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Abstract. We propose some notions related to semicontinuity of a mul-
tivalued mapping and provide a clear insight for various semicontinuity - related
definitions. We establish sufficient conditions for the solution set of a general qua-
sivariational inclusion problem to have these semicontinuity - related properties.
Our results are proved to include and improve recent ones in the literature by
corollaries and examples. For applications we discuss in details a traffic network
problem as a sample for employing the main results in practical situations.
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1. Introduction. Stability of a solution or solution set of a parametric
optimization - related problem has been intensively studied, where stability can
be understood as (Fréchet or generalized) differentiability, Lipschitz or Hölder
continuity, continuity and semicontinuity. Of course, differentiability of a solu-
tion is more desirable than its semicontinuity. However, as usual, to obtain a
regularity property of the solutions, one has to impose properties of the same
kind on the data of the problem under consideration. Such properties may be
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too restrictive and are not satisfied for the data in practical situations. Fortu-
nately, in many cases in practice, semicontinuity of the solutions may be sufficient
for the problem to be meaningful. For instance, in a competitive economy, an
equilibrium for the economy in the Walras - Ward model and Arrow - Deubreu -
Mckenzie model exists under the upper semicontinuity of multifunction Y (p) of
the out put vectors and W (p) of the factor prices, with respect to the vector of
good prices p, see e.g. [31]. Note that Y (p) and W (p) are the optimal solution
sets of a pair of linear programming problems, which are dual to each other. We
observe in the literature an increasing number of works devoted to semiconti-
nuity of the solution set of a variational inequality or equilibrium problem, see
[3, 4, 8, 27, 28, 32, 36]. This growing tendency inspires us to go in details to get a
clear insight for semicontinuity of a multivalued mapping. Namely, our first aim
is to propose and investigate some semicontinuity - related notions in connection
with classical semicontinuity definitions. However, our main purpose is to study
these semicontinuity properties of solution sets.

On the other hand, one of the problem classes of optimization - related
problems, which has attracted attentions of mathematicians all over the world
for the last decade is the quasiequilibrium problem and its generalizations. The
equilibrium was introduced in [9] as a generalization of the variational inequal-
ity and optimization problem and proved to contain as particular cases many
other problems such as the complementarity problem, the fixed - point prob-
lem and coincidence - point problem, the traffic network equilibrium and the
Nash equilibrium problems. [7], considering random impulse control problems,
noticed the need of using constraint sets which depend on the state variables.
This led to quasivariational inequalities. The extension of equilibrium problems
to include them is the quasiequilibrium problem. The next step of generaliz-
ing the problems setting is variational and quasivariational inclusion problems,
see [20, 21, 33, 34, 42, 43]. It should be noted here that the term “varia-
tional inclusion” is understood in different ways in several recent papers. In
[2, 15, 17, 23, 24, 29, 39] it means simply general variational inequalities. Varia-
tional inclusion problems in [12, 15, 18, 37, 38, 40, 44, 45] are problems of finding
zeroes of maximal monotone mappings. In this note the terminology is similar to
[20, 21, 33, 34, 42, 43]. The main efforts have been devoted to the solution exis-
tence. To the best of our knowledge there have not been papers in the literature
dealing with stability of variational or quasivariational inclusion problems. This
observation motivates our main aim in the present paper, which is considering
various kinds of semicontinuity of the solution sets to parametric quasivariational
inclusion problems, especially in terms of semicontinuity - related notions pro-
posed in this paper.

The outline of the paper is as follows. In the rest of this section we state the
quasivariational inclusion problem under our consideration and recall notions and
preliminaries needed in the sequel. In Section 2 we introduce some semicontinuity
- related notions and discuss the connections between these notions and classical
ones. Section 3 is devoted to lower semicontinuity properties of the solution set
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of our problem. Upper semicontinuity properties are the goal of the next Section
4. In the final Section 5 we discuss applications of our results in several particular
problems as examples. We choose two problems. The first one is the quasiequilib-
rium problem (QEPrα), which is still rather general and includes many problems
interested recently in the literature, for convenient comparisons. In the second
application we deal with a traffic equilibrium problem, which is rather practical,
to get new results on the semicontinuity of the solution set. The general problem
under our consideration in this paper is stated as follows.

Let Y , Λ, M and N be Hausdorff topological spaces, let X and Z be a
Hausdorff vector topological spaces, let D ⊆ X, K ⊆ Y be nonempty subsets.
Given the following multifunctions:

Si : D × Λ → 2D, i = 1, 2,

T : D ×D ×N → 2K ,

F : K ×D ×D ×M → 2Z ,

G : K ×D ×D ×M → 2Z .

For the sake of simplicity we adopt the following notations. Letters w and s
are used for a weak and strong, respectively, kinds of considered problems. For
subsets A and B under consideration we adopt the notations

(u, v) w A×B means ∀u ∈ A,∃v ∈ B,

(u, v) s A×B means ∀u ∈ A,∀v ∈ B,

α1(A, B) means A ∩B 6= ∅,

α2(A, B) means A ⊆ B,

(u, v) w̄ A×B means ∃u ∈ A,∀v ∈ B and similarly for s̄,

ᾱ1(A, B) means A ∩B = ∅ and similarly for ᾱ2.

Let r ∈ {w, s} and α ∈ {α1, α2}. Our general parametric quasivariational inclu-
sion problem is the following, for (λ, µ, η) ∈ Λ×M ×N ,

(Prα) Find x̄ ∈ S1(x̄, λ) such that, (x, y) r S2(x̄, λ)× T (x, x̄, η),

(1.1) α
(
F (y, x, x̄, µ), G(y, x̄, x̄, µ)

)
.

Note that (Prα) represents four problems. This statement is not explicit but helps
to shorten much the presentation in the sequel. We denote the set of the solutions
of (Prα) corresponding to (λ, µ, η) by Srα(λ, µ, η). The conditions for the solution
sets of these four problems to be nonempty are studied in [20, 21]. To ensure that
this problem setting is general we discuss several special cases.

(a) If G(y, x, x̄, µ) = F (y, x, x̄, µ) + C, where ∅ 6= C ⊆ Y , then (Psα2)
becomes the following quasivariational inclusion of the Minty type studied in
[33, 34]:

(QIP) Find x̄ ∈ S1(x̄, λ) such that, ∀x ∈ S2(x̄, λ), ∀y ∈ T (x, x̄, η),

F (y, x, x̄, µ) ⊆ F (y, x̄, x̄, µ) + C.
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(b) If X = Y,K = D, S2(x, λ) := S(x, λ), S1(x, λ) = clS(x, λ), T (x, x̄, η) =
T (x̄, η) (not depending on x), F (y, x, x̄, µ) = F (y, x, µ) (not depending on x̄) and
G(y, x, x̄, µ) = Z \ −intC, then (Prα) collapses to the following quasiequilibrium
problem considered by many authors:

(QEPrα) Find x̄ ∈ clS(x̄, λ) such that, (y, x̄∗) r S(x̄, λ)× T (x̄, η),

α
(
F (x̄∗, y, µ), Z \ −intC

)
.

(c) If X = Y , Z = R, K = D = X, S1(x, λ) ≡ S2(x, λ) := S(x, λ),
T (x, x̄, η) ≡ X, F (y, x, x̄, µ) = f(x, x̄, µ) and G(y, x, x̄, µ) = [a, b], where f :
X×X×M → R is a function, then all four problems (Prα) becomes the following
lower and upper bound quasiequilibrium problem investigated in [10, 13]:

(BQEP) Find x̄ ∈ S(x̄, λ) such that, ∀y ∈ S(x̄, λ),

a ≤ f(y, x̄, µ) ≤ b.

(d) If X, Z are normed spaces, Y = X∗, M = N , S1(x, λ) ≡ S2(x, λ) :=
S(x, λ), F (y, x, x̄, µ) = 〈y, x − x̄〉 and G(y, x, x̄, µ) = Z \ −intC, where C is a
convex cone in Z with nonempty interior, then four problems (Prα) are reduced
to the following two quasivariational inequalities considered by many authors

(QVI) Find x̄ ∈ S(x̄, λ) such that (x, y) r S(x̄, λ)× T (x, x̄, µ),

〈y, x− x̄〉 ∈ Z \ −intC.

(e) If X = Y = K, S1(x, λ) ≡ S2(x, λ) := S(x, λ), T (x, x̄, η) ≡ Y ,
F (y, x, x̄, µ) = f(x, µ)−f(x̄, µ) and G(y, x, x̄, µ) ≡ Z\−intC, where f : D×M →
Z is a mapping and C ⊆ Z is a convex cone with nonempty interior, then four
problems (Prα) coincide and become the following problem of finding weak mini-
mizer in quasioptimization:

(QOPw) Find x̄ ∈ S(x̄, λ) such that, ∀x ∈ S(x̄, λ),

f(x, µ)− f(x̄, µ) ∈ Z \ −intC.

Note that here the prefix “quasi” means that the constraint set S(x, λ) depends
on x.

