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Abstract. We extend and sharpen the result in [1] on the Hölder continuity

of the solution sets of quasivariational inequalities in Hilbert spaces to the case

of quasiequilibrium problems in metric spaces. In particular, we show that under

the assumptions ensuring the local Hölder continuity of the solution set, this set

is a singleton. Applications in some important problems are also provided.
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1. Introduction

In the theory of stability and sensitivity analysis for optimization - related prob-

lems Hölder continuity of solutions plays an important role although there may be

? This work was supported in part by the National Basic Research Program in Natural
Sciences of Ministry of Science and Technology of Vietnam.
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less works in the literature devoted to this property than to semicontinuity, con-

tinuity, Lipschitz continuity and (generalized) differentiability. Hölder continuity

is in many aspects a high - level regularity, since it is stronger than semiconti-

nuity and continuity. The well-known Rademacher theorem says that a locally

Lipschitz function on finite dimensional space is Fréchet differentiable almost

everywhere. On the other hand, Lipschitz continuity is a special case of Hölder

continuity, where the Hölder degree is one. So Hölder continuity is more general

than Lipschitz continuity and in a sense close to differentiability. For variational

inequalities, [33 - 35] establish sufficient conditions for the solution to be unique

and Hölder continuous in Hilbert spaces. The subtle technique used there is with

a heavy recourse to properties of metric projections in Hilbert spaces and linearity

of the canonical pair 〈., .〉 involved in the variational inequality setting. Subse-

quently, this result is successfully generalized to various extends for equilibrium

problems in metric spaces [2, 4, 5, 11]. These works constitute also a considerable

contribution to the stability study for equilibrium problems, since this research

field is rather new. Beside them we observe only [3, 6, 7, 8, 11] which are devoted

to various kinds of semicontinuity of solution sets. It is known that equilibrium

problems were proposed in [13] as a generalization of variational inequalities and

optimization problems and include also many optimization - related problems like

the fixed - point and coincidence - point problems, the complementarity problem,

the traffic equilibria, the Nash equilibrium. However, in variational inequalities

and equilibrium problems, the constraint sets are fixed and hence these mathe-

matical models cannot be employed for problem settings in a number of practical

situations. This was first observed in [10] where the authors considered random

impulse control problems and needed to use constraint sets depending on the

state variables. Formulating these problems similarly as variational inequalities
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led to quasivariational inequalities. [1] is devoted to extend the Hölder continuity

of solutions in [33] for variational inequalities to a corresponding result for qua-

sivariational inequalities in Hilbert spaces, raised from traffic network problems.

Since the constraint set here is moving, i.e. it depends on the state variable,

the authors have to avoid geometric properties of metric projections used in [33].

Nevertheless, the constraint set of the considered quasivariational inequality ex-

presses the fulfillment of the travel demands in the traffic network and hence bears

intrinsic linearity. Also, the quasivariational inequality possesses a linear nature

due to the canonical pair 〈., .〉 involved in the problem setting. The sophisticated

reasoning in [1], based on these specific features of the quasivariational inequality

under consideration, cannot be adapted when dealing with the generalized prob-

lem which is the quasiequilibrium problem. This motivates our aim of this note:

to have recourse to other techniques in order to establish Hölder continuity of the

solution sets of quasiequilibrium problems in metric spaces. To illustrate appli-

cations of our results we supply their consequences in many important problems

in Section 3. In particular, we explain advantages of our theorems, when applied

to traffic network problems, over that of [1].

Let, throughout the paper if not otherwise specified, X, Λ and M be met-

ric spaces. Let A ⊆ X be nonempty. The problem under our investigation is

as follows. Let K : A × Λ → 2X be a multifunction with nonempty values and

f : X × X × M → R be a function. For each parameter pair (λ, µ) ∈ Λ × M

consider the following quasiequilibrium problem

(QEP) Find x̄ ∈ K(x̄, λ) such that, ∀y ∈ K(x̄, λ),

f(x̄, y, µ) ≥ 0.
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Since the solution existence of quasiequilibrium problems has been investigated

intensively and widely so far, see e.g. recent papers [20, 21, 22, 23, 26, 36] and

the bibliography therein, we focalize our attention only on stability properties

assuming always the solution existence in a neighborhood of the considered pair

(λ0, µ0).

The layout of the remainder of the paper is as follows. The rest of this

section is devoted to recalling notions needed in the sequel. The main results on

the Hölder continuity of the solution sets are provided in Section 2. In the last

Section 3, applications of our results to various situations are discussed.

Our notations are almost standard. d(., .) stands for the distance in any

metric space (the context makes it clear what space is encountered). d(x, A)

is the distance from x to subset A in X. R is the space of real numbers and

R+ = {r ∈ R| r ≥ 0}. B(x, r) denotes the closed ball of radius r ≥ 0 and

centered at x in a metric space X. intC stands for the interior of a subset C. For

a normed space X, X∗ is the topological dual and 〈., .〉 is the canonical pair.

The following Hölder-related notions are employed in the sequel.

Definition 1.1 (Hölder continuity)

(i) (Classical) For h > 0 and γ > 0, a function p : X → R is called h.γ-Hölder

in A ⊆ X if, ∀x1, x2 ∈ A,

|p(x1)− p(x2)| ≤ hdγ(x1, x2).

