A CONVOLUTION APPROACH TO MULTIVARIATE BESSEL PROCESES

Thu Van Nguyen Ogawa Shigeyoshi Makoto Yamazato

October 6, 2006

Abstract

In this paper we introduce and study Bessel processes $\{\mathbf{B}_t^{\mathbf{x}}\}\$ which take values in a d-dimensional nonnegative cone \mathcal{R}^{+d} of \mathcal{R}^d and are constructed via the multi-dimensional Kingman convolution. We prove that every d-variate Bessel process is a stationary independent increments-type process. Moreover, a stochastic integral with respect to $\{\mathbf{B}_t^{\mathbf{x}}\}\$ with the convergence in distribution is defined.

1 Introduction and prelimilaries.

Let \mathcal{P} denote the class of all p.m.'s on the positive half-line \mathcal{R}^+ endowed with the weak convergence and $\circ := *_{1,\beta}$ denote the Kingman convolution (Hankel transforms) which was introduced by Kingman [5] in connection with the addition of independent spherically symmetric random vectors in Eucliean n-space. Namely, for each continuous bounded function f on \mathcal{R}^+ we write :

$$\int_{0}^{\infty} f(x)\mu *_{1,\beta} \nu(dx) = \frac{\Gamma(s+1)}{\sqrt{\pi}\Gamma(s+\frac{1}{2})} \int_{0}^{\infty} \int_{0}^{\infty} \int_{-1}^{1} (1) f((x^{2}+2uxy+y^{2})^{1/2})(1-u^{2})^{s-1/2}\mu(dx)\nu(dy)du,$$

where $\mu, \nu \in \mathcal{P}$, $\beta = 2(s + 1) \ge 1$ (cf. Kingman [5] and Urbanik [15]. The Kingman convolution algebra (\mathcal{P}, \circ) is the most important example of Urbanik convolution algebras (cf Urbanik [15]. In the language of Urbanik convolution algebras, the characteristic measure, say σ_s , of the Kingman convolution has the Rayleigh density

$$\sigma_s(x) = \frac{2}{\Gamma(s+1)} (s+1)^{s+1} x^{2s+1} exp(-(s+1)x^2) dx$$
(2)

with the characteristic exponent $\varkappa = 2$ and the kernel Λ_s

$$\Lambda_s = \Gamma(s+1)J_s(x)/(1/2x)^s.$$
(3)

The *radial characteristic function* (rad.ch.f.) of a p.m. $\mu \in \mathcal{P}$, denoted by $\hat{\mu}(u)$, is defined by

$$\hat{\mu}(u) = \int_0^\infty \Lambda_s(ux)\mu(dx),\tag{4}$$

for every $u \in \mathcal{R}^+$. In particular, the rad. ch.f. of σ_s is

$$\hat{\sigma}_s(u) = exp(-u^2), u \in \mathcal{R}^+.$$
(5)

It should be noted that, since the rad.ch.f. is defined uniquely up to the delation mapping $x \to ax, a > 0, x \in \mathbb{R}^+$, the representation (5) of the rad.ch.f. of σ_s may differ from that in Urbanik [15]. It is known (cf.Kingman[5],Theorem 1), that the kernel Λ_s itself is an ordinary ch.f. of a p.m., say G_s , defined on

the interval [-1,1] as the following

$$dG_{s}(\lambda) = \frac{\Gamma(s+1)}{\pi^{\frac{1}{2}}\Gamma(s+\frac{1}{2})} (1-\lambda^{2})^{s-\frac{1}{2}} d\lambda \qquad (s \in (-\frac{1}{2},\infty))$$
(6)
$$G_{-\frac{1}{2}} = \frac{1}{2} (\delta_{1} + \delta_{-1}) \qquad (s = -\frac{1}{2}),$$

$$G_{\infty} = \delta_{0} \qquad (s = \infty).$$

Thus if θ_s denotes a r.v. with distribution F_s then for each $t \in \mathcal{R}^+$,

$$\Lambda_s(t) = Eexp(it\theta_s) = \int_{-1}^1 exp(itx) dG_s(x).$$
(7)

Now we quote a definition of a Bessel process in Revus-Yor[12]

Definition 1. *A* Bessel process is the square root of the following unique strong solution of the SDE

$$Z_t = x + 2\int_0^t \sqrt{Z_s} d\beta_s + \beta t, \qquad (8)$$

for any $\beta \ge 0$ and $x \ge 0$.

