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Abstract

In this paper we introduce and study Bessel processes {B}} which take
values in a d-dimensional nonnegative cone R™ of R? and are con-
structed via the multi-dimensional Kingman convolution . We prove that
every d-variate Bessel process is a stationary independent increments-type
process. Moreover, a stochastic integral with respect to {B}} with the con-
vergence in distribution is defined.



1 Introduction and prelimilaries.

Let P denote the class of all p.m.’s on the positive half-line R* endowed
with the weak convergence and o := *; 3 denote the Kingman convolution
(Hankel transforms ) which was introduced by Kingman [5] in connection
with the addition of independent spherically symmetric random vectors
in Eucliean n-space. Namely, for each continuous bounded function f on
R we write :

R e e A )

f((z® + 2uzy + yH)Y?) (A — u?)* V2 u(dz)v(dy)du,

where p,v € P, 3 = 2(s+ 1) > 1(cf. Kingman [5] and Urbanik [15].
The Kingman convolution algebra (P, o) is the most important example of
Urbanik convolution algebras (cf Urbanik [15]. In the language of Urbanik
convolution algebras, the characteristic measure, say o,, of the Kingman
convolution has the Rayleigh density

os(x) = F(s2—|— 1 (s + 1) a*exp(—(s + 1)z?)dx (2)

with the characteristic exponent sc = 2 and the kernel A,
Ay =T(s+1)Jy(x)/(1/22)°. 3)

The radial characteristic function (rad.ch.f.) of a p.m. p € P, denoted by
fi(u), is defined by

i = [ A(wo(do) @)
0
for every u € R*. In particular,the rad. ch.f. of o is
6s(u) = exp(—u?),u € RT. (5)

It should be noted that, since the rad.ch.f. is defined uniquely up to the
delation mapping © — az,a > 0,z € R, the representation (5) of the
rad.ch.f. of o, may differ from that in Urbanik [15]. It is known (cf. Kingman[5], Theorem
1), that the kernel A, itself is an ordinary ch.f. of a p.m., say G, defined on



the interval [-1,1] as the following

_ ['(s+1) _\2ys—1 s _1 50
G = P ey @
1 1
G_% = 5(51 +9_1) (s = _E)a
Goo = 0o (s = 00)

Thus if 6, denotes a r.v. with distribution F, then for eacht € R,

1

As(t) = Eexp(iths) = / exp(itz)dGy(z). (7)

-1
Now we quote a definition of a Bessel process in Revus-Yor[12]

Definition 1. A Bessel process is the square root of the following unique strong
solution of the SDE

t
Zy=1x+ 2/ V stﬁs + ﬂta (8)
0
forany 3 >0 and x> 0.

It should be noted that Shiga and Watanabe [14] characterized the Bessel
family as one-parameter semigroups of distributions on path spaces W =
C(R*,R) which stands for a convolution approach to Bessel processes.
Our aim in this paper is to study Bessel processes via the Kingman con-
volution method. Therefore we will assume that the dimension 5 > 1.
Moreover, we will consider the Bessel process started at 0 only and will
denote it by B(t),t > 0.

2 The Cartersian product of Kingman convolu-
tion algebras
This concept was introduced in Nguyen [10]. Namely, let P(R**) denote

the class of all p.m.’s on R*" equipped with the weak convergence. Let
Fi,Fy € P(R"") be of the product form

F,=71'x..x7F )

)



where Tzfj € P,j=1.2,... and i=1,2. We put
FOWFy = (Fl o F?) x ... x (FF o FF). (10)

Since convex combinations of p.m.’s of the form (9) are dense in P(RFY)
the relation (10) can be extended to arbitrary p.m.’s on P(R"*"). For every
F € P(R**) the k-dimensional radial ch.f F is defined by

_ / [T A0 F (), (11)

Let A\, Ay, ..., \x be i.i.d. r.v’'s with the common distribution G,. Let X =
(X1,...,Xx) be a RF**-valued random vector with distribution F. Further,
suppose that r.v's X and A, where A = (A4, ..., \;), are independent.
Set

and
G,F £ AX. (13)
Then, we have R ‘
F(y) — E(67’<y’AX>), (14)

wherey = (y1,...,yx) € R¥T and <, > denotes the inner product in R*.
In fact, we have

( 127 1Yz JF(dx)

/ J(tja;) F(dx)
F(y

\

Thus, f‘(y) is an ordinary symmetric k-dimensional ch.f., and hence it is

uniformly continuous. The following theorem is a simple consequence of
(1.3) and (2.2).