(ii) (Classical) For l1, l2, α1, α2 > 0, a multifunction K : X × Λ → 2X is said
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to be (l1.α1, l2.α2)-Hölder in B ⊆ X × Λ if, ∀(x1, λ1), (x2, λ2) ∈ B,

K(x1, λ1) ⊆
{
x ∈ X| ∃z ∈ K(x2, λ2), d(x, z) ≤ l1d

α1(x1, x2)+ l2d
α2(λ1, λ2)

}
.

(iii) (Cf. [5]) For m, β, θ > 0 and f : X×X×M → R, f is termed m.β-Hölder

at µ0 ∈ M θ-relative to A ⊆ X if there is a neighborhood V of µ0 such that

∀µ1, µ2 ∈ V, ∀x, y ∈ A : x 6= y,

|f(x, y, µ1)− f(x, y, µ2)| ≤ mdβ(µ1, µ2)d
θ(x, y).

Definition 1.2 (Hölder-related monotonicity). Let g : X×X → R be a function.

(i) (See [12]) g is called quasimonotone in A ⊆ X if, ∀x, y ∈ A : x 6= y,

[g(x, y) > 0] =⇒ [g(y, x) ≤ 0].

(ii) (See [4]) For n, α > 0, g is termed n.α−Hölder strongly pseudomonotone in

A ⊆ X if ∀x, y ∈ A : x 6= y,

[g(x, y) ≥ 0] =⇒ [g(y, x) + ndα(x, y) ≤ 0].

(iii) (See [4]) For n, α > 0, g is said to be n.α−Hölder strongly monotone in

A ⊆ X if, ∀x, y ∈ A : x 6= y,

g(x, y) + g(y, x) + ndα(x, y) ≤ 0.

Definition 1.3 (Hölder-related monotonicity). Let X be a normed space, A ⊆ X

be nonempty, b : A → X∗ is a mapping. The following terminology may be

considered a special case of Definition 1.2.

(a) b is said to be quasimonotone in A if, ∀x, y ∈ A,

[〈b(x), y − x〉 > 0] =⇒ [〈b(y), x− y〉 ≤ 0].
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(b) For n, α > 0, b is called n.α-Hölder strongly pseudomonotone in A if, ∀x, y ∈

A,

[〈b(x), y − x〉 ≥ 0] =⇒ [〈b(y), x− y〉+ n‖x− y‖α ≤ 0].

(c) For n, α > 0, b is termed n.α-Hölder strongly monotone in A if, ∀x, y ∈ A,

〈b(x)− b(y), y − x〉+ n‖x− y‖α ≤ 0.

In this paper we will establish a Hölder continuity of solution sets using the

following largest distance notion. For A, B ⊆ X we define

ρ(A, B) = sup
x∈A, y∈B

d(x, y).

If A or B is unbounded, then ρ(A, B) = +∞. It is known [29] that solution

sets of quasicomplementarity problems are in general unbounded. Hence so are

solution sets of quasiequilibrium problems, which are more general problems. To

compare with other kinds of distance, recall that the Hausdroff distance of A, B

is defined as

H(A, B) = max
{

sup
x∈A

d(x, B); sup
y∈B

d(y, A)
}
,

and the r−Hausdroff distance (see [9]) of A, B is defined by

Hr(A, B) = max
{

sup
x∈A∩B(0,r)

d(x, B); sup
y∈B∩B(0,r)

d(y, A)
}
,

for fixed r > 0. It is clear that Hr(A, B) is increasing as r increases and, ∀r > 0,

ρ(A, B) ≥ H(A, B) ≥ Hr(A, B).

2. Hölder continuity of the solution sets

In the sequel let, for λ ∈ Λ,

E(λ) =
{
x ∈ X | x ∈ K(x, λ)

}
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and, for (λ, µ) ∈ Λ ×M, S(λ, µ) be the solution set the corresponding problem

(QEP).

Theorem 2.1. For problem (QEP) assume that solutions exist in a neighborhood

of the considered point (λ0, µ0) ∈ Λ×M . Assume further that

(i) there are neighborhoods U(λ0) of λ0 and V (µ0) of µ0 such that f is n1δ1-

Hölder at µ0 θ-relative to E(U(λ0)) and, ∀x ∈ E(U(λ0)), ∀µ ∈ V (µ0),

f(x, ., µ) is n2.δ2-Hölder in E(U(λ0));

(ii) ∀µ ∈ V (µ0), f(., ., µ) is h.β-Hölder strongly monotone in E(U(λ0));

(iii) K(., .) is (l1.α1, l2.α2)−Hölder in E(U(λ0))× {λ0};

(iv) α1δ2 = β > θ and h > 2n2l
δ2
1 .

Then, for each pair (λ, µ), in a neighborhood of (λ0, µ0), (QEP) has a unique

solution x(λ, µ) which satisfies the Hölder condition

d
(
x(λ1, µ1), x(λ2, µ2)

)
≤ k1d

α2δ2/β(λ1, λ2) + k2d
δ1/(β−θ)(µ1, µ2),

where k1 and k2 are positive constants depending on h, β, n1, n2, δ1, δ2, θ, etc.

Proof. Let λ1, λ2 ∈ U(λ0) and µ1, µ2 ∈ V (µ0).