(f) If in (e) we replace only G by setting G(y, x, x̄, µ) = (Z \ −C) ∪ l(C),
where l(C) = C ∩ (−C), then we have the problem of finding Pareto minimizer
in quasioptimization:

(QOPP) Find x̄ ∈ S(x̄, λ) such that, ∀x ∈ S(x̄, λ),

f(x, µ)− f(x̄, µ) ∈ (Z \ −C) ∪ l(C).

Recall now some notions. Let X and Y be as above and Q : X → 2Y be
a multifunction. Q is called lower semicontinuous (lsc) at x0 if: Q(x0) ∩ U 6= ∅
for some open subset U ⊆ Y implies the existence of a neighborhood N of x0

such that, ∀x ∈ N, Q(x) ∩ U 6= ∅. Q is upper semicontinuous (usc) at x0 if
for each open subset U ⊇ Q(x0), there is a neighborhood N of x0 such that
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U ⊇ Q(N). Q is said to be Hausdorff lower semicontinuous (H-lsc) at x0 if for
each neighborhood B of the origin in Y , there is a neighborhood N of x0 such that
Q(x0) ⊆ Q(x)+B, ∀x ∈ N . Q is termed Hausdorff upper semicontinuous (H-usc)
at x0 if the last inclusion replaced by Q(x) ⊆ Q(x0)+B, ∀x ∈ N . Q is called closed
at x0 if, for each net (xγ, yγ) ∈ graphQ := {(x, y) | y ∈ Q(x)} : (xγ, yγ) → (x0, y0),
y0 ∈ Q(x0). We say that Q satisfies a certain property in a subset A ⊆ X if Q
satisfies it at every point of A. If A = domQ := {x | Q(x) 6= ∅} we omit “in
domQ” in the saying. The following assertions are known and we give a reference
is given only for nonpopular statements.

Proposition 1.1.

(i) Q is lsc at x0 if and only if ∀xγ → x0. ∀y ∈ Q(x0),∃yγ ∈ Q(xγ), yγ → y.

(ii) Q is closed if and only if graphQ is closed.

(iii) Q is closed at x0 if Q is H-usc at x0 and Q(x0) is closed ([3]).

(iv) Q is H-usc at x0 if Q is usc at x0. Conversely, Q is usc at x0 if Q is
H-usc at x0 and Q(x0) is compact.

(v) Q is usc at x0 if Q(A) is compact for any compact subset A of domQ
and Q is closed at x0.

(vi) Q is usc at x0 if Y is compact and Q is closed at x0.

(vii) Q is lsc at x0 if Q is H-lsc at x0. The converse is true if Q(x0) is
compact ([22]).

2. Semicontinuity of multivalued mappings. We introduce some def-
initions related to semicontinuity to have a better insight as follows.

Definition 2.1. Let X be a Hausdorff topological space, Y be a topological
vector space, Q : X → 2Y and ∅ 6= U ⊆ Y .

(i) Q is called U -lower-level closed at x0 if

[xγ → x0, Q(xγ) ⊆ clU ] =⇒ [Q(x0) ⊆ clU ].

(ii) Q is said to be U -Hausdorff-lower-level closed at x0 if

[xγ → x0, B is a neighborhood of 0 inY ] =⇒ [∃γ̄, Q(x0) \ clU ⊆ Q(xγ̄) + B].

(iii) Q is said to be U -upper-level closed at x0 if

[xγ → x0, Q(xγ) ∩ clU 6= ∅] =⇒ [Q(x0) ∩ clU 6= ∅].

(iv) Q is termed U -Hausdorff-upper-level closed at x0 if

[xγ → x0, Q(xγ) ∩ clU 6= ∅] =⇒ [∀B, (Q(x0) + B) ∩ clU 6= ∅].

Remark 2.1. Q is U -lower-level closed if and only if Q is clU-lower-level
closed, (while intU 6= ∅) if and only if Q is intU-lower-level closed. The same
assertion is valid for the notions in (ii) - (iv).
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Definition 2.2. Let X, Y, Q and U be as in Definition 2.1.

(i) Q is said to be U -lower semicontinuous (U -lsc) at x0 if

[xγ → x0, Q(x0) ∩ intU 6= ∅] =⇒ [∃γ̄, Q(xγ̄) ∩ intU 6= ∅].

(ii) Q is said to be U -Hausdorff-lower semicontinuous (U -Hlsc) at x0 if

[xγ → x0, B is a neighborhood of 0 in Y ] =⇒ [∃γ̄, Q(x0) ∩ intU ⊆ Q(xγ̄) + B].

(iii) Q is called U -upper semicontinuous (U -usc) at x0 if

[xγ → x0, Q(x0) ⊆ intU ] =⇒ [∃γ̄, Q(xγ̄) ⊆ intU ].

(iv) Q is termed U -Hausdorff-upper semicontinuous (U -Husc) at x0 if

[xγ → x0, Q(x0) + B ⊆ intU for some neighborhood B of 0]

=⇒ [∃γ̄, Q(xγ̄) ⊆ intU ].

(v) Q is called lower semicontinuous with respect to U at x0 if, ∀xγ → x0,
∀y ∈ Q(x0) \ U , ∃ yγ ∈ Q(xγ), yγ → y.

Remark 2.2. If intU = ∅, any Q : X → 2Y satisfies (i) - (iv). If intU 6= ∅,
Q is U -lsc if and only if Q is intU-lsc, if and only if Q is clU-lsc. The same is true
for the other three notions.

Proposition 2.1. Let X, Y and Q be as in Definition 2.1. Then Q is lsc
(Hlsc, usc and Husc) at x0 if and only if for all U ⊆ Y Q is U-lsc (U-Hlsc, U-usc
and U-Husc, respectively) at x0.

Proof. By the similarity we prove only the assertions about U -Hausdorff
semicontinuity. Assume that Q is Hlsc at x0. If xγ → x0 and B is a neighborhood
of 0 in Y , then there is γ̄ such that Q(x0) ⊆ Q(xγ̄)+B and hence Q(x0)∩ intU ⊆
Q(xγ̄) + B, i.e. Q is U -Hlsc at x0. To see the converse we simply take U = Y .

Now let Q be Husc at x0. If xγ → x0 and B is a neighborhood of 0 in
Y with Q(x0) + B ⊆ intU , then since Q is Husc at x0, there is γ̄ such that
Q(xγ̄) ⊆ Q(x0)+B ⊆ intU , i.e. Q is U -Husc at x0. Conversely, suppose that Q is
U -Husc at x0, ∀U ⊆ Y , but Q is not Husc at x0, i.e., there are B (neighborhood
of 0 in Y ) and xγ → x0, ∀γ, Q(xγ) 6⊆ Q(x0) + B. Since Q(x0) + B is an open
subset, taking U = Q(x0) + B, there is γ̄, Q(xγ̄) ⊆ Q(x0) + B, which is a
contradiction. �

Proposition 2.2. Let X, Y, Q and U be as in Definition 2.1. Then Q is
U-lsc (U-Hlsc, U-usc and U-Husc) at x0 if and only if Q is Y \ U-lower-level
closed (Y \ U-Hausdorff-lower-level closed, Y \ U-upper-level closed and Y \ U-
Hausdorff-upper-level closed, respectively) at x0.
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Proof. We prove only the assertions for “U -lsc” and “U -usc”, since the
other two assertions can be checked similarly. Suppose that Q is U -lsc at x0, but
there is xγ → x0 with Q(xγ) ⊆ cl(Y \ U) = Y \ intU and Q(x0) 6⊆ Y \ intU , i.e.,
Q(x0)∩ intU 6= ∅. Since Q is U -lsc at x0, there is γ̄, Q(xγ̄)∩ intU 6= ∅. So Q(xγ̄) 6⊆
Y \ intU , which is a contradiction. Conversely, suppose Q is Y \ U -lower-level
closed at x0, but there is xγ → x0 with Q(x0)∩intU 6= ∅ and, ∀γ, Q(xγ)∩intU = ∅,
i.e., Q(xγ) ⊆ Y \ intU = cl(Y \ U). Since Q is Y \ U -lower-level closed at x0, we
have Q(x0) ⊆ Y \ intU and hence Q(x0) ∩ intU = ∅, which is impossible.

Now suppose Q is U -usc at x0, but there is xγ → x0 such that Q(xγ) ∩
cl(Y \ U) 6= ∅ and Q(x0) ∩ cl(Y \ U) = ∅, i.e., Q(x0) ⊆ Y \ cl(Y \ U) = Y \ (Y \
intU) = intU . Then there exists γ̄, Q(xγ̄) ⊆ intU = Y \ cl(Y \ U), which is a
contradiction. Conversely, assume that Q is not U -usc, i.e. there is xγ → x0 with
Q(x0) ⊆ intU and, ∀γ, Q(xγ) 6⊆ intU . Then Q(xγ) ∩ (Y \ intU) 6= ∅ and hence
Q(xγ)∩cl(Y \U) 6= ∅. This together with Q(x0) ⊆ intU , i.e. Q(x0)∩cl(Y \U) = ∅,
mean that Q is not Y \ U -upper-level closed. �

Proposition 2.3. Let X, Y, Q and U be as in Definition 2.1.

