconvex if, 8y1; y2 2 A;8¸ 2 [0; 1],

Q(y1; x) μ Q((1¡ ¸)y1 + ¸y2; x) + C(x)

or

Q(y2; x) μ Q((1¡ ¸)y1 + ¸y2; x) + C(x).)

Indeed, choose y1 = 0; y2 = 1 and ¸ = 0:5. Then

F (t; y1; x) = f0:75g 6μ F (t; 0:5y1 + 0:5y2; x) + C(x) ´ [1;+1],

F (t; y2; x) = f0:75g 6μ [1;+1],

i.e. F is not C(x)¡quasiconvex. Hence Theorem 4.2 of Ref. 28 is not appli-

cable. Now all the assumptions of Corollary 3.1 are easily seen to be satis¯ed

with H(t; y; x) = F (t; y; x). (For assumption (ii) note that fy 2 A j 9t 2

T (x); H(t; y; x)6μ C(x)g is empty and then convex.) So by Corollary 3.1, in this

case (EP1) has solutions. Direct computations show that the solution set is [0,1].

Pass now to the equilibrium problem of the Minty type (MP) mentioned in

Section 1 (a) and investigated in Ref. 19.

Corollary 3.3. For problem (MP) assume assumption (iv) of Theorem 2.1
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and that H : T (A£A)£A£ A! 2R exists satisfying

(i) if, 8s 2 T (x; y); H(s; y; x) μ R+, then, 8t 2 T (x; y); F (t; y; x) μ R+;

(ii) 8x 2 A, the set fy 2 A j 9t 2 T (x; y); H(t; y; x)6μ R+g is convex and

H(t; x; x) μ R+ for all t 2 T (x; x);

(iii) 8y 2 A, the set fx 2 A j 8t 2 T (x; y); H(t; y; x) μ R+g is closed;

(v) there is a nonempty compact subset D μ A such that, for each ¯nite

subset N of A, a compact convex subset LN with N μ LN μ A and,

8x 2 LNnD, S2(x) \ LN 6= ; and furthermore, for x 2 S1(x) \ (LNnD),

9y 2 S2(x) \ LN so that H(t; y; x)6μ R+ for some t 2 T (x; y).

Then (MP) has a solution.

Proof. Employ Theorem 2.1 with G(t; x) = R+. ¤

Remark 3.2. When applied to the case whereH(t; y; x) = fsupF (T (x; x); y; x)g,

Corollary 3.3 is stronger than Theorem 4.1 of Ref. 19, since its assumptions are

more relaxed. The example below gives a case where this Theorem 4.1 cannot be

employed but our Corollary 3.3 can be easily.

Example 3.2. Let X = R; A = (¡1; 3]; S1(x) = S2(x) ´ A; T (x; y) ´ R

and

F (t; y; x) =

(
[x¡ y + 1; 6]; if y ¸ 0;

0; if y < 0:
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Then, we have

inf F (T (x; y); y; x) = minf0; x¡ y + 1g,

supF (T (x; x); y; x) =

(
6; if y ¸ 0;
0; if y < 0:

Then, inf F (T (x; y); y; x) < 0 does not imply supF (T (x; x); y; x) < 0. Moreover,

062 F (t; 1; 1). Hence, the assumptions of Theorem 4.1 of Ref. 19 are not satis¯ed.

As opposed to this, the assumptions of Corollary 3.3 are easy to be checked with

D = [0; 3] and

H(t; y; x) =

(
[x¡ y; 6]; if y ¸ 0;

0; if y < 0:

Passing to a particular case where F is single-valued, we apply a result in

Section 2 to the implicit variational inequality (IVI) stated in Section 1 (e) and

studied in Refs. 35, 36.

Corollary 3.4. For problem (IVI) assume that the dual topological spaces

X¤ and Y ¤ of X and Y , respectively, separate points and that H : L(X;Y )£A£

A! 2Y exists such that

(i) if, 9t 2 T (x); H(t; y; x) μ Y n ¡ intC(x), then, 9t 2 T (x); F (t; y; x) 2

Y n ¡ intC(x);

(ii) 8x 2 A, the set fy 2 A j 8t 2 T (x); H(t; y; x)6μ Y n¡ intC(x)g is convex

and, 9t 2 T (x); H(t; x; x) μ Y n ¡ intC(x);
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(iii) 8y 2 A, the set fx 2 A j 9t 2 T (x); H(t; y; x) μ Y n¡ intC(x)g is closed;

(v) there is a nonempty compact subset D μ A such that, for each ¯nite

subset N μ A, there is compact convex subset LN with N μ LN μ A

and, 8x 2 LNnD, 9y 2 LN ; 8t 2 T (x); H(t; y; x)6μ Y n ¡ intC(x).