Step 1. We prove that, ∀x(λ1, µ1) ∈ S(λ1, µ1), ∀x(λ1, µ2) ∈ S(λ1, µ2),

d1 := d
(
x(λ1, µ1), x(λ1, µ2)

)
≤

(
n1

h− 2n2l
δ2
1

)1/(β−θ)

dδ1/(β−θ)(µ1, µ2). (2.1)

Let x(λ1, µ1) 6= x(λ1, µ2) (if the equality holds then we are done). Since x(λ1, µ1) ∈

K(x(λ1, µ1), λ1), x(λ1, µ2) ∈ K(x(λ1, µ2), λ1) and by the Hölder continuity of

K(., λ1) there are x1 ∈ K(x(λ1, µ1), λ1) and x2 ∈ K(x(λ1, µ2), λ1) such that

d
(
x(λ1, µ1), x2

)
≤ l1d

α1
(
x(λ1, µ1), x(λ1, µ2)

)
, (2.2)
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d
(
x(λ1, µ2), x1

)
≤ l1d

α1
(
x(λ1, µ1), x(λ1, µ2)

)
. (2.3)

As x(λ1, µ1) and x(λ1, µ2) are solutions of (QEP), we have

f(x(λ1, µ1), x1, µ1) ≥ 0, (2.4)

f(x(λ1, µ2), x2, µ2) ≥ 0. (2.5)

On the other hand, assumption (ii) implies that

−f(x(λ1, µ1), x(λ1, µ2), µ1)− f(x(λ1, µ2), x(λ1, µ1), µ1) ≥ hdβ
1 .

Hence, by (2.4) and (2.5),

| f(x(λ1, µ1), x1, µ1)− f(x(λ1, µ1), x(λ1, µ2), µ1)|

+ | f(x(λ1, µ2), x2, µ2)− f(x(λ1, µ2), x(λ1, µ1), µ2)|

+ | f(x(λ1, µ2), x(λ1, µ1), µ2)− f(x(λ1, µ2), x(λ1, µ1), µ1)| ≥ hdβ
1 .

Therefore, because of the assumption (i), one has

n2d
δ2(x1, x(λ1, µ2)) + n2d

δ2(x2, x(λ1, µ1)) + n1d
θ
1d

δ1(µ1, µ2) ≥ hdβ
1 .

This, by (2.2) and (2.3), implies that

n2l
δ2
1 dα1δ2

1 + n2l
δ2
1 dα1δ2

1 + n1d
θ
1d

δ1(µ1, µ2) ≥ hdβ
1 .

Assumption (iv) now yields that

dβ−θ
1 ≤

(
n1

h− 2n2l
δ2
1

)
dδ1(µ1, µ2)

and hence (2.1).

Step 2. Now we show that, ∀x(λ1, µ2) ∈ S(λ1, µ2),∀x(λ2, µ2) ∈ S(λ2, µ2),

d2 := d
(
x(λ1, µ2), x(λ2, µ2)

)
≤

(
2n2l

δ2
2

h− 2n2l
δ2
1

)1/β

dα2δ2/β(λ1, λ2). (2.6)
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Let x(λ1, µ2) 6= x(λ2, µ2). Thanks to (iii) we have x′1 ∈ K(x(λ2, µ2), λ1) and

x′2 ∈ K(x(λ1, µ2), λ2) such that

d
(
x(λ1, µ2), x

′
2

)
≤ l2d

α2(λ1, λ2), (2.7)

d
(
x(λ2, µ2), x

′
1

)
≤ l2d

α2(λ1, λ2). (2.8)

By the Hölder continuity of K(., .) there are x′′1 ∈ K(x(λ1, µ2), λ1) and x′′2 ∈

K(x(λ2, µ2), λ2), such that

d(x′1, x
′′
1) ≤ l1d

α1
(
x(λ1, µ2), x(λ2, µ2)

)
, (2.9)

d(x′2, x
′′
2) ≤ l1d

α1
(
x(λ1, µ2), x(λ2, µ2)

)
. (2.10)

By the definition of (QEP), we have

f(x(λ1, µ2), x
′′
1, µ2) ≥ 0, (2.11)

f(x(λ2, µ2), x
′′
2, µ2) ≥ 0. (2.12)

It follows from assumption (ii) that

−f(x(λ1, µ2), x(λ2, µ2), µ2)− f(x(λ2, µ2), x(λ1, µ2), µ2) ≥ hdβ
2 .

Due to (2.11) and (2.12), one has

| f(x(λ1, µ2), x
′′
1, µ2)− f(x(λ1, µ2), x

′
1, µ2)|

+ | f(x(λ1, µ2), x
′
1, µ2)− f(x(λ1, µ2), x(λ2, µ2), µ2)|

+ | f(x(λ2, µ2), x
′′
2, µ2)− f(x(λ2, µ2), x

′
2, µ2)|

+ | f(x(λ2, µ2), x
′
2, µ2)− f(x(λ2, µ2), x(λ1, µ2), µ2)| ≥ hdβ

2 .

Hence, the Hölder continuity assumptions in (i) of f imply that

n2d
δ2(x′′1, x

′
1) + n2d

δ2(x′1, x(λ2, µ2)) + n2d
δ2(x′′2, x

′
2) + n2d

δ2(x′2, x(λ1, µ2)) ≥ hdβ
2 .
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From (2.7), (2.8), (2.9) and (2.10) we have

n2l
δ2
1 dα1δ2

2 + n2l
δ2
2 dα2δ2(λ1, λ2) + n2l

δ2
1 dα1δ2

2 + n2l
δ2
2 dα2δ2(λ1, λ2) ≥ hdβ

2 .

It follows from assumption (iv) that

dβ
2 ≤

(
2n2l

δ2
2

h− 2n2l
δ2
1

)
dα2δ2(λ1, λ2),

and then also (2.6).