(i) U-Hausdorff-lower semicontinuity implies U-lower semicontinuity. The
converse is not true even under compactness assumptions.

(ii) U-upper semicontinuity implies U-Hausdorff-upper semicontinuity. If
Q(x0) is compact then the converse is true at x0.

(iii) Q is lsc with respect to U at x0 if and only if, for all V ⊇ U , Q is lsc
with respect to V at x0. Hence Q is lsc at x0 if and only if, for all U ⊆ Y , Q is
lsc with respect to U at x0.

(iv) Q is lsc with respect to U at x0 if Q(.) \ U is lsc at x0. The converse
is true if U is closed.

Proof.

(i) Suppose Q is U -Hlsc at x0 and xγ → x0 such that Q(x0) ∩ intU 6=
∅,∀γ, Q(xγ) ∩ intU = ∅. Then for each B (neighborhood of 0 in Y ), there is
γB such that Q(x0) ∩ intU ⊆ Q(xγB

) + B. Take y0 ∈ Q(x0) ∩ intU . There
are yγB

∈ Q(xγB
) and bγB

∈ B such that y0 = yγB
+ bγB

. As B is arbitrary,
yγB

→ y0 ∈ intU . So there is γ̄B such that yγ̄B
∈ intU , contradicting the fact

that, ∀γ, Q(xγ)∩ intU = ∅. Example 2.1 shows that the converse is not true even
under compactness assumptions.

(ii) From Definition 2.1, we see that the first implication is clear. Assume
that Q is U -Husc and Q(x0) is compact. If Q(x0) ⊆ intU , to see that Q is U -usc
we show that there is B (neighborhood of 0 in Y ) such that Q(x0) + B ⊆ intU .
If for each B, Q(x0) + B 6⊆ intU , there are y0

γB
∈ Q(x0) and bγB

∈ B such that
y0

γB
+ bγB

/∈ intU . By the compactness of Q(x0) we can assume that y0
γB
→ y0 for

some y0 ∈ Q(x0). As B is arbitrary y0
γB

+ bγB
→ y0. Since y0

γB
+ bγB

/∈ intU,∀B,
we get a contradiction that y0 /∈ intU .
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(iii) The first statement is directly derived from Definition 2.2. It is clear
that if Q is lsc at x0 then Q is lsc with respect to U at x0, for all U ⊆ Y . For the
converse, take U ⊂ Y such that Q(x0) ∩ U = ∅ to see that Q is lsc at x0.

(iv) The first assertion is clear. Assume that Q(.) is lsc with respect to U
at x0 and U is closed. For all y0 ∈ Q(x0) \ U , there exists some net yγ ∈ Q(xγ)
such that yγ → y0. Since U is closed and y0 /∈ U we have a subnet yβ such that
yβ /∈ U,∀β. �

The following example illustrates Proposition 2.3 (ii).

Example 2.1. Let X = Y = R and Q : R → 2R is defined by Q(0) = [0, 4],
Q(x) = [0, 1], for all x 6= 0. Then, Q is R+-lsc at 0 (since Q(x)∩(0, +∞) 6= ∅,∀x ∈
R). But Q is not R+-Hlsc at 0 since Q(0) ∩ (0, +∞) = (0, 4] 6⊆ Q(x) + (−1, 1) =
(−1, 2),∀x 6= 0.

The following definition extends Definition 2.2 (i), (iii).

Definition 2.3. Let f : D → 2Y and g : K → 2Y .

(i) f is called to be g-lsc at (x0, y0) ∈ D ×K if

[(xγ, yγ) → (x0, y0), f(x0) ∩ intg(y0) 6= ∅] =⇒ [∃γ̂, f(xγ̂) ∩ intg(yγ̂) 6= ∅].

(ii) f is said to be g-usc at (x0, y0) ∈ D ×K if

[(xγ, yγ) → (x0, y0), f(x0) ⊆ intg(y0)] =⇒ [∃γ̂, f(xγ̂) ⊆ intg(yγ̂)].

We propose the following notation: for α ∈ {α1, α2}, we write fαg at (x0, y0) ∈
D ×K if

[(xγ, yγ) → (x0, y0), α
(
f(x0), intg(y0)

)
] =⇒ [∃γ̂, α

(
f(xγ̂), intg(yγ̂)

)
].

So fα1g means that f is g-lsc at (x0, y0) and fα2g means that f is g-usc at
(x0, y0). When g(y) ≡ U , where U ⊆ Y , being g-lsc or g-usc collapses to being
U -lsc or U -usc, respectively.

The following definition extends the inclusion property proposed in [3].

Definition 2.4. Let f and g be as in Definition 2.3.

(i) f is called to have the g-inclusion property at (x0, y0) if

[(xγ, yγ) → (x0, y0), f(x0) ∩ g(y0) 6= ∅] =⇒ [∃γ̂, f(xγ̂) ∩ g(yγ̂) 6= ∅].

(ii) f is said to have the strict g-inclusion property at (x0, y0) if

[(xγ, yγ) → (x0, y0), f(x0) ⊆ g(y0)] =⇒ [∃γ̂, f(xγ̂) ⊆ g(yγ̂)].
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We adopt the following convention: for α ∈ {α1, α2}, f is called to have the
α− g-inclusion property at (x0, y0) if

[(xγ, yγ) → (x0, y0), α
(
f(x0), g(y0)

)
] =⇒ [∃γ̂, α

(
f(xγ̂), g(yγ̂)

)
].

We also use the similar convention: for α ∈ {α1, α2}, f is said to have the ᾱ− g-
inclusion property at (x0, y0) if

[(xγ, yγ) → (x0, y0), ᾱ
(
f(x0), g(y0)

)
] =⇒ [∃γ̂, ᾱ

(
f(xγ̂), g(yγ̂)

)
].

Note that when g(x) ≡ U , where U is a closed subset of Y , being ᾱ1−g inclusion
property or ᾱ2 − g inclusion property collapses to being Y \ U - usc or Y \ U -lsc,
respectively.

3. Lower semicontinuity of the solution sets. For λ ∈ Λ, µ ∈ M and
η ∈ N . Let E(λ) := {x ∈ D | x ∈ S1(x, λ)}. Throughout the paper, assume that
Srα(λ, µ, η) 6= ∅ for all (λ, µ, η) in a neighborhood of (λ0, µ0, η0) ∈ Λ × M × N .
(About conditions for the solution existence in quasivariational inclusion problems
see [20, 21].)

Theorem 3.1. Assume for problem (Prα) that, for ∅ 6= U ⊆ X,

(i) E(.) \ clU is lsc at λ0; S2 is usc and has compact values in (E(λ0) \
clU)× {λ0};

(ii) in S2(D \ clU, λ0) × (D \ clU) × {η0}, T is lsc if r = w, and usc and
has compact values if r = s;

(iiiα) FαG in
(
(T (S2(D \ clU, λ0), D \ clU, η0), S2(D \ clU, λ0), D \ clU, µ0),

(T (S2(D \ clU, λ0), D \ clU, η0), D \ clU,D \ clU, µ0)
)
;

(ivrα) ∀x ∈ Srα(λ0, µ0, η0), (x̂, y) r S2(x, λ0) × T (x̂, x, η0), α
(
F (y, x̂, x, µ0),

intG(y, x, x, µ0)
)
.

Then Srα is U-lower-level closed at (λ0, µ0, η0).

Proof. Since r ∈ {w, s} and α ∈ {α1, α2} we have in fact four cases corre-
sponding to four different combinations of values of r and α. However, the proof
techniques are similar. We consider only the case r = w and α = α1. Suppose
that Swα1(., ., .) is not U -lower-level closed at (λ0, µ0, η0), i.e., ∃(λγ, µγ, ηγ) →
(λ0, µ0, η0) such that Swα1(λγ, µγ, ηγ) ⊆ clU,∀γ, but x0 ∈ Swα1(λ0, µ0, η0) \ clU
exists. Then ∀xγ ∈ Swα1(λγ, µγ, ηγ), xγ 6→ x0. Since E(.) \ clU is lsc at λ0, there
is x̄γ ∈ E(λγ) \ clU , x̄γ → x0. By the contradiction assumption, there exists
a subnet x̄β /∈ Swα1(λβ, µβ),∀β. This means the existence of x̂β ∈ S2(x̄β, λβ),
∀yβ ∈ T (x̂β, x̄β, ηβ),

(2.1) F (yβ, x̂β, x̄β, µβ) ∩G(yβ, x̄β, x̄β, µβ) = ∅.

Since S2(., .) is usc and has compact values at (x0, λ0), one can assume that
x̂β → x̂0 for some x̂0 ∈ S2(x0, λ0) (taking a subnet if necessary). By assumption
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(ivwα1), there is some y0 ∈ T (x̂0, x0, η0) such that,

(2.2) F (y0, x̂0, x0, µ0) ∩ intG(y0, x0, x0, µ0) 6= ∅.

