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Abstract

In this paper we introduce and study Bessel processes {Bx
t } which take

values in a d-dimensional nonnegative cone R+d of Rd and are con-
structed via the multi-dimensional Kingman convolution . We prove that
every d-variate Bessel process is a stationary independent increments-type
process. Moreover, a stochastic integral with respect to {Bx

t }with the con-
vergence in distribution is defined.



1 Introduction and prelimilaries.

Let P denote the class of all p.m.’s on the positive half-line R+ endowed
with the weak convergence and ◦ := ∗1,β denote the Kingman convolution
(Hankel transforms ) which was introduced by Kingman [5] in connection
with the addition of independent spherically symmetric random vectors
in Eucliean n-space. Namely, for each continuous bounded function f on
R+ we write :
∫ ∞

0

f(x)µ ∗1,β ν(dx) =
Γ(s + 1)√
πΓ(s + 1

2
)

∫ ∞

0

∫ ∞

0

∫ 1

−1

(1)

f((x2 + 2uxy + y2)1/2)(1− u2)s−1/2µ(dx)ν(dy)du,

where µ, ν ∈ P , β = 2(s + 1) > 1(cf. Kingman [5] and Urbanik [15].
The Kingman convolution algebra (P , ◦) is the most important example of
Urbanik convolution algebras (cf Urbanik [15]. In the language of Urbanik
convolution algebras, the characteristic measure, say σs, of the Kingman
convolution has the Rayleigh density

σs(x) =
2

Γ(s + 1)
(s + 1)s+1x2s+1exp(−(s + 1)x2)dx (2)

with the characteristic exponent κ = 2 and the kernel Λs

Λs = Γ(s + 1)Js(x)/(1/2x)s. (3)

The radial characteristic function (rad.ch.f.) of a p.m. µ ∈ P , denoted by
µ̂(u), is defined by

µ̂(u) =

∫ ∞

0

Λs(ux)µ(dx), (4)

for every u ∈ R+. In particular,the rad. ch.f. of σs is

σ̂s(u) = exp(−u2), u ∈ R+. (5)

It should be noted that, since the rad.ch.f. is defined uniquely up to the
delation mapping x → ax, a > 0, x ∈ R+, the representation (5) of the
rad.ch.f. of σs may differ from that in Urbanik [15]. It is known (cf.Kingman[5],Theorem
1), that the kernel Λs itself is an ordinary ch.f. of a p.m., say Gs, defined on
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the interval [-1,1] as the following

dGs(λ) =
Γ(s + 1)

π
1
2 Γ(s + 1

2
)
(1− λ2)s− 1

2 dλ (s ∈ (−1

2
,∞)) (6)

G− 1
2

=
1

2
(δ1 + δ−1) (s = −1

2
),

G∞ = δ0 (s = ∞).

Thus if θs denotes a r.v. with distribution Fs then for each t ∈ R+,

Λs(t) = Eexp(itθs) =

∫ 1

−1

exp(itx)dGs(x). (7)

Now we quote a definition of a Bessel process in Revus-Yor[12]

Definition 1. A Bessel process is the square root of the following unique strong
solution of the SDE

Zt = x + 2

∫ t

0

√
Zsdβs + βt, (8)

for any β > 0 and x > 0.

It should be noted that Shiga and Watanabe [14] characterized the Bessel
family as one-parameter semigroups of distributions on path spaces W =
C(R+,R) which stands for a convolution approach to Bessel processes.
Our aim in this paper is to study Bessel processes via the Kingman con-
volution method. Therefore we will assume that the dimension β > 1.
Moreover, we will consider the Bessel process started at 0 only and will
denote it by B(t), t > 0.