Step 3. Finally since, ∀x(λ1, µ1) ∈ S(λ1, µ1), ∀x(λ2, µ2) ∈ S(λ2, µ2),

d
(
x(λ1, µ1), x(λ2, µ2)

)
≤ d1 + d2,

from (2.1) and (2.6) we get, with k1 =
(

2n2l
δ2
2

h−2n2l
δ2
1

) 1
β

and k2 =
(

n1

h−2n2l
δ2
1

) 1
β−θ

,

ρ
(
S(λ1, µ1), S(λ2, µ2)

)
≤ k1d

α2δ2/β(λ1, λ2)+k2d
δ1/(β−θ)(µ1, µ2). (2.13)

Taking λ2 = λ1 and µ2 = µ1 we see that the diameter of S(λ1, µ1) is 0, i.e. this

set is a singleton {x(λ1, µ1)}. S(λ2, µ2) is similar. Thus (QEP) has a unique

solution in a neighborhood of (λ0, µ0) and the Hölder condition in the conclusion

of the theorem is satisfied. �

Remark 2.1. In [1], when considering a quasivariational inequality in Hilbert

spaces, a special case of our problem (QEP), the main result (Theorem 5.1) is

a Hölder property similar to (2.13), but with a r-Hausdorff distance Hr(A, B)

replacing our ρ(A, B) (and so weaker than our result). Hence it cannot imply the

uniqueness and the Hölder continuity like in our Theorem 2.1.

Now we use other kinds of monotonicity of f to derive the same conclusion

as in Theorem 2.1. This result is more suitable than Theorem 2.1 while applied

in some cases like quasioptimization problems (see Subsection 3.4).
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Theorem 2.2. Theorem 2.1 is still valid if assumption (ii) is replaced by

(ii’) ∀µ ∈ V (µ0), −f(., ., µ) is quasimonotone in E(U(λ0)) and f(., ., µ) is h.β-

Hölder strongly pseudomonotone in E(U(λ0)).

Proof. Step 1. We can retain (2.2), (2.3), (2.4) and (2.5), which are not related

to (ii).

If f(x(λ1, µ1), x(λ1, µ2), µ1) ≥ 0 then (ii’) implies that

−f(x(λ1, µ2), x(λ1, µ1), µ1) ≥ hdβ
1 .

By (2.5), we have

| f(x(λ1, µ2), x2, µ2)− f(x(λ1, µ2), x(λ1, µ1), µ2)|

+ | f(x(λ1, µ2), x(λ1, µ1), µ2)− f(x(λ1, µ2), x(λ1, µ1), µ1)| ≥ hdβ
1 .

n2d
δ2(x2, x(λ1, µ1)) + n1d

θ
1d

δ1(µ1, µ2) ≥ hdβ
1 .

Then (i) and (2.2) imply that

n2l
δ2
1 dα1δ2

1 + n1d
θ
1d

δ1(µ1, µ2) ≥ hdβ
1

and hence, by (iv),

d1 ≤
(

n1

h− n2l
δ2
1

) 1
β−θ

d
δ1

β−θ (µ1, µ2). (2.14)

If f(x(λ1, µ1), x(λ1, µ2), µ1) < 0 then the quasimonotonicity in (ii’) implies

that

f(x(λ1, µ2), x(λ1, µ1), µ1) ≥ 0,

−f(x(λ1, µ1), x(λ1, µ2), µ1) ≥ hdβ
1 .

Then, similarly as above, (2.4), (i) and (2.3) together imply that

n2l
δ2
1 dα1δ2

1 ≥ hdβ
1 .
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By assumption (iv), one has n2l
δ2
1 dβ

1 ≥ hdβ
1 . So d1 = 0, since h > n2l

δ2
1 . Hence we

also have (2.14).

Step 2. We can repeat the first part of Step 2 in the proof of Theorem 2.1

to have (2.7) - (2.12).

If f(x(λ1, µ2), x(λ2, µ2), µ2) ≥ 0, it follows from assumption (ii’) that

−f(x(λ2, µ2), x(λ1, µ2), µ2) ≥ hdβ
2 .

Hence, (2.12), (i), (2.7) and (2.10) together yield

n2l
δ2
1 dα1δ2

2 + n2l
δ2
2 dα2δ2(λ1, λ2) ≥ hdβ

2 .

Now it follows from assumption (iv) that

d2 ≤
(

n2l
δ2
2

h− n2l
δ2
1

) 1
β

d
α2δ2

β (λ1, λ2). (2.15)

Similarly if f(x(λ1, µ2), x(λ2, µ2), µ2) < 0, we also have (2.15).

Step 3 is the same as for Theorem 2.1. �

As mentioned in Section 1, the solution set of a quasiequilibrium problem is

in general unbounded. As opposed to the case of an equilibrium problem, see [4,

5], where monotonicity assumptions imply directly the uniqueness of the solution,

here this uniqueness is established due to all assumptions together.

The following two examples show that assumptions (ii) (or (ii’)) and (iii)

in Theorems 2.1 and 2.2 are essential.

Example 2.1. Let X = A = R,Λ ≡ M = [0, 1], K(x, λ) = [λ, 1], λ0 = 0 and

f(x, y, λ) = (λ + 1)x(x− y).
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Then, (i) is fulfilled with n1 = δ1 = θ = 1, n2 = 2 and δ2 = 1; (iii) is satisfied

with l1 = 0, l2 = α2 = 1 and α1 is arbitrary. Since l1 = 0 and α1 is arbitrary,

(iv) holds. But S(0) = {0; 1} and S(λ) = {1},∀λ ∈ (0, 1]. So S(.) is even not

lsc at 0. The reason is that assumptions (ii) and (ii’) in Theorems 2.1 and 2.2

are violated. Indeed, taking x = 1, y = 0 we see that, ∀λ ∈ [0, 1], f(1, 0, λ) =

λ + 1 > 0 and f(0, 1, λ) = 0, and hence f is neither strongly monotone nor

strongly pseudomonotone.