Because of the lower semicontinuity of T (., ., .) at (x̂0, x0, η0), there exists a net
yβ ∈ T (x̂β, x̄β, ηβ), yβ → y0. Since F is G-lsc at

(
(y0, x̂0, x0, µ0), (y0, x0, x0, µ0)

)
by (iiiα), we see a contradiction between (2.1) and (2.2). �

Remark 3.1. In assumptions (ii) and (iiiα) we can clearly replace the com-
plicated - looking regions by simpler but bigger regions. This results in weakening
the theorem. This replacement can also be applied in the theorems and corollaries
in the sequel.

Taking into account Propositions 2.1 and 2.2 we obtain the following imme-
diate consequence of Theorem 3.1.

Corollary 3.1. Assume for problem (Prα) assumption (ivrα) of Theorem
3.1. Assume further that

(i′) E is lsc at λ0; S2 is usc and has compact values in E(λ0)× {λ0};
(ii′) in S2(D, λ0) × D × {η0}, T is lsc if r = w, and usc and has compact

values if r = s;

(iii′α) FαG in
(
(T (S2(D, λ0), D, η0), S2(D, λ0), D, µ0), (T (S2(D, λ0), D, η0),

D, D, µ0)
)
.

Then Srα is lsc at (λ0, µ0, η0).

Note that assumption (ivrα) is essential (see Example 2.1 in [3] for a special
case). The following example shows a case where Corollary 3.1 is more advanta-
geous than recent ones in the literature.

Example 3.1. Let X = Y = Z = R, Λ ≡ M ≡ N = [0, 1], D = K = R,
S1(x, λ) = S2(x, λ) = [0, λ], T (x, x̄, λ) = {x̄}, G(y, x, x̄, λ) = [0, +∞), λ0 = 0 and

F (y, x̂, x, λ) =

{
[1, 2], if λ = 0,

[2, 3], otherwise.

Then, all assumptions of Corollary 3.1 are fulfilled. (In this case, our four prob-
lems are reduced to a quasiequilibrium problem, and S(λ) is easily computed as
[0, λ].) But Theorems 2.1 and 2.3 in [3] and Theorem 2.2 in [4] cannot be applied
since F is neither lsc nor usc at λ = 0 as required in the mentioned theorems.

Although assumption (ivrα) is essential, it together with (iiiα) can be re-
placed by using Definition 2.4 as follows.

Theorem 3.2. Assume (i) and (ii) as in Theorem 3.1 and replace (iiiα) and
(ivrα) by

(vα) F has the α−G-inclusion property in
(
(T (S2(D \ clU, λ0), D \ clU, η0),

S2(D \ clU, λ0), D \ clU, µ0), (T (S2(D \ clU, λ0), D \ clU, η0), D \ clU,D \ clU, µ0)
)
.

Then Srα is U-lower-level closed at (λ0, µ0, η0).
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Proof. We prove the case where r = w and α = α1 as an example. The
other cases are proved similarly. We can repeat the first part of the proof of
Theorem 3.1 to have (2.1), x̂0 ∈ S2(x0, λ0) and y0 ∈ T (x̂0, x0, λ0) such that
(x̂β, yβ) → (x̂0, y0) and

F (y0, x̂0, x0, µ0) ∩G(y0, x0, x0, µ0) 6= ∅.

Assumption (vα) implies the existence of an index β̄ such that

F (yβ̄, x̂β̄, x̄β̄, µβ̄) ∩G(yβ̄, x̄β̄, x̄β̄, µβ̄) 6= ∅,

which contradicts (2.1). �

Similarly one can obtain the following result from Propositions 2.1, 2.2 and
Theorem 3.2.

Corollary 3.2. Assume, for problem (Prα), (vα) as in Theorem 3.2 and
replace (i) and (ii) by (i’) and (ii’) as in Corollary 3.1. Then Srα is lsc at
(λ0, µ0, η0).

The following example explains some advantages of Corollary 3.2.

Example 3.2. Let X, Y, Z, D, K, Λ,M,N, T,G and λ0 be as in Example
3.1. Let

S1(x, λ) = S2(x, λ) =

{
[0, λ], if x ≥ 0,

[0,−x], otherwise.

and F (y, x̄, x, λ) ≡ {1}. Then, E(λ) = [0, λ] and all assumptions of Corollary 3.2
hold. So the solution set S(.) of the quasiequilibrium problem is lsc at λ0 = 0
(in this case our four problems are reduced to a quasiequilibrium problem and in
fact S(λ) = [0, λ]). While Theorems 2.2 and 2.4 in [3] and Theorem 2.1 in [4] do
not work since S2 is not usc in R× {0}.

We now proceed to Hausdorff lower semicontinuity.

Theorem 3.3. For (Prα) and ∅ 6= U ⊆ X, assume (i), (ii), (iiiα) and (ivrα)
of Theorem 3.1. Assume further that

(i
h
) E is lsc with respect to intU at λ0, E(λ0) \ intU is compact; S1(., λ0)

is closed in E(λ0) and S2(., λ0) is lsc in E(λ0);

(ii
h
) in S2(E(λ0), λ0) × E(λ0), T (., ., η0) is usc and has compact values if

r = w, and lsc if r = s;

(iv′
rα) F (., ., ., µ0) has the ᾱ−G(., ., ., µ0)-inclusion property in

((
T (S2(E(λ0),

λ0), S2(E(λ0), λ0), E(λ0), η0)× S2(E( λ0), λ0)×E(λ0)
)
,
(
T (S2(E(λ0), λ0), S2(E(λ0),

λ0), E(λ0), η0)× E(λ0)× E(λ0)
))

.

Then Srα is U-Hausdorff-lower-level closed at (λ0, µ0, η0).
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Proof. As an example we demonstrate only for Ssα2 . We first show that
Ssα2(λ0, µ0, η0) is closed in D. Suppose that xγ ∈ Ssα2(λ0, µ0, η0), xγ → x0.
Since S1(., λ0) is closed, x0 ∈ S1(x0, λ0). If x0 /∈ Ssα2(λ0, µ0, η0), there exist
x̂0 ∈ S2(x0, λ0) and y0 ∈ T (x̂0, x0, η0) such that

(2.3) F (y0, x̂0, x0, µ0) 6⊆ G(y0, x0, x0, µ0).

Since S2(., λ0) and T (., ., η0) are lsc at x0 and (x̂0, x0), respectively, there are
x̂γ ∈ S2(xγ, λ0) and y0γ ∈ T (x̂γ, xγ, η0) such that (x̂γ, y0γ) → (x̂0, y0). As
xγ ∈ Ssα2(λ0, µ0, η0), we have

(2.4) F (y0γ, x̂γ, xγ, µ0) ⊆ G(y0γ, xγ, xγ, µ0).

By assumption (iv′
sα2

), we see a contradiction between (2.3) and (2.4). Hence,
Ssα2(λ0, µ0, η0) is closed and Ssα2(λ0, µ0, η0) \ intU is compact, by (ih). We show
that ∀(λγ, µγ, ηγ) → (λ0, µ0, η0), ∀x̄0 ∈ Ssα2(λ0, µ0, η0)\intU , ∃x̄γ ∈ Ssα2(λγ, µγ, ηγ),
x̄γ → x̄0. Suppose to the contrary that there exist (λγ, µγ, ηγ) → (λ0, µ0, η0) and
x̄0 ∈ Ssα2(λ0, µ0, η0) \ intU such that ∀xγ ∈ Ssα2(λγ, µγ, ηγ), xγ 6→ x̄0. Since E is
lsc with respect to intU at λ0, there is x̄γ ∈ E(λγ), x̄γ → x̄0. By the contradic-
tion assumption, there exists a subnet x̄β /∈ Ssα2(λβ, µβ, ηβ),∀β. This means the
existence of x̂β ∈ S2(x̄β, λβ), and yβ ∈ T (x̂β, x̄β, ηβ),

(2.5) F (yβ, x̂β, x̄β, µβ) 6⊆ G(yβ, x̄β, x̄β, µβ).

Since S2 is usc and S2(x0, λ0) is compact, one can assume that x̂β → x̂0 for
some x̂0 ∈ S2(x̄0, λ0) (taking a subnet if necessary). By the upper semicontinu-
ity of T at (x̂0, x̄0, η0) and the compactness of T (x̂0, x̄0, η0) we can suppose that
yβ → ȳ0 ∈ T (x̂0, x̄0, η0). By assumption (ivsα2),

(2.6) F (ȳ0, x̂0, x̄0, µ0) ⊆ intG(ȳ0, x̄0, x̄0, µ0).

Since F is G-usc at
(
(ȳ0, x̂0, x̄0, µ0), (ȳ0, x̄0, x̄0, µ0)

)
by (iiiα2), we see a contradic-

tion between (2.5) and (2.6).