It should be noted that Shiga and Watanabe [14] characterized the Bessel family as one-parameter semigroups of distributions on path spaces $\mathbf{W} = C(\mathcal{R}^+, \mathcal{R})$ which stands for a convolution approach to Bessel processes. Our aim in this paper is to study Bessel processes via the Kingman convolution method. Therefore we will assume that the dimension $\beta \ge 1$. Moreover, we will consider the Bessel process started at 0 only and will denote it by $B(t), t \ge 0$.

2 The Cartersian product of Kingman convolution algebras

This concept was introduced in Nguyen [10]. Namely, let $\mathcal{P}(\mathcal{R}^{k+})$ denote the class of all p.m.'s on \mathcal{R}^{k+} equipped with the weak convergence. Let $\mathbf{F}_1, \mathbf{F}_2 \in \mathcal{P}(\mathcal{R}^{k+})$ be of the product form

$$\mathbf{F}_i = \tau_i^1 \times \dots \times \tau_i^k \tag{9}$$

where $\tau_i^j \in \mathcal{P}$, j=1,2,... and i=1,2. We put

$$\mathbf{F}_1 \bigcirc_{\mathbf{k}} \mathbf{F}_2 = (F_1^1 \circ F_1^2) \times \dots \times (F_1^k \circ F_2^k).$$
(10)

Since convex combinations of p.m.'s of the form (9) are dense in $\mathcal{P}(\mathcal{R}^{k+})$ the relation (10) can be extended to arbitrary p.m.'s on $\mathcal{P}(\mathcal{R}^{k+})$. For every $\mathbf{F} \in \mathcal{P}(\mathcal{R}^{k+})$ the k-dimensional radial ch.f $\hat{\mathbf{F}}$ is defined by

$$\hat{\mathbf{F}}(\mathbf{t}) = \int_{\mathcal{R}^{k+}} \prod_{j=1}^{k} \Lambda_s(t_j x_j) \mathbf{F}(\mathbf{dx}),$$
(11)

Let $\lambda, \lambda_1, ..., \lambda_k$ be i.i.d. r.v's with the common distribution G_s . Let $\mathbf{X} = (X_1, ..., X_k)$ be a \mathcal{R}^{k+} -valued random vector with distribution **F**. Further, suppose that r.v's **X** and Λ , where $\Lambda = (\lambda_1, ..., \lambda_k)$, are independent. Set

$$\mathbf{\Lambda X} = \{\lambda_1 X_1, \dots, \lambda_k X_k\}$$
(12)

and

$$G_s \mathbf{F} \stackrel{d}{=} \mathbf{\Lambda} \mathbf{X}.$$
 (13)

Then, we have

$$\widehat{\mathbf{F}}(\mathbf{y}) = E(e^{i < \mathbf{y}, \mathbf{\Lambda} \mathbf{X} >}), \tag{14}$$

where $\mathbf{y} = (y_1, ..., y_k) \in \mathcal{R}^{k+}$ and <,> denotes the inner product in \mathcal{R}^k . In fact, we have

$$E(e^{i < (\lambda_1 y_1, \dots, \lambda_k y_k), \mathbf{X} >)} = \int_{\mathcal{R}^{k+}} E(e^{i \sum_{j=1}^k (y_j x_j \lambda_j} F(d\mathbf{x}))$$
$$= \int_{\mathcal{R}^{k+}} \prod_{j=1}^k \Lambda_s(t_j x_j) F(d\mathbf{x})$$
$$= \widehat{\mathbf{F}}(\mathbf{y}).$$

Thus, $\widehat{\mathbf{F}}(\mathbf{y})$ is an ordinary symmetric k-dimensional ch.f., and hence it is uniformly continuous. The following theorem is a simple consequence of (1.3) and (2.2).