Example 2.2. Let X, A,Λ, M and λ0 be as in Example 2.1, f(x, y, λ) = y − x

and

K(x, λ) =

{
{0}, if λ = 0,

{−1, 0, 1}, otherwise.

Then, (i) is fulfilled with n1 = θ = 0, δ1 = 1 and (ii’) holds with h = β = 1. But

S(0) = {0} and S(λ) = {−1},∀λ ∈ (0, 1]. Thus S(.) is neither usc nor lsc at

0. The reason is that (iii) is violated. (Although K is pseudoLipschitz. Indeed

picking P = U(0) = (−1
2
, 1

2
) we have K(λ1) ∩ P ⊆ K(λ2) + B(0, | λ1 − λ2|).)

Hence, assumption (iii) cannot be relaxed to the pseudoHölder property.

Remark 2.2. If E(U(λ0)) is bounded we can take, in assumption (i), θ = 0 since

d(x, y) ≤ M, ∀x, y ∈ E(U(λ0)), for some M > 0. Hence the condition β > θ in

(iv) can be omitted.

Remark 2.3. If K(x, λ) := K(λ), the quasiequilibrium problem (QEP) is re-

duced to the corresponding equilibrium problem. In this special case, assumption

(ii) derives the uniqueness of the solution in some neighborhood of the consid-

ered point. For this case, Theorems 2.1 and 2.2 improve Theorem 2.2.1 in [2] and

Theorem 4.2 in [11], since our assumptions (ii) and (ii’) are imposed locally (in

K(U(λ0)), not globally.
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The following example gives a case where our Theorems 2.1 - 2.2 derive the

Hölder continuity of the solution but the mentioned papers cannot be employed.

Example 2.3. Let X, A,Λ, M and λ0 be as in Example 2.1, K(x, λ) = [λ + 1, 2]

and f(x, y, λ) = (λ + 1)x(y2 − x2).

Then, (i) holds with n1 = 8, δ1 = θ = 1, n2 = 16 and δ2 = 1. (ii) and (ii’) are

fulfilled with h = 2, β = 2. K is (0.α1, 1.1)-Lipschitz. Since l1 = 0 and α1 is

arbitrary, we take α1 = 2 to see that (iv) is satisfied. Hence Theorem 2.1 (or

Theorem 2.2) derives the Hölder continuity of the solution around λ0 (in fact,

S(λ) = {λ + 1},∀λ ∈ [0, 1]). But f is neither global strongly monotone nor

global strongly pseudomonotone. Indeed, let x = 1, y = −1, then we see that,

∀λ ∈ [0, 1], f(1,−1, λ) = f(−1, 1, λ) = 0. Hence the results in [2] and [11] do not

work in this case.

3. Applications

Since quasiequilibrium problems contain as special cases many optimization -

related problems, including quasivariational inequalities, quasioptimization prob-

lems, fixed - point and coincidence - point problems, complementarity problems,

vector optimization, Nash equilibria, etc, we can derive from Theorems 2.1 and

2.2 direct consequences for such special cases. We discuss now only some appli-

cations of our results.

3.1. Quasivariational inequallities

Let X be a normed space, Λ and M be metric spaces and A ⊆ X be nonempty.

Let K : A × Λ → 2X be a multifunction and T : X ×M → X∗ be a mapping,

with K(x, λ) being closed and convex, ∀(x, λ) ∈ X ×Λ. For each (λ, µ) ∈ Λ×M
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consider the quasivariational inequality problem

(QVI) Find x̄ ∈ K(x̄, λ) such that, ∀y ∈ K(x̄, λ),

〈T (x̄, µ), y − x̄〉 ≥ 0.

Setting f(x, y, µ) = 〈T (x, µ), y − x〉, (QVI) becomes a case of (QEP).

Corollary 3.1. For problem (QVI) assume that solutions exist in a neighborhood

of (λ0, µ0) and that

(a) there are neighborhoods U(λ0) of λ0 and V (µ0) of µ0 such that, ∀x ∈

E(U(λ0)), T (x, .) is n3.δ3-Hölder at µ0 and T (., .) is bounded in E
(
U(λ0)

)
×

V (µ0), and E
(
U(λ0)

)
is bounded;

(b) ∀µ ∈ V (µ0), T (., µ) is h.β-Hölder strongly monotone in E(U(λ0));

(c) K is (l1.α1, l2.α2)-Hölder in E
(
U(λ0)

)
× {λ0};

(d) α1 = β and h > 2n2l1.

Then, in a neighborhood of (λ0, µ0), the solution x(λ, µ) of (QVI) is unique and

satisfies the following Hölder condition

d
(
x(λ1, µ1), x(λ2, µ2)

)
≤ k1d

α2/β(λ1, λ2) + k2d
δ3/β(µ1, µ2),

where k1 and k2 are positive constants depending on h, β, n3, δ3, etc.

Proof. We verify the assumptions of Theorem 2.1. (i) is fulfilled with n1 =

Nn3, δ1 = δ3, θ = 0, n2 = M and δ2 = 1, where N, M > 0 are such that

‖T (x, µ)‖ ≤ M, ∀(x, µ) ∈ E(U(λ0))× V (µ0) and ‖x− y‖ ≤ N, ∀x, y ∈ E(U(λ0)).