Now suppose that Ssα2 is not U -Hausdorff-lower-level closed at (λ0, µ0,
η0), i.e. ∃B (a neighborhood of the origin in X), ∃(λγ, µγ, ηγ) → (λ0, µ0, η0)
such that ∀γ, ∃x0γ ∈ Ssα2(λ0, µ0, η0) \ clU , x0γ /∈ Ssα2(λγ, µγ, ηγ) + B. Since
Ssα2(λ0, µ0, η0) \ intU is compact, we can assume that x0γ → x0 ∈ Ssα2(λ0,
µ0, η0) \ intU . Then there are a neighborhood B1 of 0 in X with B1 + B1 ⊆ B
and γ1 such that, ∀γ ≥ γ1, ∃bγ ∈ B1, x0γ = x0 + bγ. By the preceding part of
the proof there is xγ ∈ Ssα2(λγ, µγ, ηγ), xγ → x0, and hence one can assume that
there is γ2,∀γ ≥ γ2, xγ ∈ x0 −B1, i.e., there exists b′γ ∈ B1, xγ = x0 − b′γ. Hence,
∀γ ≥ γ0 = max{γ1, γ2},

x0γ = x0 + bγ = xγ + b′γ + bγ ∈ xγ + B.

This is impossible due to the fact that x0γ /∈ Ssα2(λγ, µγ, ηγ) + B. Thus, Ssα2 is
U -Hausdorff-lower-level closed at (λ0, µ0, η0). �

Corollary 3.3. Assume assumptions (i’), (ii’), (iii’α) and (ivrα) of Corol-
lary 3.1, assumptions (iih) and (iv’rα) of Theorem 3.3 and replace (ih) by
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(i′
h
) E is lsc at λ0 and E(λ0) is compact; S1(., λ0) is closed in E(λ0) and

S2(., λ0) is lsc in E(λ0).

Then Sα is Hlsc at (λ0.µ0, η0).

The following example shows that the compactness of E(λ0) is essential.

Example 3.3. Let X = R2, Y = Z = R,Λ ≡ M ≡ N = [0, 1], K =
R2, D = R, λ0 = 0, ∀x = (x1, x2) ∈ R2, S1(x, λ) = S2(x, λ) = {(x1, λx2

1)}, T (x, y,
λ) = [0.1], F (y, x, x̄, λ) = {1 + λ2}, G(y, x, x̄, λ) = [0, +∞). Then E(λ) = {x =
(x1, x2) ∈ R2 | x2 = λx2

1}. So all assumptions of Corollary 3.3 but (i’) are
satisfied. However, Srα(λ) = {x = (x1, x2) ∈ R2 | x2 = λx2

1} is not Hlsc at 0
(although Srα is lsc at 0). The reason is that E(0) = {(x1, x2) ∈ R2 | x2 = 0} is
not compact (but E(.) and Si(., .) are continuous and closed).

Similarly, we obtain the following result corresponding to Theorems 3.2 and
Corollaries 3.2.

Theorem 3.4. Assume the assumptions of Theorem 3.3 but (iii), (ivrα) and
replace (iii) and (ivrα) by (vα) as in Theorem 3.2. Then Srα is U-Hausdorff-lower-
level closed at (λ0, µ0, η0).

Corollary 3.4. Assume assumptions (i’), (ii’) and (vα) as in Corollary
3.2, assumptions (iih) and (iv’rα) as in Theorem 3.3 and replace (ih) by

(i′
h
) E is lsc at λ0 and E(λ0) is compact; S1(., λ0) is closed in E(λ0) and

S2(., λ0) is lsc in E(λ0).

Then Srα is Hlsc at (λ0, µ0, η0).

Proof. Due to assumptions (i’), (ii’) and (vα) of Corollary 3.2 we see that
Srα is lsc at (λ0, µ0, η0). On the other hand, by assumptions (iih), (iv’rα) and (i’h)
Srα(λ0, µ0, η0) is compact. By virtue of Proposition 2.1 we imply that Srα is Hlsc
at (λ0, µ0, η0). �

Example 3.3 shows also that the compactness of E(λ0) in Corollary 3.4
cannot be dropped. Even for the special case, where our problems are quasiequi-
librium problems, Theorems 3.3 and 3.4 and Corollaries 3.3 and 3.4 are new.

4. Upper semicontinuity of the solution sets

Theorem 4.1. Assume for problem (Prα) that, for ∅ 6= U ⊆ X,

(i) E(.)∩clU is usc and E(λ0)∩clU is compact; S2 is lsc in (E(λ0)∩clU)×
{λ0};

(ii) in S2(E(λ0)∩ clU, λ0)× (E(λ0)∩ clU)×{η0}, T is usc and has compact
values if r = w, and lsc if r = s;

(iiiuα) F has the ᾱ−G-inclusion property in
((

T (S2(E(λ0)∩clU, λ0), E(λ0)∩
clU, η0))×S2(E(λ0)∩clU, λ0)×(E(λ0)∩clU)×{µ0}

)
,
(
T (S2(E(λ0)∩clU, λ0), E(λ0)∩

clU, η0))× (E(λ0) ∩ clU)× (E(λ0) ∩ clU)× {µ0}
))

.

Then Srα is U-upper-level closed at (λ0, µ0, η0).
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Proof. Similar arguments can be applied to prove the four cases. We
present only the proof for the case where r = s and α = α1. Reasoning ad
absurdum, suppose the existence of (λγ, µγ, ηγ) → (λ0, µ0, η0) such that, for each
γ, xγ ∈ Ssα1(λγ, µγ, ηγ) ∩ clU exists but Ssα1(λ0, µ0, η0) ∩ clU = ∅. Since E(.) ∩
clU is usc and E(λ0) ∩ clU is compact one can assume that xγ tends to some
x0 ∈ E(λ0) ∩ clU . If x0 /∈ Ssα1(λ0, µ0, η0), there exist x̂0 ∈ S2(x0, λ0) and y0 ∈
T (x̂0, x0, η0) such that

(2.7) F (y0, x̂0, x0, µ0) ∩G(y0, x0, x0, µ0) = ∅.

Since S2(., .) is lsc at (x0, λ0), there is a net x̂γ ∈ S2(xγ, λγ), x̂γ → x̂0. As
xγ ∈ Ssα1(λγ, µγ, ηγ), one has, ∀yγ ∈ T (x̂γ, xγ, ηγ),

(2.8) F (yγ, x̂γ, xγ, µγ) ∩G(yγ, xγ, xγ, µγ) 6= ∅.

Taking the lower semicontinuity of T at (x̂0, x0, η0) into account, one has
a net y′

β ∈ T (x̂β, xβ, ηβ) such that y′
β → y0. By assumption (iiiuα) we see a

contradiction between (2.7) and (2.8). Thus, x0 ∈ Ssα1(λ0, µ0, η0). This in turn
is also a contradiction, since xβ ∈ clU,∀β. �

Corollary 4.1. Assume for (Prα) that

(i′) E is usc and E(λ0) is compact; S2 is lsc in E(λ0)× {λ0};
(ii′) in S2(E(λ0), λ0) × E(λ0) × {η0}, T is usc and has compact values if

r = w, and lsc if r = s;

(iii′uα) F has the ᾱ−G-inclusion property in
((

T (S2(E(λ0), λ0), E(λ0), η0))×
S2(E(λ0), λ0) × E(λ0) × {µ0}

)
,
(
T (S2(E(λ0), λ0), E(λ0), η0)) × E(λ0) × E(λ0) ×

{µ0}
))

.

Then Srα is both usc and closed at (λ0, µ0, η0).

Proof. The upper semicontinuity follows immediately from Theorem 4.1
and Propositions 2.1 and 2.2. Arguments similar to that of the second part of the
proof of Theorem 4.1 can be used to demonstrate the closedness of Srα. �

Example 4.1. Let X = Y = Z = R,K = D = R,Λ ≡ M ≡ N = [0, 1],
λ0 = 0, S1(x, λ) = S2(x, λ) = [0, λ], T (x, x̄, λ) = [0, ex+sin λ], G(y, x, x̄, λ) ≡ R+

and

F (y, x, x̄, λ) =

{
{0}, if λ = 0,

{cos2(x + λ)}, otherwise.

Then all assumptions of Corollary 4.1 are satisfied and hence this corollary implies
the upper semicontinuity of Srα(.) at 0 (in fact Srα = [0, λ],∀λ ∈ [0, 1]). But
Theorems 3.2 and 3.3 in [3] cannot be applied since F is neither lsc nor usc.
Furthermore, in this case assumptions of Corollary 4.1 are checked easier than
that of Theorem 3.1 in [4].
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Example 4.2. Let X, Y, Z, K, D, Λ,M,N, G, λ0 be as in Example 4.1, S1(x, λ) =
S2(x, λ) = [λ, λ + 1], T (x, x̄, λ) = {x̄} and

F (y, x, x̄, λ) =

{
{1}, if λ = 0,

{2 + sin2(x + λ)}, otherwise.

Then all assumptions of Corollary 4.1 are fulfilled. So this corollary derives the
upper semicontinuity at 0 of Srα (in fact Srα = [λ, λ+1],∀α ∈ Λ). But Theorems
3.2 and 3.4 in [3] cannot be applied since F is neither lsc nor usc. Furthermore,
Theorems 3.1 and 4.1 in [8] cannot either, because F is neither pseudomonotone
nor θ-upper-level closed, ∀θ > 1.

Passing to Hausdorff upper-level closedness we see that the assumptions can
be weakened correspondingly as follows.