Theorem 2. The pair $(\mathcal{P}(\mathcal{R}^{k+}, \bigcirc_{\mathbf{k}}))$ is a commutative topological semigroup with $\delta_{\mathbf{0}}$ as the unit element. Moreover, the operation $\bigcirc_{\mathbf{k}}$ is distributive w.r.t. convex combinations of p.m.'s $\in \mathcal{P}(\mathcal{R}^{k+})$.

In the sequel, the pair $(\mathcal{P}(\mathcal{R}^{k+}, \bigcirc_{\mathbf{k}})$ will be called a *k*-dimensional Kingman convolution algebra. For each vector $\mathbf{x} \in \mathcal{R}^{k+}$ the generalized translation operators (shortly, g.t.o.'s) $\mathbf{T}^{\mathbf{x}}, \mathbf{x} \in \mathbb{R}^{k+}$ acting on the Banach space $C_b(\mathcal{R}^{k+})$ of real bounded continuous functions f are defined, for each $\mathbf{y} \in \mathcal{R}^{k+}$, by

$$\mathbf{T}^{\mathbf{x}}f(\mathbf{y}) = \int_{\mathcal{R}^{k+}} f(\mathbf{u})\delta_{\mathbf{x}} \bigcirc_{\mathbf{k}} \delta_{\mathbf{y}}(d\mathbf{u}).$$
(15)

In terms of these g.t.o.'s the k-dimentional rad. ch.f. of p.m.'s on \mathcal{R}^{k+} can be characterized as the following:

Theorem 3. A real bounded continuous function f on \mathcal{R}^{k+} is a rad.ch.f. of a p.m., *if and only if* $f(\mathbf{0}) = 1$ and f is $\{\mathbf{T}^{\mathbf{x}}\}$ -nonnegative definite in the sense that for any $\mathbf{x}_1, ..., \mathbf{x}_k \in \mathcal{R}^k$ and $\lambda_1, ..., \lambda_k \in C$

$$\sum_{i,j=1}^{k} \lambda_i \lambda_j \mathbf{T}^{\mathbf{x}_i} f(\mathbf{x}_j) \ge 0.$$
(16)

(See [10] for the proof).

Lemma 4. Every p.m. **F** defined on \mathcal{R}^{k+} is uniquely determined by its rad.ch.f. $\widehat{\mathbf{F}}$ and the following formula holds:

$$\widehat{\mathbf{F}_1 \bigcirc_{\mathbf{k}} \mathbf{F}_2(\mathbf{t})} = \widehat{\mathbf{F}_1}(\mathbf{y}) \widehat{\mathbf{F}_2}(\mathbf{t}), \tag{17}$$

where $\mathbf{F}_1, \mathbf{F}_2 \in \mathcal{P}(\mathcal{R}^{k+})$ and $\mathbf{y} \in \mathcal{R}^{k+}$.

Proof. The formula (17) follows from formulas (1,3,12,14). Now using the formulas (2,3,9) and a theorem of Weber([6],p.394) and integrating the function $\hat{\mathbf{F}}(t_1u_1, ..., t_ku_k)$,

 $t_j, u_j \in \mathcal{R}^+, j = 1, ..., k, k - times$ w.r.t. σ_s , we get

$$\int_{\mathcal{R}^{k+}} \hat{\mathbf{F}}(t_1 u_1, \dots, t_k u_k) \sigma_s(du_1) \dots \sigma_s(du_k) =$$
(18)

$$\int_{\mathcal{R}^+} \dots \int_{\mathcal{R}^+} \prod_{j=1}^k \Lambda_s(t_j x_j u_j) \mathbf{F}(\mathbf{dx}) \sigma_s(du_1) \dots \sigma_s(du_k)$$
$$= \int_{\mathcal{R}^{k+}} \prod_{j=1}^k exp\{-t_j^2 x_j^2\} \mathbf{F}(\mathbf{dx}),$$

which, by change of variables $y_j = x_j^2$, j = 1, ..., k and by the uniqueness of the k-dimensional Laplace transform, implies that **F** is uniquely determined by the left-hand side of (18).