For (ii) one have, by (b),

0 ≥ 〈T (x, µ)− T (y, µ), y − x〉+ h‖y − x‖β
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= f(x, y, µ) + f(y, x, µ) + h‖y − x‖β.

(iii) is the same as (c). Finally, for (iv) from (d) one has α1δ2 = β > θ and

h > 2n2l1, as δ2 = 1 and θ = 0. �

The following example gives a case where all the assumptions and conclusion

of Corollary 3.1 hold with T being not globally bounded.

Example 3.1. Let X, Λ, M , λ0 be as in Example 2.1, A = [−2, 2], K(x, λ) =

[λ, 1] and T (x, λ) = (1+λ)x
1+x

.

Then, T is locally bounded in [0, 1]× [0, 1]. (b) holds with h = 1
4

and β = 2.

(c) is fulfilled with l1 = 0, l2 = α2 = 1 and α1 is arbitrary and hence (d) is also

satisfied. So Corollary 3.1 implies the Hölder continuity of the solution at 0 (in

fact x(λ) = λ). But T is not globally bounded.

The following result is derived from Theorem 2.2.

Corollary 3.2. Corollary 3.1 is still valid if assumption (b) is replaced by

(b’) ∀µ ∈ V (µ0), −T (., µ) is quasimonotone in E(U(λ0)) and T (., µ) is h.β-

Hölder-strongly pseudomonotone in E(U(λ0)).

The following example yields a case where Corollary 3.2 can be applied but

Corollary 3.1 cannot.

Example 3.2. Let X,Λ, M , λ0 be as Example 3.1, A = [0, 1], K(x, λ) = [x+λ
16

, 2x+λ
16

]

and T (x, λ) = λ+1
1+x

.

Then all assumptions of Corollary 3.2 are fulfilled with n3 = 1
14

, δ3 = 1, θ =

0, n2 = 2, δ2 = 1, h = 14
15

, β = 1, l1 = l2 = 1
16

, α1 = α2 = 1. Hence Corollary 3.2

implies the Lipschitz continuity of the unique solution (in fact x(λ) = λ
15

). While

Corollary 3.1 cannot be employed since T is not strongly monotone.
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Remark 3.1. Let x̄ = x(λ̄, µ̄) be the solution of the variational inequality corre-

sponding to (QVI), i.e. when K does not depend on x. Using similar arguments,

Corollaries 3.1 and 3.2 can be proved when replacing assumption (c) by the fol-

lowing Aubin property (known also as pseudo-Lipschitz property) of K around

(x̄, λ̄): there exist neighborhoods P of x̄, V(λ̄) of λ̄ and k > 0 such that

K(λ1) ∩ P ⊆ K(λ2) + k‖λ1 − λ2‖B,

∀λ1, λ2 ∈ V(λ̄) (see Corollary 3.2 of [5]).

3.2. Traffic network problems

A widely accepted notion of equilibrium flows for transportation network problem

was introduced in 1952 by Wardrop [31] together with a basic traffic network

principle. Since then, traffic network problems have raised a great interest and

much developed in both theory and methodology view points, see e.g. [14, 16,

18, 19, 24, 25, 28, 30, 32]. Several important turning points may be observed as

follows. The variational approach to such traffic problems begins with Smith [30],

who proved that the Wardrop equilibrium can be expressed in terms of variational

inequalities. In [15, 27], because of diverse practical situations, travel demands

of transportation networks are proposed to be elastic. Namely, these demands

may depend on the equilibrium vector flow. Then Wardrop equilibriums of the

network problem are expressed as solutions of the corresponding quasivariational

inequality. In [1], the Hölder continuity of the solution sets of such parametric

elastic traffic problems is established. However, by a mistake, some assumptions

of the main theorem contradict each other and hence they are satisfied in no

cases. In this subsection, using Corollaries 3.1 and 3.2 we establish even a stronger

Hölder continuity and uniqueness of the solution of the considered elastic traffic

problem.
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We first describe the elastic traffic netword problem. Let N be the set

of nodes, L be that of links (or arcs), W = (W1, ...,Wl) be the set of origin-

destination pairs (O/D pairs for short). Assume that the pair Wj, j = 1, ..., l, is

connected by a set Pj of paths and Pj contains rj ≥ 1 paths. Let F = (F1, ..., Fm)

be the path vector flow, where m = r1 + ... + rl. Following Giannessi [17] the

capacity of these paths must be taken into account in practise. So we assume

that the capacity restriction is

F ∈ A := {F ∈ Rm : 0 ≤ γs ≤ Fs ≤ Γs, s = 1, ...,m}.

Assume further that the travel cost on the path flow Fs, s = 1, ...,m, depends

on the whole path vector flow F and is Ts(F ) ≥ 0. Then we have the path cost

vector T (F ) = (T1(F ), ..., Tm(F )).

Following Wardrop [31] a path vector flow H is said to be an equilibrium

vector flow if ∀Wj, if p ∈ Pj and s ∈ Pj then

[Tp(H) < Ts(H)] =⇒ [Hs = γs or Hp = Γp].

Now assume that the perturbation on the traffic expresses by parameter λ

of a metric space Λ. Assume further that the travel demand gj of the O/D pair

Wj depends on λ ∈ Λ and also on the equilibrium vector flow H as explained in

[15, 27]. Denote the travel vector demand by g = (g1, ..., gl) and set

φjs =

{
1, if s ∈ Pj,

0, if s /∈ Pj,

φ = {φjs}, j = 1, ..., l; s = 1, ...,m.