Theorem 4.2. Assume for problem (Prα1) that, for ∅ 6= U ⊆ X,

(i
h
) E(.) ∩ clU is Husc and E(λ0) ∩ clU is compact; S2 is lsc in E(λ0) ∩

clU × {λ0};
(ii

h
) in S2(E(λ0)∩clU, λ0)×(E(λ0)∩clU)×{η0}, T is Husc and has compact

values if r = w, and lsc if r = s;

(iii
huα1

) ∀(y0, x̂0, x0) ∈
(
T (S2(E(λ0)∩clU, λ0), E(λ0)∩clU, η0)

)
×S2(E(λ0)∩

clU, λ0) × E(λ0) ∩ clU ,
[
∀(yγ, x̂γ, xγ, µγ) → (y0, x̂0, x0, µ0),∀γ, α1

(
F (yγ, x̂γ, xγ,

µγ), G(yγ, xγ, xγ, µγ)
)]

=⇒
[
∀BY (open neighborhood of 0 in Y ), α1

(
F (y0, x̂0,

x0, µ0) + BY , G(y0, x0, x0, µ0)
)]

;

(iv
huα1

) ∀BX (open neighborhood of 0 in X), ∀x /∈ Srα(λ0, µ0, η0) + BX ,

∃BY , (x̂, y) r̄ S2(x, λ0)× T (x̂, x, η0), ᾱ1

(
F (y, x̂, x, µ0) + BY , G(y, x, x, µ0)

)
.

Then Srα1 is U-Hausdorff-upper-level closed at (λ0, µ0, η0).

Proof. We demonstrate the assertion only for Swα1 . Suppose Swα1 is
not U -Hausdorff-upper-level closed at (λ0, µ0, η0), i.e., there are (λγ, µγ, ηγ) →
(λ0, µ0, η0) and B (open neighborhood of 0 in X) such that xγ ∈ Swα1(λγ, µγ, ηγ)∩
clU exists for all γ, but (Swα1(λ0, µ0, η0) + B) ∩ clU = ∅. By the compactness of
E(λ0) ∩ clU and the Hausdorff upper semicontinuity of E(.) ∩ clU at λ0, we can
assume that xγ → x0 for some x0 ∈ E(λ0) ∩ clU . If x0 /∈ Swα1(λ0, µ0, η0) + B,
(ivhuα1) yields some neighborhood BY of 0 in Y and some x̂0 ∈ S2(x0, λ0) such
that, ∀y0 ∈ T (x̂0, x0, η0),

(2.9)
(
F (y0, x̂0, x0, µ0) + BY

)
∩G(y0, x0, x0, µ0) = ∅.

The lower semicontinuity of S2 at (x0, λ0) yields x̂γ ∈ S2(xγ, λγ) such that
x̂γ → x̂0. Since xγ ∈ Swα1(λγ, µγ, ηγ), there is yγ ∈ T (x̂γ, xγ, ηγ) such that

(2.10) F (yγ, x̂γ, xγ, µγ) ∩G(yγ, xγ, xγ, µγ) 6= ∅.

Since T is H-usc and T (x̂0, x0, η0) is compact, one has a subnet yβ ∈ T (x̂β, xβ, µβ)
such that yβ → y0 for some y0 ∈ T (x̂0, x0, η0). Assumption (iiihuα1) shows a con-
tradiction between (2.9) and (2.10). Thus, x0 ∈ Swα1(λ0, µ0, η0) + B. Since
xβ ∈ clU,∀β, we have x0 ∈ clU , contradicting the fact that

(
Swα1(λ0, µ0, η0) +

B
)
∩ clU = ∅. �
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Corollary 4.2. Assume assumption (ivhuα1) of Theorem 4.2 and assume
further that

(i′
h
) E is Husc at λ0 and E(λ0) is compact; S2 is lsc in E(λ0)× {λ0};

(ii′
h
) in S2(E(λ0), λ0)× E(λ0)× {η0}, T is Husc and have compact values

if r = w, and lsc if r = s;

(iii′
huα1

) ∀(y0, x̂0, x0) ∈
(
T (S2(E(λ0), λ0), E(λ0), η0)

)
×S2(E(λ0), λ0)×E(λ0),[

∀(yγ, x̂γ, xγ, µγ) → (y0, x̂0, x0, µ0),∀γ, α1

(
F (yγ, x̂γ, xγ, µγ), G(yγ, xγ, xγ, µγ)

)]
=⇒[

∀BY (open neighborhood of 0 in Y ), α1

(
F (y0, x̂0, x0, µ0)+BY , G(y0, x0, x0, µ0)

)]
.

Then Srα1 is Husc at (λ0, µ0, η0).

For the particular case of quasiequilibrium problems, Example 3.2 in [3]
show also that assumption (ivhuα1) is essential.

5. Special cases. Since our quasivariational inclusion problem includes
many problems in optimization as mentioned in Section 1, from the main results
of Sections 3 and 4 it is not hard to derive consequences for these particular
problems. In this section we discuss in details, as an example, first the quasiequi-
librium problem (QEPrα) stated in Section 1(b). Next we investigate a practical
problem of traffic network equilibria, which is a special case of the quasivariational
inequality (QVI) encountered in Section 1(d).

5.1. Quasiequilibrium problems. Consider (QEPrα), which represents four
quasiequilibrium problems, of interest for a number of authors while dealing with
existence conditions, but studied as far as we know only in [3, 4, 8] for semicon-
tinuity of the solution sets. Let E(λ) = {x ∈ D | x ∈ clS(x, λ)} and Srα(λ, µ, η)
be the solution set of (QEPrα) corresponding to (λ, µ, η).

Corollary 5.1. Assume for (QEPrα) that

(a) E is lsc at λ0; S is usc and has compact values in E(λ0)× {λ0};
(b) in D × {η0}, T is lsc if r = w, and usc with compact values if r = s;

(c) in D ×D × {µ0}, F is (Z \ −intC)-lsc if r = w, and usc if r = s;

(d) ∀x ∈ Srα(λ0, µ0, η0), (y, x̄∗) r S(x̄, λ0)× T (x̄, η0),

α
(
F (x̄∗, y, µ0), Z \ −clC

)
.

Then Srα is lsc at (λ0, µ0, η0).

Proof. The inclusion follows directly from Corollary 3.1, since (a) - (d)
being satisfied imply (i’) - (iii′α), (ivα) of Corollary 3.1 being fulfilled. �

Corollary 5.1 includes properly Theorem 2.2 of [4]. The properness is shown
by the following example.
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Example 5.1. Let X = Z = R,C = R+, D = R, Λ ≡ M ≡ N =
[0, 1], λ0 = 0, S(x, λ) ≡ [0, 1], T (x, λ) = {x} and

F (x, y, λ) =

{
{2}, if λ = 0,

{1}, if λ 6= 0.

Then all assumptions of Corollary 5.1 are clearly satisfied. Direct calculations
give Srα(λ) = [0, 1]. However, Theorem 2.2 of [4] is not applicable since F is not
lsc when r = w and not usc when r = s.

For the special case where T (x, η) = {x}, problem (Prα) becomes (QEP)
and (SQEP) investigated in [3]. This example indicates also that Corollary 5.1 is
properly stronger than Theorems 2.1 and 2.3 in [3].

The following result is a direct consequence of Corollary 3.2.

Corollary 5.2. Assume (a) and (b) of Corollary 5.1 and replace (c) and
(d) by

(e) in D×D×{µ0}, F has the C-inclusion property if r = w, and the strict
C-inclusion property if r = s.

Then Srα is lsc at (λ0, µ0, η0).

When T (x, η) = {x}, this corollary collapses to Theorems 2.2 and 2.4 of [3].
Although it is slightly weaker than Theorem 2.1 of [4], its assumptions are easier
to be checked as the following example makes it clear.

Example 5.2. Let X, Z, C, Λ, M, N, λ0 and D be as in Example 5.1. Let
S(x, λ) = [0, λ], T (x, λ) = [0, ex+λ] and

F (x, y, λ) =

{
{0}, if λ = 0,

{sin2(x + λ)}, if λ 6= 0.

Then the assumptions of Corollary 5.2 are not hard checked as satisfied but
computing the set Urα in [4] is rather difficult.

The results below are followed directly from Corollaries 3.3 and 3.4, respec-
tively.

Corollary 5.3. Assume for (QEPrα) assumptions (a) - (d) of Corollary
5.1. Assume further that

(a′) E(λ0) is compact; clS(., λ0) is closed in E(λ0); S(., λ0) is lsc in E(λ0);

(b′) in E(λ0), T (., η0) is usc with compact values if r = w, and lsc if r = s;

(c′) in D ×D, F (., ., µ0) is −C-usc if r = w, and −C-lsc if r = s.

Then Srα is Hlsc at (λ0, µ0, η0).

Corollary 5.4. If we replace assumptions (c) and (d) of Corollary 5.3 by
assumption (e) of Corollary 5.2, then Srα is still Hlsc at (λ0, µ0, η0).
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Passing to upper semicontinuity we easily derive from Corollary 4.1 the
following sufficient condition.