Theorem 2. The pair (P(R**, Ok ) is a commutative topological semigroup with
do as the unit element. Moreover, the operation Oy is distributive w.r.t. convex
combinations of p.m.’s € P(R**).



In the sequel, the pair (P(R*", Ox) will be called a k-dimensional King-
man convolution algebra. For each vector x € R*" the generalized translation
operators (shortly, g.t.0.’s) T*,x € RF* acting on the Banach space C,(R**)
of real bounded continuous functions f are defined, for each y € R**, by

Tfy) = [ F)i Oudy(an). (15)

In terms of these g.t.0.’s the k-dimentional rad. ch.f. of p.m.’s on R** can
be characterized as the following:

Theorem 3. A real bounded continuous function fon R*" is a rad.ch.f. of a p.m.,
if and only if f(0) = 1 and f is {T™}-nonnegative definite in the sense that for
any xy, ..., x; € R¥and Ay, .., \y € C

k

ij=1
(See [10] for the proof ).

Lemma 4. Every p.m. F defined on R** is uniquely determined by its rad.ch.f.
F and the following formula holds:

F, Ox Fa(t) = Fi(y)Fa(t), (17)
where F1,Fy € P(RFY) and y € R*.

Proof. The formula (17) follows from formulas (1,3,12,14). Now using the
formulas (2,3,9) and a theorem of Weber([6],p.394) and integrating the
function F(tlul, ey tRUE),

tj,u; € RT,j=1,..,k, k — times w.r.t. o5, we get

/ F(tyuy, ..., teug)os(duy)...og(duy,) = (18)
RE+

/R s /R ) E Ay(tjzju ) F(AX)os(dus ..o (duy,)

k
:/ Hexp{—t?x?}F(dx),
RE+ j=1



which, by change of variables y; = x?, J = 1,...,k and by the uniqueness
of the k-dimensional Laplace transform, implies that F is uniquely deter-
mined by the left-hand side of (18). O

Definition 5. A distribution F on R** is said to be Rayleigh, if the GF defined
by (12) is a k-dimensional symmetric Gaussian p.m.

The following theorem is obvious and its proof is omitted.

Theorem 6. A distribution F ofarvX on R is Rayleigh, if and only if for
every x € R the rv. < x, X > is one-dimensional Rayleigh.

It is the same as in the case k=1, the i.d. elements can be defined as the
following;:

Definition 7. A p.m.u € P(R** is called i.d.if for every natural m there exists
a p.m.,y, such that

H = fm Ok Ok Mo, (m - terms). (19)

Moreover, a nonnegative stochastic process &t € T is said to be i.d., if each its
finite dimensional distribution is i.d.

Let /D(Qx) denote the class of all i.d. elements in (P(RF*, Q). The
following theorem is a slight generalization of Theorem 7 in Kingman [5].

Theorem 8. u € ID(Qy) if and only if there exist a finite measure M on R**
with the property that M ({0}) = 0 and for each y = (t*,...,t*) € R*"

k 2
~togiy) = [ (1= T]Ad< t >>%M(d><>, 0)

j=1

where the integrand on the right-hand side of (21) is assumed to be

lim (1 — HA < tjx; > 1 i HXH Zt2 (21)

||x||~o N

In particular, if M = 0 then p becomes a Rayleigh measure with the rad.ch.f.

—logp(y Z A\t P> (22)

foranyy € R* and X\, >0,j=1,.. k.



Proof. The proof of the first part of Theorem is a similar to that of Theorem
7 in Kingman [5]. To prove the remainder part we assume that k=2. The
proof for the case k > 3 is similar. For t,x € R>*T we put

1—-A A
H = H(tl,tg,l’l,l'g) = S(tlxl) (tQ-TZ) (23)

2 2
T+ 5

By virtue of Kingman([5], Formula (24)) and by the series representation
of Ay(.) (Kingman[5], Formula (4))and by the fact that the measure G, is
symmetric on the interval [—1, 1] we have

1-— As(tlxl tQ.I'Q / {1 — t2 t2.7}2 + 2Ut1t2$1]}2> /2>}dG ( )
Lo
= 1(2<tl [+ 1515 + 2utitay 22)dGy(u) — R
1
= (el + tw) — R (24)
where R is given by
/ V(527 + t5x5 + 2utitar ) s! /Tl (s + r)dG(u).