Definition 5. A distribution \mathbf{F} on \mathcal{R}^{k+} is said to be Rayleigh, if the $G_s\mathbf{F}$ defined by (12) is a k-dimensional symmetric Gaussian p.m.

The following theorem is obvious and its proof is omitted.

Theorem 6. A distribution \mathbf{F} of a r.v \mathbf{X} on \mathcal{R}^{k+} is Rayleigh, if and only if for every $\mathbf{x} \in \mathcal{R}^{k+}$ the r.v. $\langle \mathbf{x}, \mathbf{X} \rangle$ is one-dimensional Rayleigh.

It is the same as in the case k=1, the i.d. elements can be defined as the following:

Definition 7. A $p.m.\mu \in \mathcal{P}(\mathcal{R}^{k+} \text{ is called i.d.if for every natural } m \text{ there exists } a p.m.\mu_m \text{ such that}$

$$\mu = \mu_m \bigcirc_{\mathbf{k}} \dots \bigcirc_{\mathbf{k}} \mu_m, (m - terms).$$
(19)

Moreover, a nonnegative stochastic process $\xi_t, t \in T$ is said to be i.d., if each its finite dimensional distribution is i.d.

Let $ID(\bigcirc_{\mathbf{k}})$ denote the class of all i.d. elements in $(\mathcal{P}(\mathcal{R}^{k+},\bigcirc_{\mathbf{k}}))$. The following theorem is a slight generalization of Theorem 7 in Kingman [5].

Theorem 8. $\mu \in ID(\bigcirc_{\mathbf{k}})$ if and only if there exist a finite measure M on \mathcal{R}^{k+} with the property that $M(\{\mathbf{0}\}) = 0$ and for each $\mathbf{y} = (t^1, ..., t^k) \in \mathbf{R}^{k+}$

$$-log\hat{\mu}(\mathbf{y}) = \int_{\mathcal{R}^{k+}} (1 - \prod_{j=1}^{k} \Lambda_s(\langle t_j x_j \rangle) \frac{1 + \|\mathbf{x}\|^2}{\|\mathbf{x}\|^2} M(d\mathbf{x}),$$
(20)

where the integrand on the right-hand side of (21) is assumed to be

$$\lim_{\|\mathbf{x}\| \to 0} (1 - \prod_{j=1}^{k} \Lambda_s(\langle t_j x_j \rangle) \frac{1 + \|\mathbf{x}\|^2}{\|\mathbf{x}\|^2} = \sum_{j=1}^{k} t_j^2.$$
(21)

In particular, if M = 0 then μ becomes a Rayleigh measure with the rad.ch.f.

$$-log\hat{\mu}(\mathbf{y}) = \sum_{j=1}^{k} \lambda_j t_j^2,$$
(22)

for any $\mathbf{y} \in \mathcal{R}^{k+}$ and $\lambda_j \ge 0, j = 1, ..., k$.

Proof. The proof of the first part of Theorem is a similar to that of Theorem 7 in Kingman [5]. To prove the remainder part we assume that k=2. The proof for the case $k \ge 3$ is similar. For $\mathbf{t}, \mathbf{x} \in \mathcal{R}^{2+}$ we put

$$H = H(t_1, t_2, x_1, x_2) := \frac{1 - \Lambda_s(t_1 x_1) \Lambda(t_2 x_2)}{x_1^2 + x_2^2}$$
(23)

By virtue of Kingman([5], Formula (24)) and by the series representation of $\Lambda_s(.)$ (Kingman[5], Formula (4))and by the fact that the measure G_s is symmetric on the interval [-1, 1] we have

$$1 - \Lambda_{s}(t_{1}x_{1})\Lambda_{s}(t_{2}x_{2}) = \int_{-1}^{1} \{1 - \Lambda_{s}((t_{1}^{2}x_{1}^{2} + t_{2}^{2}x_{2}^{2} + 2ut_{1}t_{2}x_{1}x_{2})^{1/2})\}dG_{s}(u)$$

$$= \int_{-1}^{1} (\frac{1}{2}(t_{1}^{2}x_{1}^{2} + t_{2}^{2}x_{2}^{2} + 2ut_{1}t_{2}x_{1}x_{2})dG_{s}(u) - R$$