Then problem (IVI) is solvable.

Proof. One simply employs Theorem 2.2 with A = B;S1(x) = S2(x) = A;

T (x; y) = T (x) and G(t; x) = Y n¡intC(x). ¤

Remark 3.3. Theorem 3.2 of Ref. 35 and Theorem 3.1 of Ref. 36 are

weaker than Corollary 3.4, since the convexity and semicontinuity assumptions

there are stricter than our corresponding assumptions as explained now. Recall

¯rst some notions used in Refs. 35, 36. Let A; T; C and F be as in the formulation

of (IVI). T is said to be generalized upper hemicontinuous (guhc) with respect to

(wrt) F if, 8x; y 2 A; 8® 2 [0; 1], the multifunction ®7! F (T ((1¡®)x+®y); x; y)

is usc at 0+. For t 2 L(X;Y ) and x 2 A;F (t; :; x) is called C(x)¡convex if,

8y; z 2 A;8¸ 2 [0; 1],

F (t; (1¡ ¸)y + ¸z; x) 2 (1¡ ¸)F (t; y; x) + ¸F (t; z; x)¡ C(x).

T is termed generalized C¡pseudomonotone wrt F if, 8x; y 2 A,

[9t 2 T (x); F (t; y; x)62 ¡intC(x)] =) [8t 2 T (y);¡F (t; x; y)62 ¡intC(x)].

Proposition 3.1. Let A; T; C and F be as in the formulation of (IVI). Let
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H(t; y; x) = f¡F (s; y®; x) j s 2 T (y®); ® 2 [0; 1]g, where y® = (1 ¡ ®)x + ®y.

(Then H does not depend on t.)

(a) Assume that

(i) T is guhc with respect to F ;

(ii) for each t 2 L(X;Y ) and x 2 A;F (t; :; x) is C(x)¡convex;

(iii) 8x; y 2 A;8t 2 T (x); F (t; y; y) 2 C(x);

(iv) 8t 2 L(X; Y );8x; y 2 A;8¸ 2 [0; 1],

F (t; y; (1¡ ¸)x+ ¸y) = (1¡ ¸)F (t; y; x).

Then assumption (i) of Corollary 3.4 is satis¯ed.

(b) In addition to the assumptions in (a), assume that T is generalized

C¡pseudomonotone wrt F . Then, assumption (ii) of Corollary 3.4 is ful¯lled.

(c) If Y n¡intC(:) is closed and, 8t 2 L(X;Y ); 8y 2 A;F (t; y; :) is continuous

then assumption (iii) of Corollary 3.4 is satis¯ed.

Proof. Suppose to the contrary that, 9t 2 T (x),

H(t; y; x) μ Y n¡intC(x) (2)

but, 8t 2 T (x); F (t; y; x) 2 ¡intC(x). By (2) and the de¯nition of H one has,

8¸ 2 [0; 1];8s 2 T (y®),

¡F (s; y®; x)62 ¡intC(x). (3)

De¯ne I : [0; 1]! 2Y by

I(®) = fF (t; y; x) j t 2 T (y®)g.
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Due to (2), I(0) μ ¡intC(x). Assumption (i) implies the existence of ®0 2 (0; 1]

such that, 8® 2 [0; ®0); I(®) μ ¡intC(x). Hence, 8® 2 (0; ®0); 8s 2 T (y®),

F (s; y; x) 2 ¡intC(x). (4)

For any ¯xed ® 2 (0; ®0), from (ii) one has, 8s 2 T (y®),

F (s; y®; y®) 2 (1¡ ®)F (s; x; y®) + ®F (s; y; y®)¡ C(x). (5)

Assumptions (iii), (iv) together with (4), (5) imply, 8s 2 T (y®),

¡(1¡ ®)F (s; x; y®) 2 ®F (s; y; y®)¡ F (s; y®; y®)¡ C(x)

μ ®(1¡ ®)F (s; y; x)¡ C(x)¡ C(x)

μ ¡intC(x),

which contradicts (3).

(b) First we prove that, 8x 2 A, the set

M(x) := fy 2 A j 8t 2 T (x); H(t; y; x)6μ Y n ¡ intC(x)g

= fy 2 A j 9® 2 [0; 1];9s 2 T (y®);¡F (t; y®; x) 2 ¡intC(x)g

is convex. For arbitrarily ¯xed y; z 2 M(x) and ¸ 2 [0; 1], we have to show that

y¤ = (1 ¡ ¸)z + ¸y 2 M(x). By the de¯nition of M(x); 9®1; ®2 2 [0; 1];9s1 2

T (y®1); 9s2 2 T (z®2),

¡F (s1; y®1 ; x) 2 ¡intC(x),

¡F (s2; z®2; x) 2 ¡intC(x).