Corollary 5.5. For (QEPrα) assume that

(a) E is usc with E(λ0) being compact; S is lsc in E(λ0)× {λ0};
(b) in D × {η0}, T is usc with compact values if r = w, and lsc if r = s;

(c) in D ×D × {µ0}, F is −C-usc if r = w, and −C-lsc if r = s;

Then, Srα is usc and closed at (λ0, µ0, η0).

Note that this corollary is stronger than Theorems 3.1, 4.1 of [8] and Theo-
rems 3.2, 3.4 of [3] when applied to the special cases studied there. The following
example gives a case where Corollary 5.5 can be employed but the mentioned
theorems cannot.

Example 5.3. Let X, Z, Λ, M, N, C, D and λ0 be as in Example 5.1. Let
S(x, λ) = [λ, λ + 1], T (x, λ) = {x} and

F (x, y, λ) =

{
{1}, if λ = 0,

{2}, if λ 6= 0.

Then the assumptions of Corollary 5.5 are easily seen satisfied and direct com-
putations give Srα(λ) = [λ, λ + 1]. However, the mentioned theorems are not
applicable since F is not pseudomonotone and not α-upper-level closed for α > 1.

Note further that for more special case of (QEPrα) of quasivariational in-
equalities (similar to (QVI) stated in Section 1(d)), Corollary 5.5 includes Theo-
rems 3.1, 3.2 of [32], Theorem 2.1 of [11], Theorems 2.2, 2.3 of [27] and Theorems
4.1, 4.3 of [28].

For Hausdorff upper semicontinuity we restrict ourselves to the case where
α = α1. The following corollary is direct consequence of Corollary 4.2.

Corollary 5.6. For problems (QEPrα1) assume that

(a) E is Husc at λ0 and E(λ0) is compact; S is lsc in E(λ0)× {λ0};
(b) in E(λ0)× {η0}, T is Husc with compact values if r = w, and lsc if

r = s;

(c)
[
∀(yγ, xγ, µγ) → (y0, x0, µ0), α1(F (xγ, yγ, µγ), Z \ −intC)

]
=⇒

[
∀BZ

(neighborhood of 0 in Z), α1(F (x0, y0, µ0) + BZ , Z \ −intC)
]
;

(d) ∀BX (neighborhood of 0 in X), ∀x̄ /∈ Srα1(λ0, µ0, η0)+BX ,∃BZ , (y, x̄∗) r
S(x̄, λ0)× T (x̄, η0), ᾱ1

(
F (x̄∗, y, µ0) + BZ , Z \ −intC

)]
.

Then Srα1 is Husc at (λ0, µ0, η0).

This corollary clearly contains Theorem 3.3 of [3] and Theorem of [4].
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5.2. Traffic network problems. [46] began the process of the mathemati-
cal study of transportation network problems by introducing the later-so-called
Wardrop equilibrium flow and proving basic network principles. [41] made a
turning point by proving that the Wardrop equilibria of the network are just
the solutions of the variational inequality corresponding to the network problem.
[14, 35] considered the case where the travel demands of the network problem
depended on the equilibrium flows to meet practical situations. Then the prob-
lem corresponded to a quasivariational inequality. In these papers the authors
also proposed to consider the case where the travel cost was a multifunction of
the path flow. [25, 26] extended the Wardrop traffic equilibrium to this case.
Up to now efforts have been devoted to the solution existence. We observe only
[1, 5, 6] where Hölder continuity of the unique solution to traffic network problems
is established. In this subsection we apply the main results in Sections 3 and 4
to establish sufficient conditions for the semicontinuities of the equilibrium flow
of the following traffic network problem proposed in [25, 26], which is a slight
generalization of the previous models to meet the practice.

Let a traffic network consist of nodes and links (or arcs). Let W = (W1, ...,Wl)
be the set of origin-destination pairs (O/D pairs for short). Assume that the pair
Wj, j = 1, ..., l, is connected by a set Pj of paths and Pj contains rj ≥ 1 paths.
Let F := (F1, ..., Fm), m := r1 + ... + rl stand for the path (vector) flow. Assume
that the travel cost of the path s, s = 1, ...,m is a set T (F, µ) ⊆ R+, where µ ∈ M
is a perturbing parameter. Then we have a multifunction T : Rm × M → 2Rm

+

with T (F, µ) = (T1(F, µ), ..., Tm(F, µ)). As proposed in [19], the capacity of the
paths is taken into account and this results in the constraint

F ∈ A :=
{
F ∈ Rm | 0 ≤ γs ≤ Fs ≤ Γs, s = 1, ...,m

}
.

For the case of multivalued costs, the following generalized Wardrop equilibrium
was proposed in [25].

Definition 5.1.

(i) A path (vector) flow F̄ is called a weak equilibrium (vector) flow if,
∀Wj,∀q, s ∈ Pj,∃t ∈ T (F̄ , µ),

[tq < ts] =⇒ [F̄q = Γq or F̄s = γs].

(ii) A path (vector) flow F̄ is said to be a strong equilibrium (vector) flow
if (i) is satisfy with ∃t ∈ T (F̄ , µ) being replaced by ∀t ∈ T (F̄ , µ).

Assume that the travel demand ρj of the O/D pair Wj, j = 1, ..., l, depends
on the (weak or strong) equilibrium (vector) flow. Assume further that the net-
work suffers a perturbation expressed by a perturbing parameter λ ∈ Λ. So we
have a mapping ρ : Rm × Λ → Rl

+. Let the Kronecker numbers be

φjs =

{
1, if s ∈ Pj,

0, if s /∈ Pj,
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and
φ =

(
φjs

)
, j = 1, ..., l; s = 1, ...,m.

Then, the set of the path (vector) flows satisfying exactly the demands is{
F ∈ Rm | F ∈ A, φF = ρ(F̄ , λ)

}
.

However, we are interested in vector flows satisfying the demands with tolerances
as follows. Let ε : Rm → R+ be a continuous function. We adopt the set of the
feasible path flows as

K(F̄ , λ) :=
{
F ∈ Rm | F ∈ A, φF ∈ B

(
ρ(F̄ , λ), ε(F̄ )

)}
,

where B(ρ, ε) is the closed ball of radius ε and centered at ρ.

Similarly as for the classical case, for the case with multivalued costs it is
proved in [25] that a feasible path flow F̄ is a weak (or strong) equilibrium flow
if and only if F̄ is a solution of the case r = w (or r = s, respectively) of the
quasivariational inequality

(QVI’) Find F̄ ∈ K(F̄ , λ) such that (F, t̄) r K(F̄ , λ)× T (F̄ , µ),

〈t̄, F − F̄ 〉 ≥ 0,

which is a special case of (QVI) in Section 1(d).

Let H(U, V ) stand for the Hausdorff distance between the two sets U, V in
a metric space with the metric d, i.e.

H(U, V ) = max
{

sup
u∈U

d(u, V ), sup
v∈V

d(v, U)
}
,

where d(u, V ) = infv∈V d(u, v) is the distance between u and V . We precede the
consideration of the solution set by some auxiliary results. The proof of the first
lemma is elementarily technical and is omitted.

Lemma 5.1. For two balls B(ρ1, ε1) and B(ρ2, ε2) in Rl we have

H
(
B(ρ1, ε1), B(ρ2, ε2)

)
= d(ρ1, ρ2) + |ε1 − ε2|.

Lemma 5.2 ([1], Lemma 5.1). Let I be a l × m matrix, let e1, e2 ∈ Rl

and let Si be the solution set of the equation Ix = ei, i = 1, 2. Then there exists
θ = θ(I) > 0 such that, ∀x1 ∈ S1,∃x2 ∈ S2,

‖x1 − x2‖ ≤ θ‖e1 − e2‖.

Lemma 5.3. K(F, λ) is compact for all F and λ. If ρ(., .) and ε(.) are
continuous mappings at (F0, λ0), then the feasible set K(., .) is continuous (in the
Berge sense) at (F0, λ0).

Proof. Set

K1(F, λ) =
{
F ∈ Rm | φF ∈ B(ρ(F, λ), ε(F ))

}
.
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Then K1(F, λ) is closed and convex and hence K(F, λ) = K1(F, λ)∩A is compact,
since A is compact. Now we compute the Hausdorff distance of K1(F1, λ1) and
K1(F2, λ2). For arbitrary F ∈ K1(F1, λ1), there is e1 ∈ B(ρ(F1, λ1), ε(F1)) such
that φF = e1. By Lemma 5.1, e2 ∈ B(ρ(F2, λ2), ε(F2)) exists such that

‖e1 − e2‖ ≤ ‖ρ(F1, λ1)− ρ(F2, λ2)‖+ |ε(F1)− ε(F2)|.
Let G be in K1(F2, λ2) with φG = e2. Lemma 5.2 implies the existence of
θ = θ(φ) > 0 such that

‖F −G‖ ≤ θ‖e1 − e2‖ ≤ θ
(
‖ρ(F1, λ1)− ρ(F2, λ2)‖+ |ε(F1)− ε(F2)|

)
.