$$= \frac{1}{2}(t_{1}^{2}x_{1}^{2} + t_{2}^{2}x_{2}^{2}) - R$$
(24)

where R is given by

$$R = \int_{-1}^{1} \sum_{r=2}^{\infty} (-\frac{1}{2})^r (t_1^2 x_1^2 + t_2^2 x_2^2 + 2ut_1 t_2 x_1 x_2)^r s! / r! (s+r)! dG_s(u).$$

which implies that for fixed t_1, t_2 we have

$$\lim_{(x_1^2 + x_2^2) \to 0} \frac{R}{x_1^2 + x_2^2} = 0.$$
 (25)

Consequently, such that for any $t_1, t_2 \ge 0$

$$\lim_{(x_1^2 + x_2^2) \to 0} \frac{1 - \Lambda_s(t_1 x_1) \Lambda_s(t_2 x_2)}{x_1^2 + x_2^2} = t_2^2 + t_2^2$$
(26)

which proves (21). Now, letting M in (20) tend to measure zero and integrating both sides of (22) w.r.t. $\frac{1+||\mathbf{x}||^2}{||\mathbf{x}||^2}M(d\mathbf{x})$ we conclude, by virtue of (25)and (26), that the formula (20) holds. Finally, since every projection of the limit p.m. is Rayleigh, it follows from Theorem Theorem 7 in Kingman [5]that the limit p.m. with rad.ch.f. of the form (22) must be a k-dimensional Rayleigh p.m.

It is evident, from (22), that μ is Rayleigh in \mathcal{R}^{k+} if and only if for each $\mathbf{y} \in \mathcal{R}^{k+}$ the image of μ under the projection $\Pi_{\mathbf{y}}\mathbf{x} = \langle \mathbf{x}, \mathbf{y} \rangle$ from \mathcal{R}^{k+} onto \mathcal{R}^{+} is Rayleigh on \mathcal{R}^{+} . Hence and by the Cramér property of the Kingman convolution (cf. Urbanik [16]) we have the following theorem:

Theorem 9. Suppose that $\mu, \nu \in \mathcal{P}(\mathcal{R}^{k+})$ and $\mu \bigcirc_k \nu$ is Rayleigh. Then both of them are Rayleigh.

3 Multivariate symmetric random walks

Given a p.m. $\mu \in \mathcal{P}$ and n=1,2,... we put, for any $x \in \mathcal{R}^+$ and $B \in \mathcal{B}(\mathcal{R}^+)$, the Borel σ -field of R^+ ,

$$P_n(x, E) = \delta_x \circ \mu^{\circ n}(E), \tag{27}$$

here the power is taken in the convolution \circ sense. Using the rad.ch.f. one can show that $\{P_n(x, E)\}$ satisfies the Chapman-Kolmogorov equation and therefore, there exists a homogenuous Markov sequence, say $\{S_n^x\}$, n=0,1,2,..., with $\{P_n(x, E)\}$ as its transition probability. More generally, we have

Lemma 10. Suppose that $\{\mu_k, k = 1, 2, ...\}$ is a sequence of p.m's on \mathcal{R}^{k+} . For any $0 \leq n < m, \mathbf{x} \in \mathcal{R}^{k+}, E \in \mathcal{B}(\mathcal{R}^{k+})$,

$$P_{n,m}(\mathbf{x}, E) = \delta_{\mathbf{x}} \bigcirc_k \mu_n \bigcirc_k \mu_{n+1} \bigcirc_k \dots \bigcirc_k \mu_{m-1}(E).$$
(28)

Then, $\{P_{n,m}(\mathbf{x}, E)\}$ satisfies the Chapman-Kolmogorov equation and therefore there exists a Markov sequence $\{\mathbf{X}_n^{\mathbf{x}}\}, n = 0, 1, 2, ...$ with $P_{n,m}(x, E)$ as its transition probability.

Proof. It can be proved by using the rad.ch.f.