2 The Cartersian product of Kingman convolu-
tion algebras

This concept was introduced in Nguyen [10]. Namely, let P(Rk+) denote
the class of all p.m.’s on Rk+ equipped with the weak convergence. Let
F1,F2 ∈ P(Rk+) be of the product form

Fi = τ 1
i × ...× τ k

i (9)
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where τ j
i ∈ P , j=1,2,... and i=1,2. We put

F1©kF2 = (F 1
1 ◦ F 2

1 )× ...× (F k
1 ◦ F k

2 ). (10)

Since convex combinations of p.m.’s of the form (9) are dense in P(Rk+)
the relation (10) can be extended to arbitrary p.m.’s on P(Rk+). For every
F ∈ P(Rk+) the k-dimensional radial ch.f F̂ is defined by

F̂(t) =

∫

Rk+

k∏
j=1

Λs(tjxj)F(dx), (11)

Let λ, λ1, ..., λk be i.i.d. r.v’s with the common distribution Gs. Let X =
(X1, ..., Xk) be a Rk+-valued random vector with distribution F. Further,
suppose that r.v’s X and Λ, where Λ = (λ1, ..., λk), are independent.
Set

ΛX = {λ1X1, ..., λkXk} (12)

and
GsF

d
= ΛX. (13)

Then, we have
F̂(y) = E(ei<y,ΛX>), (14)

where y = (y1, ..., yk) ∈ Rk+ and <,> denotes the inner product inRk.
In fact, we have

E(ei<(λ1y1,...,λkyk),X>) =

∫

Rk+

E(ei
Pk

j=1(yjxjλjF (dx)

=

∫

Rk+

Πk
j=1Λs(tjxj)F (dx)

= F̂(y).

Thus, F̂(y) is an ordinary symmetric k-dimensional ch.f., and hence it is
uniformly continuous. The following theorem is a simple consequence of
(1.3) and (2.2).

Theorem 2. The pair (P(Rk+,©k) is a commutative topological semigroup with
δ0 as the unit element. Moreover, the operation ©k is distributive w.r.t. convex
combinations of p.m.’s ∈ P(Rk+).

4



In the sequel, the pair (P(Rk+,©k) will be called a k-dimensional King-
man convolution algebra. For each vector x ∈ Rk+ the generalized translation
operators (shortly, g.t.o.’s) Tx,x ∈ Rk+ acting on the Banach space Cb(Rk+)
of real bounded continuous functions f are defined, for each y ∈ Rk+, by

Txf(y) =

∫

Rk+

f(u)δx ©k δy(du). (15)

In terms of these g.t.o.’s the k-dimentional rad. ch.f. of p.m.’s on Rk+ can
be characterized as the following:

Theorem 3. A real bounded continuous function f onRk+ is a rad.ch.f. of a p.m.,
if and only if f(0) = 1 and f is {Tx}-nonnegative definite in the sense that for
any x1, ...,xk ∈ Rk and λ1, ..., λk ∈ C

k∑
i,j=1

λiλjT
xif(xj) > 0. (16)

(See [10] for the proof ).

Lemma 4. Every p.m. F defined on Rk+ is uniquely determined by its rad.ch.f.
F̂ and the following formula holds:

̂F1 ©k F2(t) = F̂1(y)F̂2(t), (17)

where F1,F2 ∈ P(Rk+) and y ∈ Rk+.

Proof. The formula (17) follows from formulas (1,3,12,14). Now using the
formulas (2,3,9) and a theorem of Weber([6],p.394) and integrating the
function F̂(t1u1, ..., tkuk),
tj, uj ∈ R+, j = 1, ..., k, k − times w.r.t. σs, we get

∫

Rk+

F̂(t1u1, ..., tkuk)σs(du1)...σs(duk) = (18)

∫

R+

...

∫

R+

k∏
j=1

Λs(tjxjuj)F(dx)σs(du1)...σs(duk)

=

∫

Rk+

k∏
j=1

exp{−t2jx
2
j}F(dx),
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which, by change of variables yj = x2
j , j = 1, ..., k and by the uniqueness

of the k-dimensional Laplace transform, implies that F is uniquely deter-
mined by the left-hand side of (18).

Definition 5. A distribution F on Rk+ is said to be Rayleigh, if the GsF defined
by (12) is a k-dimensional symmetric Gaussian p.m.

The following theorem is obvious and its proof is omitted.

Theorem 6. A distribution F of a r.v X on Rk+ is Rayleigh, if and only if for
every x ∈ Rk+ the r.v. < x,X > is one-dimensional Rayleigh.

It is the same as in the case k=1, the i.d. elements can be defined as the
following:

Definition 7. A p.m.µ ∈ P(Rk+ is called i.d.if for every natural m there exists
a p.m.µm such that

µ = µm ©k ...©k µm, (m− terms). (19)

Moreover, a nonnegative stochastic process ξt, t ∈ T is said to be i.d., if each its
finite dimensional distribution is i.d.