which implies that for fixed ¢, t; we have

R

im ———
(z3+23)—0 T + X5

—0. (25)

Consequently, such that for any ¢1,t, > 0

1— At At
lim (21331) - ( 2332)
(z3+23)—0 xy + 5

=15+ 1 (26)

which proves (21). Now, letting M in (20) tend to measure zero and in-
tegrating both sides of (22) W.r.t.lmﬁ‘QHQM (dx) we conclude, by virtue of
(25)and (26), that the formula (20) holds. Finally, since every projection of
the limit p.m. is Rayleigh, it follows from Theorem Theorem 7 in King-
man [5]that the limit p.m. with rad.ch.f. of the form (22) must be a k-

dimensional Rayleigh p.m. O]




It is evident, from (22), that ;1 is Rayleigh in R*" if and only if for each
y € RFF the image of ;1 under the projection Ilyx =< x,y > from R** onto
R is Rayleigh on R*. Hence and by the Cramér property of the Kingman
convolution (cf. Urbanik [16]) we have the following theorem:

Theorem 9. Suppose that ji,v € P(R**) and p Oy, v is Rayleigh. Then both of
them are Rayleigh.

3 Multivariate symmetric random walks

Given a pm. p € P and n=1,2,... we put, forany x € R and B €
B(RT), the Borel o-field of RT,

Po(z, E) = 6, 0 u°"(E), (27)

here the power is taken in the convolution o sense. Using the rad.ch.f.
one can show that { P, (z, E') } satisfies the Chapman-Kolmogorov equation
and therefore, there exists a homogenuous Markov sequence, say {57},
n=0,1,2,..., with { P, (z, E')} as its transition probability. More generaly, we
have

Lemma 10. Suppose that {u, k = 1,2, ...} is a sequence of p.m’s on R**. For
any 0 < n < m,x € R* E € B(RFY),

Pom(%, E) = 0x Ok ptn Ok tins1 Ok - Ok Hm—1(E). (28)

Then, { P, .(x, E)} satisfies the Chapman-Kolmogorov equation and therefore
there exists a Markov sequence {XX},n = 0,1,2,... with P, ,,,(z, E) as its tran-
sition probability.

Proof. It can be proved by using the rad.ch.f. O
Since o, is i.d. w.r.t. the Kingman convolution the family of p.m.’s
q(t,z,E) =0 0 ,(E)

where ¢,z € R, E is a Borel subset of Rt and the power is taken in the
Kingman convolution sense, satisfies the Chapman-Kolmogorov equation
and stands for a transition probability of a homogenuous Markov process



By t,x € R, such that , with probability 1, its realizations are continuous
(cf. Nguyen [8] and Shiga-Wantanabe [14]).

Let H, be a k-dimensional Rayleigh measure with rad.ch.f.(20) and
P(t,x, E) == H; Qs 0x(E), (29)

wheret > 0,x € RF* E is a Borel subset of R*" and the power is taken
in the sense of convolution ();. Then there exists a homogeneous Markov
process, denoted by {B¥} with values in R** and transition probability

(28).

Definition 11. Every Markov process { By} with transition probability given by
(28) is called a k-dimensional Bessel process.

From the above definition and by (28) we have:

Theorem 12. The rad.ch.f. of {B}},t > 0 is of the form

k

—logEA(< y,Bf >=<y,x>1t+ tz )\?y]z, (30)

j=1
wherey € RFT N\, >0,j=1,...,k and t>0.

Suppose that X’ = (X7 X7, .., X,Z},j = 1,2 are R¥*-valued indepen-
dent r.v.’s with the corresponding distributions F;, j = 1, 2. Put

X'PX={xjoX] . XoX} (31)

Then we get a k-dimensional radial sum of r.v.’s. By induction one can de-
fine such an operation for a finite number of r.v.’s. It is evident that the
radial sum is defined up to distribution of r.v.’s and that the operation &
is associative.

Itis a natural problem to consider the usual multiplication of a R**-valued
r.v. and a nonnegative scalar. It is easy to see that the multiplication is dis-
tributive w.r.t. the radial sums defined by (31) which helps us to introduce
the following stochastic integral.