Since σ_s is i.d. w.r.t. the Kingman convolution the family of p.m.'s

$$q(t, x, E) := \sigma_s^{\circ t} \circ \delta_x(E)$$

where $t, x \in R$, E is a Borel subset of \mathcal{R}^+ and the power is taken in the Kingman convolution sense, satisfies the Chapman-Kolmogorov equation and stands for a transition probability of a homogenuous Markov process

 $B_t^x, t, x \in \mathbb{R}^+$, such that , with probability 1, its realizations are continuous (cf. Nguyen [8] and Shiga-Wantanabe [14]).

Let H_s be a k-dimensional Rayleigh measure with rad.ch.f.(20) and

$$P(t, \mathbf{x}, E) := H_s^t \bigcirc_s \delta_{\mathbf{x}}(E), \tag{29}$$

where $t \ge 0, \mathbf{x} \in \mathcal{R}^{k+}, E$ is a Borel subset of \mathcal{R}^{k+} and the power is taken in the sense of convolution \bigcirc_s . Then there exists a homogeneous Markov process, denoted by $\{\mathbf{B}_t^x\}$ with values in \mathcal{R}^{k+} and transition probability (28).

Definition 11. Every Markov process $\{\mathbf{B}_t^x\}$ with transition probability given by (28) is called a k-dimensional Bessel process.

From the above definition and by (28) we have:

Theorem 12. The rad.ch.f. of $\{\mathbf{B}_t^{\mathbf{x}}\}, t \ge 0$ is of the form

$$-log \mathbf{E}\Lambda(<\mathbf{y}, \mathbf{B}_t^{\mathbf{x}}> = <\mathbf{y}, \mathbf{x}>t+t\sum_{j=1}^k \lambda_j^2 y_j^2,$$
(30)

where $\mathbf{y} \in \mathcal{R}^{k+}, \lambda_j \ge 0, j = 1, ..., k$ and $t \ge 0$.

Suppose that $\mathbf{X}^{j} = \{X_{1}^{j}, X_{2}^{j}, ..., X_{k}^{j}\}, j = 1, 2$ are \mathcal{R}^{k+} -valued independent r.v.'s with the corresponding distributions $\mathbf{F}_{j}, j = 1, 2$. Put

$$\mathbf{X}^1 \bigoplus \mathbf{X}^2 = \{X_1^1 \oplus X_1^2, \dots, X_k^1 \oplus X_k^2\}.$$
(31)

Then we get a *k*-dimensional radial sum of r.v.'s. By induction one can define such an operation for a finite number of r.v.'s. It is evident that the radial sum is defined up to distribution of r.v.'s and that the operation \bigoplus is associative.

It is a natural problem to consider the usual multiplication of a \mathcal{R}^{k+} -valued r.v. and a nonnegative scalar. It is easy to see that the multiplication is distributive w.r.t. the radial sums defined by (31) which helps us to introduce the following stochastic integral.

Definition 13. Let C be a σ -ring of subsets of a set X. A function

$$\mathbf{M}: \mathcal{C} \to \mathbf{L}^+ := \mathbf{L}^+(\Omega, \mathcal{F}, \mathcal{P}), \tag{32}$$

where \mathbf{L}^+ denotes the class of all nonnegative r.v.'s on $(\Omega, \mathcal{F}, \mathcal{P})$, is said to be an \bigcirc_k -scattered random measure, if

(i) $\mathbf{M}(\emptyset) = 0$ (P.1), (ii) For any $A, B \in \mathcal{C}, A \cap B = \emptyset$, then $\mathbf{M}(A)$ and $\mathbf{M}(B)$ are independent and

$$\mathbf{M}(A \cup B) \stackrel{d}{=} \mathbf{M}(A) \bigoplus \mathbf{M}(B)$$

(iii) For any $A_1, A_2, \ldots \in C$, the r.v.'s $\mathbf{M}(A_j), j = 1, 2, \ldots$ are independent and

$$\mathbf{M}(\cup_{j=1}^{\infty}A_j) \stackrel{d}{=} \bigoplus_{j=1}^{\infty}\mathbf{M}(A_j),$$
(33)

where the series on the right-hand side of (33) is convergent in distribution.