Let ID(©k) denote the class of all i.d. elements in (P(Rk+,©k). The
following theorem is a slight generalization of Theorem 7 in Kingman [5].

Theorem 8. µ ∈ ID(©k) if and only if there exist a finite measure M on Rk+

with the property that M({0}) = 0 and for each y = (t1, ..., tk) ∈ Rk+

−logµ̂(y) =

∫

Rk+

(1−
k∏

j=1

Λs(< tjxj >)
1 + ‖x‖2

‖x‖2
M(dx), (20)

where the integrand on the right-hand side of (21) is assumed to be

lim
‖x‖→0

(1−
k∏

j=1

Λs(< tjxj >)
1 + ‖x‖2

‖x‖2
=

k∑
j=1

t2j . (21)

In particular, if M = 0 then µ becomes a Rayleigh measure with the rad.ch.f.

−logµ̂(y) =
k∑

j=1

λjt
2
j , (22)

for any y ∈ Rk+ and λj > 0, j = 1, ..., k.
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Proof. The proof of the first part of Theorem is a similar to that of Theorem
7 in Kingman [5]. To prove the remainder part we assume that k=2. The
proof for the case k > 3 is similar. For t,x ∈ R2+ we put

H = H(t1, t2, x1, x2) :=
1− Λs(t1x1)Λ(t2x2)

x2
1 + x2

2

(23)

By virtue of Kingman([5], Formula (24)) and by the series representation
of Λs(.) (Kingman[5], Formula (4))and by the fact that the measure Gs is
symmetric on the interval [−1, 1] we have

1− Λs(t1x1)Λs(t2x2) =

∫ 1

−1

{1− Λs((t
2
1x

2
1 + t22x

2
2 + 2ut1t2x1x2)

1/2)}dGs(u)

=

∫ 1

−1

(
1

2
(t21x

2
1 + t22x

2
2 + 2ut1t2x1x2)dGs(u)−R

=
1

2
(t21x

2
1 + t22x

2
2)−R (24)

where R is given by

R =

∫ 1

−1

∞∑
r=2

(−1

2
)r(t21x

2
1 + t22x

2
2 + 2ut1t2x1x2)

rs!/r!(s + r)!dGs(u).

which implies that for fixed t1, t2 we have

lim
(x2

1+x2
2)→0

R

x2
1 + x2

2

= 0. (25)

Consequently, such that for any t1, t2 > 0

lim
(x2

1+x2
2)→0

1− Λs(t1x1)Λs(t2x2)

x2
1 + x2

2

= t22 + t22 (26)

which proves (21). Now, letting M in (20) tend to measure zero and in-
tegrating both sides of (22) w.r.t.1+‖x‖2

‖x‖2 M(dx) we conclude, by virtue of
(25)and (26), that the formula (20) holds. Finally, since every projection of
the limit p.m. is Rayleigh, it follows from Theorem Theorem 7 in King-
man [5]that the limit p.m. with rad.ch.f. of the form (22) must be a k-
dimensional Rayleigh p.m.
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It is evident, from (22), that µ is Rayleigh in Rk+ if and only if for each
y ∈ Rk+ the image of µ under the projection Πyx =< x,y > fromRk+ onto
R+ is Rayleigh onR+. Hence and by the Cramér property of the Kingman
convolution (cf. Urbanik [16]) we have the following theorem:

Theorem 9. Suppose that µ, ν ∈ P(Rk+) and µ©k ν is Rayleigh. Then both of
them are Rayleigh.

3 Multivariate symmetric random walks

Given a p.m. µ ∈ P and n=1,2,... we put, for any x ∈ R+ and B ∈
B(R+), the Borel σ-field of R+,

Pn(x,E) = δx ◦ µ◦n(E), (27)

here the power is taken in the convolution ◦ sense. Using the rad.ch.f.
one can show that {Pn(x,E)} satisfies the Chapman-Kolmogorov equation
and therefore, there exists a homogenuous Markov sequence, say {Sx

n},
n=0,1,2,..., with {Pn(x,E)} as its transition probability. More generaly, we
have

Lemma 10. Suppose that {µk, k = 1, 2, ...} is a sequence of p.m’s on Rk+. For
any 0 6 n < m,x ∈ Rk+, E ∈ B(Rk+),

Pn,m(x, E) = δx ©k µn ©k µn+1 ©k ...©k µm−1(E). (28)

Then, {Pn,m(x, E)} satisfies the Chapman-Kolmogorov equation and therefore
there exists a Markov sequence {Xx

n}, n = 0, 1, 2, ... with Pn,m(x,E) as its tran-
sition probability.