Definition 13. Let C be a o-ring of subsets of a set X. A function
M:C— LT =L (Q,F,P), (32)

9



where L™ denotes the class of all nonnegative r.v.’s on (Q, F,P), is said to be an
Og-scattered random measure, if

(i) M(0) = 0 (P1),
(ii) Forany ~A,B € C,ANB = (), then M(A)andM(B) are independent and

M(AU B) £ M(A) D M(B)

(iii) For any Ay, Ay, ... € C, therv.s M(A4;),j = 1,2,... are independent
and

M(UZ,A) £ @D M(A)), )

where the series on the right-hand side of (33) is convergent in distribution.

It should be noted that the above definition of (),-scattered random mea-
sure is subject to the equality in probability which, however, can be modi-
tied in the same way as Rajput and Rosinski ([11],Lemma 5.1 and Theorem
5.2) so that the new (y-scattered random measure is defined almost surely.
Specificly, we state without proof the above mentioned Lemma used by
Rajput and Rosinski.

Lemma 14. (O. Kallenberg) Let ¢ and 1’ be random elements defined on the
probability space (2, P) and (Y, P’), and taking values in the spaces S and T,
respectively, where S is a separable metric space and T is a Polish space. Assume

that & K f(n') for some Borel measurable function f : T' — S. Then there exists a

random element 1) = 1/ on the ("randomized”) probability space (22 x [0, 1], P x
Leb) such that n = f(n') a.s. P x Leb.

It is well known that if {W(¢)},t € R" is a Wiener process, then there
exists a Gaussian stochastic measure N(A), A € B,, where B, is the c—ring
of bounded Borel subsets of R* with the property that, for every ¢t > 0,
W (t) = N((0,t]). The same it is also true for Bessel processes. Namely, we
get

Theorem 15. Suppose that {B?} is a Bessel process started at 0. Then there
exists a unique Qy-scattered random measure {M(A)}, A € By, such that for
eacht > 0

M((0,1]) = BO(t). (34)

10



Proof. 1t is the same as the proof for the case k=1 in Nguyen([10], Theorem
4.2). O

Definition 16. Let M be a O)y-scattered random measure defined by the equation
(33). Then for any 0 < s < t the quantities M((s, t]) are called O-increments
of the Bessel process {B}.

By the same reasoning as in Nguyen ([10], Theorem 4.3) we have

Theorem 17. Every k-dimensional Bessel process B?, ¢ > 0 is a stationary inde-
pendent ()y-increments process.

Now we proceed to construct a new non-linear stochastic integration of
a nonnegative function w.r.t. a Bessel process. For simplicity we assume
that k=1 and write the Bessel process started atO as B(¢),t > . Let M denote
the o-scattered random measure associated with B(.) and let £*"[0, T, T >
0 the Hilbert space of all measurable nonnegative functions f on [0,T] such
that

12 = / f(w)?du < 0. (35)

Given a partition IT := {t, = 0 < t; < ... < ty < T} of an interval
0,7],T > 0 we put

N
t) = Z Jt: X (i, ti1](8) (36)
i=0

Then, the integral fOT fu(t)d°B(t) is defined as

/ fH do @ ftZ tzu tz+1 (37)

The integral fOT f(t)d°B(t) is defined as:

T
| enene —lzmmw@fz (ts o) 39)

where [II| := maxz{t;;1 — t;,i = 0,1,...N} and the limit is taken in the
distribution sense, provided it exists.

Theorem 18. For each function f € L£2%]0, T the integral (36) exists in the con-
vergence in distribution and for any o > 0 the rad.ch.f. of S := fOT af(u)d®B(u)

11



is given by
T
—log EA(vS) = 212/ 2 (u)du, (39)
0
v > 0.

Proof. We have

—log EA.( @fz (titin) = 0°) (tigr —t:)f; (40)
=1

— 02 /T 2 (u)du
0

which implies the conclusion of the theorem. O

By the above definition and by using the rad.ch.f. we get the following
theorem:

Theorem 19. (i) Let f1, fo € L*7[0,T] and ¢ > 0. We have
T
/ cd°B(t) = ¢B(T); (41)
0

(ii) If supp(fr) N supp(fo) = 0, then [, f(t)d°B(t) and [ fo(t)d°B(t) are

independent and

/ LA + fo(6)}d" B( / O / LOEBE) (@)

(iii) ( non-linearity) In general

/{f1 )+ Falt) B #/ (OB /fz DEB(H).  (43)

iilf f, — f in L*7[0,T)], then

/fn t)d°B e/ f(t)d°B (44)

in distribution.

12
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