Due to the assumed C¡pseudomonotonicity of T , one has, 8t 2 T (x),

F (t; x; y®1) 2 ¡intC(x),
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F (t; x; z®2) 2 ¡intC(x).

This and assumption (ii) together imply that, 8° 2 [0; 1],

F (t; x; (1¡ °)z®2 + °y®1) 2 (1¡ °)F (t; x; z®2) + °F (t; x; y®1)¡ C(x)

μ ¡intC(x). (6)

Without loss of generality assume that ®1 ¸ ®2. Setting

°0 =
¸®2

®1+¸(®2¡®1) ,

®0 =
®1(1¡®2)+¸(®2¡®1)

®1+¸(®2¡®1) ,

we see that °0; ®0 2 [0; 1]. Set y0 = (1¡ ®0)y¤ + ®0x and substitute °0 into (6) we

obtain, 8t 2 T (x),

F (t; x; y0) 2 ¡intC(x).

By a similar argument as that of part (a), using assumptions (i)-(iv) we see the

existence of ®̂ 2 [0; 1] such that, 8s 2 T (y0®̂),

¡F (s; y0®̂; x) 2 ¡intC(x). (7)

Choosing ¹® = ®̂(1¡ ®0) 2 [0; 1] one gets from (7) that, 8s 2 T (y¤¹®),

¡F (s; y¤¹®; x) 2 ¡intC(x).

(By our convention, y¤¹® = (1¡ ¹®)x+ ¹®y¤.) This means that y¤ 2M(x).

Next we have to check that,

H(t; x; x) μ Y n ¡ intC(x).

This is derived from the fact that, 8s 2 T (x),

¡F (t; x; x)62 ¡intC(x),
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which in turn follows from assumption (iii) and the C¡pseudomonotonicity of T .

(c) Consider arbitrarily ¯xed y 2 A, and x¸ ! x0, where x¸ is in the set

N(y) := fx 2 A j 8t 2 T (y);¡F (t; y; x)62 ¡intC(x)g.

Then, 8¸; 8t 2 T (y),

¡F (t; y; x¸) 2 Y n ¡ intC(x¸).

Since F (t; y; :) is continuous and Y n ¡ intC(:) is closed, we have, 8t 2 T (y),

¡F (t; y; x0) 2 Y n ¡ intC(x0),

i.e. x0 2 N(y) and hence N(y) is closed. Now we consider the set in assumption

(iii)

fM(y) = fx 2 A j 9t 2 T (x); H(t; y; x) μ Y n ¡ intC(x)g
= fx 2 A j 8® 2 [0; 1]; 8s 2 T (y®);¡F (s; y®; x)62 ¡intC(x)g

=
T
®2[0;1]fx 2 A j 8s 2 T (y®);¡F (s; y®; x)62 ¡intC(x)g

:=
T
®2[0;1]N(y®).

fM(y) is closed since, 8® 2 [0; 1], so isN(y®). ¤

Remark 3.4. The assumptions of Proposition 3.1 are (or are slightly weaker

than) those of Theorem 3.1 of Ref. 36. Indeed, note ¯rst that, since each continuous

linear mapping from X into Y with the original topologies is still continuous when

X and Y are equipped with the weak topologies, the space L(X;Y ) is the same

for these two cases. Observe next that if T is guhc with respect to F when Z is

endowed with the original topology, then so is T when Z is equipped with the weak
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topology. Then by Proposition 3.1, Corollary 3.4, with all the topologies in X;Y

and Z are the weak topologies, contains directly Theorem 3.1 of Ref. 36, since its

assumptions are more relaxed.

The following example shows that this containing is proper, since it gives a

case where the assumptions of Corollary 3.4 are satis¯ed but that of Theorem 3.1

of Ref. 36 are not.

Example 3.3. Let X = Y = Z = R; A = [0; 1]; C(x) ´ R+; F (t; y; x) = t

and

T (x) =

(
[0; 0:5]; if x = 1;

[0:5; 1]; if 0 · x < 1:

Then the multifunction ®7! fF (t; y; x) j t 2 T (y®)g is not usc at 0+, since

fF (t; y; x) j t 2 T (y®)g = T (y®)

= T (1¡ ®) =
(
[0; 0:5]; if ® = 1;

[0:5; 1]; if 0 · ® < 1:

This means that an assumption of Theorem 3.1 of Ref. 36 is not satis¯ed. However,

choosing H(t; y; x) = F (t; y; x) it is easy to see that all assumptions of Corollary

3.4 are satis¯ed. Direct computations yield the solution set being [0,1].
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