Proof. It can be proved by using the rad.ch.f.

Since σs is i.d. w.r.t. the Kingman convolution the family of p.m.’s

q(t, x, E) := σ◦ts ◦ δx(E)

where t, x ∈ R, E is a Borel subset of R+ and the power is taken in the
Kingman convolution sense, satisfies the Chapman-Kolmogorov equation
and stands for a transition probability of a homogenuous Markov process
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Bx
t , t, x ∈ R+, such that , with probability 1, its realizations are continuous

(cf. Nguyen [8] and Shiga-Wantanabe [14]).

Let Hs be a k-dimensional Rayleigh measure with rad.ch.f.(20) and

P (t,x, E) := H t
s ©s δx(E), (29)

where t > 0,x ∈ Rk+, E is a Borel subset of Rk+ and the power is taken
in the sense of convolution ©s. Then there exists a homogeneous Markov
process, denoted by {Bx

t } with values in Rk+ and transition probability
(28).

Definition 11. Every Markov process {Bx
t } with transition probability given by

(28) is called a k-dimensional Bessel process.

From the above definition and by (28) we have:

Theorem 12. The rad.ch.f. of {Bx
t }, t > 0 is of the form

−logEΛ(< y,Bx
t >=< y,x > t + t

k∑
j=1

λ2
jy

2
j , (30)

where y ∈ Rk+, λj > 0, j = 1, ..., k and t > 0.

Suppose that Xj = {Xj
1 , X

j
2 , ..., X

j
k}, j = 1, 2 are Rk+-valued indepen-

dent r.v.’s with the corresponding distributions Fj, j = 1, 2. Put

X1
⊕

X2 = {X1
1 ⊕X2

1 , ..., X
1
k ⊕X2

k}. (31)

Then we get a k-dimensional radial sum of r.v.’s. By induction one can de-
fine such an operation for a finite number of r.v.’s. It is evident that the
radial sum is defined up to distribution of r.v.’s and that the operation

⊕
is associative.

It is a natural problem to consider the usual multiplication of aRk+-valued
r.v. and a nonnegative scalar. It is easy to see that the multiplication is dis-
tributive w.r.t. the radial sums defined by (31) which helps us to introduce
the following stochastic integral.

Definition 13. Let C be a σ-ring of subsets of a set X . A function

M : C → L+ := L+(Ω,F ,P), (32)
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where L+ denotes the class of all nonnegative r.v.’s on (Ω,F ,P), is said to be an
©k-scattered random measure, if

(i) M(∅) = 0 (P.1),

(ii) For any A,B ∈ C, A∩B = ∅, then M(A)andM(B) are independent and

M(A ∪B)
d
= M(A)

⊕
M(B)

(iii) For any A1, A2, ... ∈ C, the r.v.’s M(Aj), j = 1, 2, ... are independent
and

M(∪∞j=1Aj)
d
=

∞⊕
j=1

M(Aj), (33)

where the series on the right-hand side of (33) is convergent in distribution.

It should be noted that the above definition of ©k-scattered random mea-
sure is subject to the equality in probability which, however, can be modi-
fied in the same way as Rajput and Rosinski ([11],Lemma 5.1 and Theorem
5.2) so that the new ©k-scattered random measure is defined almost surely.
Specificly, we state without proof the above mentioned Lemma used by
Rajput and Rosinski.

Lemma 14. (O. Kallenberg) Let ξ and η′ be random elements defined on the
probability space (Ω, P ) and (Ω′, P ′), and taking values in the spaces S and T,
respectively, where S is a separable metric space and T is a Polish space. Assume
that ξ

d
= f(η′) for some Borel measurable function f : T → S. Then there exists a

random element η
d
= η′ on the (”randomized”) probability space (Ω× [0, 1], P ×

Leb) such that η = f(η′) a.s. P × Leb.