Then the path vector flows meeting the travel demands are called the feasible

path vector flows and form the constraint set

K(H, λ) = {F ∈ A | φF = g(H, λ)}.
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φ is called the O/D pair - path incidence matrix.

Assume further that the path costs are also perturbed, i.e. depend on a

perturbation parameter µ of a metric space M : Ts(F, µ), s = 1, ...,m.

Remark 3.2. The above traffic model is formulated in terms of path flow vari-

ables. Another way to describe the traffic problem is using link flow variables.

But the latter model can be employed only if the travel cost is additive, i.e. any

path cost is the sum of the link costs for all the links involved in the path. So

the “path model” we use here does not need this additivity.

Our traffic network problem is equivalent to a quasivariational inequality

as follows.

Lemma 3.3 (See e.g. [14, 30]). A path vector flow H ∈ K(H, λ) is an equilibrium

flow if and only if it is a solution of the following quasivariational inequality of

the form (QVI) in Subsection 3.1:

Find H ∈ K(H, λ) such that, ∀F ∈ K(H, λ),

〈T (H, µ), F −H〉 ≥ 0,

where X = Rm.

We need also the following simple assertion

Lemma 3.4 (See Proposition 5.1 of [1]). Assume that g is (L1.α1, L2.α2) - Hölder

continuous at (x0, λ0), i.e., ∃N(x0) (neighborhood of x0), ∃U(λ0) (neighborhood

of λ0), ∀x1, x2 ∈ N(x0), ∀λ1, λ2 ∈ U(λ0),

‖g(x1, λ1)− g(x2, λ2)‖ ≤ L1‖x1 − x2‖α1 + L2‖λ1 − λ2‖α2 .
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Then there exist l1, l2 > 0 such that K(., .) is (l1.α1, l2.α2) - Hölder at (x0, λ0).

The following results are implied from Corollaries 3.1 and 3.2.

Corollary 3.5. Assume that solutions of the parametric elastic traffic network

problem exist and that assumptions (a), (b) and (d) of Corollary 3.1 are fulfilled.

Replace (c) by

(c′) g is (L1.α1, L2.α2) - Hölder continuous in E
(
U(λ0)

)
× {λ0}.

Then, in a neighborhood of (λ0, µ0), the solution is unique and satisfies the same

Hölder condition as in Corollary 3.1.

Corollary 3.6. Corollary 3.5 is still valid if assumption (b) is replaced by

(b’) ∀µ ∈ V (µ0), −T (., µ) is quasimonotone in E(U(λ0)) and T (., µ) is h.β-

Hölder-strongly pseudomonotone in E(U(λ0)).

Remark 3.3. [1] considers the same elastic traffic network, where A is a com-

pact, convex subset containing 0 (this condition is essential in Lemma 5.2). The

authors impose assumptions similar to (a), (b) and (c’) of Corollary 3.5 (but glob-

ally in A, not only in E(U(λ0)) and hence the study there cannot be applied in

our Example 3.1). Instead of our assumption (d), another technical assumption

is imposed, using the lower bound f0 > 0 of the norm ‖F‖ of all F ∈ A \ {0} (see

Remark 3.1 in [1]). Then, the following local Hölder continuity of the solution

set S(., .) is proved (see the main result, Theorem 5.1, in [1])

Hr(S(λ1, µ1), S(λ2, µ2)) ≤ k1d
ξ(λ1, λ2) + k2d

ζ(µ1, µ2),

where k1, k2, ξ and ζ are similar to the corresponding constants of Corollary 3.5.

(This continuity cannot imply the solution uniqueness.) However, we can see that

there does not exist a case where all the assumptions of this Theorem 5.1 are

20



satisfied, since for the convex set A containing 0, we cannot have ‖F‖ ≥ f0 > 0,

∀F ∈ A \ {0}.

3.3. A quasioptimization problem

Let X, Λ, M, A and K be as in for (QEP) in Section 1. and g : A×M → R be a

function. For each (λ, µ) ∈ Λ×M , consider the problem of

(QOP) finding x̄ ∈ K(x̄, λ) such that

g(x̄, µ) = min
y∈K(x̄,λ)

g(y, µ).

Since the constraint set depends on the minimizer x̄, this is a quasioptimization

problem.

Setting f(x, y, µ) = g(y, µ) − g(x, µ), (QOP) becomes a special case of

(QEP).

The following results are derived from Theorem 2.2 (Theorem 2.1 cannot

be applied since f(x, y, µ) + f(y, x, µ) = 0,∀x, y ∈ A and µ ∈ M).

Corollary 3.7. Assume for (QOP) that solutions exist in a neighborhood of the

considered point (λ0, µ0) ∈ Λ×M . Assume further that

(a2) there are neighborhoods U(λ0) of λ0 and V (µ0) of µ0 such that g(x, .) is

N1.δ1- Hölder at µ0 in E(U(λ0)) and, ∀µ ∈ V (µ0), g(., µ) is N2.δ2-Hölder

in E(U(λ0));

(b2) ∀µ ∈ V (µ0), f(., ., µ) is h.β-Hölder strongly pseudomonotone in E(U(λ0)),

i.e. ∀x, y ∈ E(U(λ0)), ∀µ ∈ V (µ0),

[g(y, µ)− g(x, µ) ≥ 0] =⇒ [g(x, µ)− g(y, µ) + h‖x− y‖β ≤ 0];
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(c2) K(., .) is (l1.α1, l2.α2)−Hölder in E(U(λ0))× {λ0};

(d2) α1δ2 = β and h > 2N2l
δ2
1 .