It should be noted that the above definition of \bigcirc_k -scattered random measure is subject to the equality in probability which, however, can be modified in the same way as Rajput and Rosinski ([11],Lemma 5.1 and Theorem 5.2) so that the new \bigcirc_k -scattered random measure is defined almost surely. Specificly, we state without proof the above mentioned Lemma used by Rajput and Rosinski.

Lemma 14. (O. Kallenberg) Let ξ and η' be random elements defined on the probability space (Ω, P) and (Ω', P') , and taking values in the spaces S and T, respectively, where S is a separable metric space and T is a Polish space. Assume that $\xi \stackrel{d}{=} f(\eta')$ for some Borel measurable function $f: T \to S$. Then there exists a random element $\eta \stackrel{d}{=} \eta'$ on the ("randomized") probability space $(\Omega \times [0, 1], P \times Leb)$ such that $\eta = f(\eta')$ a.s. $P \times Leb$.

It is well known that if $\{W(t)\}, t \in R^+$ is a Wiener process, then there exists a Gaussian stochastic measure $\mathbf{N}(A), A \in \mathcal{B}_0$, where \mathcal{B}_0 is the σ -ring of bounded Borel subsets of \mathcal{R}^+ with the property that, for every $t \ge 0$, $\mathbf{W}(t) = \mathbf{N}((0, t])$. The same it is also true for Bessel processes. Namely, we get

Theorem 15. Suppose that $\{\mathbf{B}_t^0\}$ is a Bessel process started at **0**. Then there exists a unique \bigcirc_k -scattered random measure $\{\mathbf{M}(A)\}, A \in \mathcal{B}_0$, such that for each $t \ge 0$

$$\mathbf{M}((0,t]) \stackrel{a}{=} \mathbf{B}^{\mathbf{0}}(t). \tag{34}$$

Proof. It is the same as the proof for the case k=1 in Nguyen([10], Theorem 4.2).

Definition 16. Let **M** be a \bigcirc_k -scattered random measure defined by the equation (33). Then for any $0 \leq s < t$ the quantities $\mathbf{M}((s,t])$ are called \bigcirc_k -increments of the Bessel process $\{\mathbf{B}_t^0\}$.

By the same reasoning as in Nguyen ([10], Theorem 4.3) we have

Theorem 17. Every k-dimensional Bessel process $\mathbf{B}_t^0, t \ge 0$ is a stationary independent \bigcirc_k -increments process.

Now we proceed to construct a new non-linear stochastic integration of a nonnegative function w.r.t. a Bessel process. For simplicity we assume that k=1 and write the Bessel process started at 0 as $B(t), t \ge .$ Let M denote the \circ -scattered random measure associated with B(.) and let $\mathcal{L}^{2+}[0,T], T >$ 0 the Hilbert space of all measurable nonnegative functions f on [0,T] such that

$$||f||^{2} := \int_{0}^{T} f(u)^{2} du < \infty.$$
(35)

Given a partition $\Pi := \{t_0 = 0 < t_1 < \dots < t_N \leq T\}$ of an interval [0,T], T > 0 we put

$$f_{\Pi}(t) = \sum_{i=0}^{N} f_{t_i} \chi_{(t_i, t_{i+1}](t)}.$$
(36)

Then, the integral $\int_0^T f_{\Pi}(t) d^{\circ} B(t)$ is defined as

$$\int_{0}^{1} f_{\Pi}(t) d^{\circ} B(t) \stackrel{d}{=} \bigoplus_{i=1}^{N} f_{t_{i}} B([t_{i}, t_{i+1}))).$$
(37)

The integral $\int_0^T f(t) d^\circ B(t)$ is defined as:

$$\int_{0}^{T} \xi(t) d^{\circ} B(t) = \lim_{|\Pi| \to 0} \bigoplus_{i=1}^{N} f_{i} M(t_{i}, t_{(i+1)}),$$
(38)

where $|\Pi| := max\{t_{i+1} - t_i, i = 0, 1, ..., N\}$ and the limit is taken in the distribution sense, provided it exists.