It is well known that if {W (t)}, t ∈ R+ is a Wiener process, then there
exists a Gaussian stochastic measure N(A), A ∈ B0, where B0 is the σ−ring
of bounded Borel subsets of R+ with the property that, for every t > 0,
W(t) = N((0, t]). The same it is also true for Bessel processes. Namely, we
get

Theorem 15. Suppose that {B0
t } is a Bessel process started at 0. Then there

exists a unique ©k-scattered random measure {M(A)}, A ∈ B0, such that for
each t > 0

M((0, t])
d
= B0(t). (34)
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Proof. It is the same as the proof for the case k=1 in Nguyen([10], Theorem
4.2).

Definition 16. Let M be a©k-scattered random measure defined by the equation
(33). Then for any 0 6 s < t the quantities M((s, t]) are called ©k-increments
of the Bessel process {B0

t}.

By the same reasoning as in Nguyen ([10],Theorem 4.3) we have

Theorem 17. Every k-dimensional Bessel process B0
t , t > 0 is a stationary inde-

pendent ©k-increments process.

Now we proceed to construct a new non-linear stochastic integration of
a nonnegative function w.r.t. a Bessel process. For simplicity we assume
that k=1 and write the Bessel process started at 0 as B(t), t > . Let M denote
the ◦-scattered random measure associated with B(.) and letL2+[0, T ], T >
0 the Hilbert space of all measurable nonnegative functions f on [0,T] such
that

‖f‖2 :=

∫ T

0

f(u)2du < ∞. (35)

Given a partition Π := {t0 = 0 < t1 < ... < tN 6 T} of an interval
[0, T ], T > 0 we put

fΠ(t) =
N∑

i=0

ftiχ(ti,ti+1](t). (36)

Then, the integral
∫ T

0
fΠ(t)d◦B(t) is defined as

∫ 1

0

fΠ(t)d◦B(t)
d
=

N⊕
i=1

ftiB([ti, ti+1))). (37)

The integral
∫ T

0
f(t)d◦B(t) is defined as:

∫ T

0

ξ(t)d◦B(t) = lim|Π|→0

N⊕
i=1

fiM(ti, t(i+1)), (38)

where |Π| := max{ti+1 − ti, i = 0, 1, ...N} and the limit is taken in the
distribution sense, provided it exists.

Theorem 18. For each function f ∈ L2+[0, T ] the integral (36) exists in the con-
vergence in distribution and for any α > 0 the rad.ch.f. of S :=

∫ T

0
αf(u)d◦B(u)
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is given by

− log EΛs(vS) = v2

∫ T

0

f 2(u)du, (39)

v > 0.

Proof. We have

− log EΛs(v
N⊕

i=1

fiM(ti, ti+1) = v2

N∑
i=1

(ti+1 − ti)f
2
i (40)

→ v2

∫ T

0

f 2(u)du

which implies the conclusion of the theorem.

By the above definition and by using the rad.ch.f. we get the following
theorem:

Theorem 19. (i) Let f1, f2 ∈ L2+[0, T ] and c > 0. We have
∫ T

0

cd◦B(t) = cB(T ); (41)

(ii) If supp(f1)∩ supp(f2) = ∅, then
∫ T

0
f1(t)d

◦B(t) and
∫ T

0
f2(t)d

◦B(t) are
independent and

∫ T

0

{f1(t)(t) + f2(t)}d◦B(t) =

∫ T

0

f1(t)d
◦B(t) +

∫ T

0

f2(t)d
◦B(t) (42)

(iii) ( non-linearity) In general
∫ T

0

{f1(t)(t) + f2(t)}d◦B(t) 6=
∫ T

0

f1(t)d
◦B(t) +

∫ T

0

f2(t)d
◦B(t). (43)

iii If fn → f in L2+[0, T ], then
∫ T

0

fn(t)d◦B(t) →
∫ T

0

f(t)d◦B(t) (44)

in distribution.

12



References

[1] Bingham N.H., Random walks on spheres, Z. Wahrscheinlichkeits-
theorie Verw. Geb.,22 (1973),169-172.

[2] Cox,J.C., Ingersoll, J.E. Jr., and Ross, S.A., A theory of the term struc-
ture of interest rates. Econometrica, 53(2), 1985.

[3] Jeanblanc M., Pitman J., Yor M., Self-similar processes with indepen-
dent increments associated with Lévy and Bessel processes,100, No.1-
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