Consequently

H
(
K1(F1, λ1), K1(F2, λ2)

)
≤ θ‖ρ(F1, λ1)− ρ(F2, λ2)‖+ θ|ε(F1)− ε(F2)|.

By this, the continuity of ρ and ε at (F0, λ0) implies the Hausdorff continuity of
K1(., .) at (F0, λ0). Hence, so is K(., .) = K1(., .) ∩ A. By the compactness of
K(F0, λ0), K(., .) is also (Berge) continuous at (F0, λ0). �

Lemma 5.4. If ρ(., .) and ε(.) are continuous then E(.) = {F ∈ A | F ∈
K(F, .)} is closed, usc and has compact values.

Proof. We check that E(.) is closed. We have

E(λ) = A ∩ {F ∈ Rm | ‖φF − ρ(F, λ) ≤ ε(F )} := A ∩ A1(λ).

Let Fn ∈ E(λn), λn → λ0 and Fn → F0. Then F0 ∈ A as A is compact. On the
other hand, as ρ, ε and φ are continuous, passing

‖φFn − ρ(Fn, λn)‖ ≤ ε(Fn)

to the limit one obtains

‖φF0 − ρ(F0, λ0)‖ ≤ ε(F0),

i.e. F0 ∈ E(λ0) and hence E(.) is closed. Since A is compact, E(.) is usc. �

As opposed to the upper semicontinuity, the lower semicontinuity of E(.)
is not guaranteed by the continuity of ρ(., .) and ε(.) as shown by the following
example.

Example 5.4. Let m = l = 1, φ = 1, Λ = [0, 1], A = [0.2], ρ(F, λ) =
F 2 − 2λ2 − λ and ε(F ) = F 2. Then

E(λ) = A ∩ {F ∈ R | F ∈ B(F 2 − 2λ2 − λ, F 2)} := A ∩ A1(λ).

We compute
A1(λ) = {F ∈ R | |F 2 − F − 2λ2 − λ| ≤ F 2}

= [−2λ2 − λ,−λ] ∪ [
1

2
+ λ,∞).

Consequently,

E(λ) =

{
{0} ∪ [1

2
, 2], if λ = 0,

[1
2

+ λ, 2], if λ 6= 0.

Therefore E(.) is not lsc at 0.
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Now we study the semicontinuity of the solution set Sr(λ, µ) of (QVI’), i.e.
of the traffic network problem, with respect to (λ, µ).

Corollary 5.7. Assume that

(a) ρ(., .) and ε(.) are continuous in Rm × {λ0} and Rm, respectively;

(b) in A× {µ0}, T is usc with compact values if r = w, and lsc if r = s.

Then Sr is usc and closed at (λ0, µ0) and Sr(λ0, µ0) is compact.

Proof. To apply Corollary 4.1 we verify its assumptions. (i’) is fulfilled
by assumption (a) and Lemmas 5.3, 5.4. (ii’) is satisfied by (b). Finally, by
the continuity of 〈., .〉, if (tn, Fn, F̄n) → (t0, F0, F̄0) and 〈tn, Fn − F̄n〉 ≥ 0 then
〈t0, F0 − F̄0〉 ≥ 0. Hence (iii′uα) is satisfied.

For the compactness of Sr(λ0, µ0) it suffices to prove the closedness of
Sr(λ0, µ0) (as A is compact). By the similarity we do this only for the case
r = w. Let F̄n ∈ Sw(λ0, µ0), F̄n → F̄0. Then, ∀Fn ∈ K(F̄n, λ0), ∃t̄n ∈ T (F̄n, µ0),

(5.1) 〈t̄n, Fn − F̄n〉 ≥ 0.

By the closedness of E(λ0), F̄0 ∈ E(λ0). Suppose to the contrary that F̄0 /∈
Sw(λ0, µ0), i.e. ∃F0 ∈ K(F̄0, λ0),∀t̄ ∈ T (F̄0, µ0),

(5.2) 〈t̄, F0 − F̄0〉 < 0.

By the lower semicontinuity of K (see Lemma 5.3), there exists F̄n ∈ K(F̄n, λ0),
Fn → F0. Since T (., µ0) is usc with compact values, we can assume that t̄n → t̄0,
for some t̄0 ∈ T (F̄0, µ0), leading to a contradiction between (5.1) and (5.2) �

Remark 5.1. Note that for the lower semicontinuity of Sr we cannot apply
the results in Section 3 as in Corollary 5.7. The reason is that assumption (ivrα)
is not satisfied in this special case (since for each F̄ ∈ Sr(λ0, µ0), we take F =
F̄ ∈ K(F̄ , λ0), then for all t ∈ T (F̄ , µ0), 〈t, F − F̄ 〉 = 0). Now we derive the lower
semicontinuity of Sr by using a relaxed assumption of (ivrα) as follows.

In the sequel we use the following condition (Ar), r ∈ {w, s}.
(Aw) ∀F1, F2 ∈ Sw(λ0, µ0),

[∃t1 ∈ T (F1, µ0), 〈t1, F2−F1〉 > 0] ⇒ [∀t2 ∈ T (F2, µ0), 〈t2, F2−F1〉 ≥ 0].

(As) ∀F1, F2 ∈ Ss(λ0, µ0),

[∀t1 ∈ T (F1, µ0), 〈t1, F2−F1〉 > 0] ⇒ [∃t2 ∈ T (F2, µ0), 〈t2, F2−F1〉 ≥ 0].

Corollary 5.8. In addition to the assumptions of Corollary 5.7, assume
that (Ar) is satisfied. Assume further that

(c) ∀F̄ ∈ Sr(λ0, µ0), (F, t̄ ) r
(
Sr(λ0, µ0) \ {F̄}

)
× T (F̄ , µ0),

〈t̄, F − F̄ 〉 > 0.
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Then Sr is continuous at (λ0, µ0).

Proof. By Corollary 5.7, Sr is usc at (λ0, µ0). By the similarity we show
that Sr is lsc at (λ0, µ0) only for r = s. Suppose there are (λn, µn) → (λ0, µ0)
and F0 ∈ Ss(λ0, µ0) such that ∀Fn ∈ Ss(λn, µn), Fn 6→ F0. Let F̄n ∈ Ss(λn, µn).
Since E is usc and E(λ0) is compact, we can assume that F̄n → F̄0, for some
F̄0 ∈ E(λ0). By Corollary 5.7, Ss is closed at (λ0, µ0), whence F̄0 ∈ Ss(λ0, µ0).
Hence F̄0 6= F0. Assumption (c) implies that, ∀t̄ ∈ T (F̄0, µ0),∀t ∈ T (F0, µ0),

〈t, F̄0 − F0〉 > 0,

〈t̄, F0 − F̄0〉 > 0,

contradicting assumption (As). �

The following assumptions can replace assumptions (Ar) and (c) of Corollary
5.8.

(A′
w) ∀F1, F2 ∈ Sw(λ0, µ0),

[∃t1 ∈ T (F1, µ0), 〈t1, F2−F1〉 ≥ 0] ⇒ [∀t2 ∈ T (F2, µ0), 〈t2, F2−F1〉 ≥ 0].

(A′
s) ∀F1, F2 ∈ Ss(λ0, µ0),

[∀t1 ∈ T (F1, µ0), 〈t1, F2−F1〉 ≥ 0] ⇒ [∃t2 ∈ T (F2, µ0), 〈t2, F2−F1〉 ≥ 0].

Note that (Aw) ((As)) is a strong (weak, respectively) quasimonotonicity of
T , while (A′

w) ((A′
s)) is a strong (weak, respectively) pseudomonotonicity of T .

Corollary 5.9. Corollary 5.8 is still valid if assumption (Ar) is replaced
by (A′

r) and assumption (c) by

(c′) ∀F1, F2 ∈ Sr(λ0, η0),∃t2 ∈ T (F2, µ0), 〈t2, F2 − F1〉 = 0 =⇒ F1 = F2;

(d′) ∀F1 ∈ Sr(λ0, µ0), (F2, t̄) r Sr(λ0, µ0)× T (F1, µ0),

〈t̄, F2 − F1〉 ≥ 0.

Proof. We prove the case where r = w similarly to the first part of the proof
for Corollary 5.8, we have F̄0 ∈ Sw(λ0, µ0) and F̄0 6= F0. By (d’), ∃t ∈ T (F0, µ0),

〈t, F̄0 − F0〉 ≥ 0.

By assumption (A′
w), ∀t̄ ∈ T (F̄0, µ0),

〈t̄, F̄0 − F0〉 ≥ 0.

By (d’), ∃t̄ ∈ T (F̄0, µ0),
〈t̄, F0 − F̄0〉 ≥ 0,

and hence 〈t̄, F0 − F̄0〉 = 0. Assumption (c’) implies that F̄0 = F0, which is
impossible. �

In the case where T is a single-valued mapping, Corollary 5.9 improves
Theorem 4.1 of [32], since here (c’) and (d’) need to be fulfilled only at F ∈
Sr(λ0, µ0). Even for this special case, Corollary 5.8 is a new one.
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