Theorem 18. For each function $f \in \mathcal{L}^{2+}[0,T]$ the integral (36) exists in the convergence in distribution and for any $\alpha > 0$ the rad.ch.f. of $S := \int_0^T \alpha f(u) d^\circ B(u)$

is given by

$$-\log \mathbf{E}\Lambda_s(vS) = v^2 \int_0^T f^2(u) du,$$
(39)

 $v \ge 0.$

Proof. We have

$$-\log \mathbf{E}\Lambda_s(v \bigoplus_{i=1}^N f_i M(t_i, t_{i+1}) = v^2 \sum_{i=1}^N (t_{i+1} - t_i) f_i^2 \qquad (40)$$
$$\rightarrow v^2 \int_0^T f^2(u) du$$

which implies the conclusion of the theorem.

By the above definition and by using the rad.ch.f. we get the following theorem:

Theorem 19. (i) Let $f_1, f_2 \in \mathcal{L}^{2+}[0,T]$ and $c \ge 0$. We have

$$\int_0^T c d^\circ B(t) = c B(T); \tag{41}$$

(ii) If $supp(f_1) \cap supp(f_2) = \emptyset$, then $\int_0^T f_1(t) d^\circ B(t)$ and $\int_0^T f_2(t) d^\circ B(t)$ are independent and

$$\int_{0}^{T} \{f_{1}(t)(t) + f_{2}(t)\} d^{\circ}B(t) = \int_{0}^{T} f_{1}(t) d^{\circ}B(t) + \int_{0}^{T} f_{2}(t) d^{\circ}B(t)$$
(42)

(iii) (non-linearity) In general

$$\int_0^T \{f_1(t)(t) + f_2(t)\} d^\circ B(t) \neq \int_0^T f_1(t) d^\circ B(t) + \int_0^T f_2(t) d^\circ B(t).$$
(43)

iii If $f_n \to f$ in $\mathcal{L}^{2+}[0,T]$, then

$$\int_0^T f_n(t) d^\circ B(t) \to \int_0^T f(t) d^\circ B(t)$$
(44)

in distribution.

References

- Bingham N.H., Random walks on spheres, Z. Wahrscheinlichkeitstheorie Verw. Geb., 22 (1973), 169-172.
- [2] Cox, J.C., Ingersoll, J.E. Jr., and Ross, S.A., A theory of the term structure of interest rates. Econometrica, 53(2), 1985.
- [3] Jeanblanc M., Pitman J., Yor M., Self-similar processes with independent increments associated with Lévy and Bessel processes, 100, No.1-2 (2002), 223-231.
- [4] Kalenberg O., Random measures, 3rd ed. New York: Academic Press 1983.
- [5] Kingman, J.F.C., Random walks with spherical symmetry, Acta Math., **109** (1963), 11-53.
- [6] Bebedev N. N., Special functions and their applications. Prentice-Hall, INC Englewood Cliffs, N.J. 1965.
- [7] Levitan B.M., Generalized translation operators and some of their applications, Israel program for Scientific Translations, Jerusalem 1962.
- [8] Nguyen V.T., Generalized independent increments processes, Nagoya Math. J. 133 (1994) 155-175.
- [9] Nguyen V.T., Generalized translation operators and Markov processes, Demonstratio Mathematica, **34** No 2, 295-304.
- [10] Nguyen V.T., A convolution approach to Bessel processes. submitted to Urbanik Volume Prob.Math. Stat.2006.
- [11] Raiput B.S., Rosinski J., Spectral representation of infinitely divisible processes, Probab. Th. Rel. Fields 82(1989),451-487.
- [12] Revuz, D. and Yor, M., Continuous martingals and Brownian motion. Springer-verlag Berlin Heidelberg (1991).
- [13] Sato K., Lévy processes and infinitely divisible distributions, Cambridge University of Press 1999.

- [14] Shiga T., Wantanabe S., Bessel diffusions as a one-parameter family of diffusion processes, Z. Warscheinlichkeitstheorie Verw. geb. 27 (1973), 34-46.
- [15] Urbanik K., Generalized convolutions, Studia math., 23 (1964), 217-245.
- [16] Urbanik K., Cramér property of generalized convolutions, Bull.Polish Acad. Sci. Math.**37** No 16 (1989), 213-218.