Then, in a neighborhood of (λ0, µ0) (QOP) has a unique solution x(λ, µ) which

satisfies the Hölder condition

d
(
x(λ1, µ1), x(λ2, µ2)

)
≤ k1d

α2δ2/β(λ1, λ2) + k2d
δ1/β(µ1, µ2),

where k1 and k2 are positive constants depending on h, β,N1, N2, δ1, δ2, etc.

Proof. We verify assumptions of Theorem 2.2 with f(x, y, µ) = g(y, µ)− g(x, µ).

For assumption (i) one has

|f(x, y, µ1)− f(x, y, µ2)| ≤ |g(y, µ1)− g(y, µ2)|+ |g(x, µ1)− g(x, µ2)|

≤ N1|µ1 − µ2|δ1 + N1|µ1 − µ2|δ1 = 2N1|µ1 − µ2|δ1 .

|f(x, y1, µ)− f(x, y2, µ)| = |g(y1, µ)− g(x, µ)− g(y2, µ) + g(x, µ)|

= |g(y1, µ)− g(y2, µ)| ≤ N2|y1 − y2|δ2 .

(So (i) is satisfied with n1 = 2N1, n2 = N2, δ1, δ2, θ = 0.)

For assumption (ii) we have

[f(x, y, µ) = g(y, µ)− g(x, µ) < 0] =⇒ [f(x, y, µ) = g(x, µ)− g(y, µ) > 0],

and hence −f is quasimonotone in E(U(λ0)).

[f(x, y, µ) = g(y, µ)− g(x, µ) ≥ 0] =⇒ [g(x, µ)− g(y, µ) + h‖x− y‖β ≤ 0]

or, the same, [f(y, x, µ)+h‖x− y‖β ≤ 0].

So f is h.β- Hölder strongly pseudomonotone in E(U(λ0)).

Assumptions (iii) and (iv) are the same as (c2) and (d2), respectively. �
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3.4. A fixed - point problem

Let H, M be Hilbert spaces, A ⊆ H be nonempty convex subset of H and B :

A ×M → A be a mapping. The fixed - point problem under our consideration

is, for µ ∈ M,

(FP) Find x̄ ∈ A such that, x̄ = B(x̄, µ).

This problem is equivalent to the following special case of (QEP)

(EP1) Find x̄ ∈ A such that, ∀y ∈ A,

〈x̄−B(x̄, µ), y − x̄〉 ≥ 0.

Indeed, if x̄ is a solution of (FP), i.e., x̄ = B(x̄, µ) and hence 〈x̄−B(x̄, µ), y−

x̄〉 = 0,∀y ∈ A. Thus x̄ is a solution of (EP1). Conversely, if x̄ is a solution of

(EP1), taking y = B(x̄, µ), we see that 〈x̄ − B(x̄, µ), B(x̄, µ) − x̄〉 ≥ 0 and then

‖x̄−B(x̄, µ)‖ = 0, i.e., x̄ is a solution of (FP).

The following results are derived from Corollaries 2.1 and 2.2.

Corollary 3.8. Assume that (FP) has solutions in a neighborhood of µ0 and that

(a3) B(x, .) is N1.δ1- Hölder at µ0 in A, and (x, µ) 7→ x−B(x, µ) is bounded in

A : ‖x−B(x, µ)‖ ≤ N2,∀x ∈ A and µ ∈ V (µ0) (neighborhood of µ0);

(b3) ∀µ ∈ V (µ0), (x, µ) 7→ x−B(x, µ) is h.β-Hölder strongly monotone in A for

some h > 0, β > 1.

Then, for each µ, in a neighborhood of µ0, (FP) has a unique solution x(µ) which

satisfies the Hölder condition

‖x(µ1)− x(µ2)‖ ≤ K‖µ1 − µ2‖δ1/(β−1),

for some K > 0.
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Proof. Setting f(x, y, µ) = 〈x − B(x, µ), y − x〉, K(x, λ) = A, we check the

assumptions of Theorem 2.1. For Assumption (i) we have

|f(x, y, µ1)− f(x, y, µ2)| = |〈x−B(x, µ1), y − x〉 − 〈x−B(x, µ2), y − x〉|

= |〈B(x, µ2)−B(x, µ1), y − x〉| ≤ |B(x, µ2)−B(x, µ1)|‖y − x‖

≤ N1‖µ1 − µ2‖δ1‖y − x‖.

|f(x, y1, µ)− f(x, y2, µ)| = |〈x−B(x, µ), y1 − x〉 − 〈x−B(x, µ), y2 − x〉|

= |〈x−B(x, µ), y1 − y2〉| ≤ ‖x−B(x, µ)‖‖y1 − y2‖ ≤ N2‖y1 − y2‖.

(So (i) holds with θ = 1, n1 = N1, n2 = N2, δ1 and δ2 = 1.)

Assumption (ii) is the same as (b3). Assumption (iii) holds with l1 = l2 = 0

and αl, α2 are arbitrary, and hence assumption (iv) is fulfilled, since β > 1. �

Similarly, we have

Corollary 3.9. Corollary 3.8 is still valid if assumption (b3) is replaced by

(b’3) ∀µ ∈ V (µ0), (x, µ) 7→ x − B(x, µ) is quasimonotone in A and (x, µ) 7→

x−B(x, µ) is h.β-Hölder-strongly pseudomonotone in A.

3.5. A coincidence - point problem

Let H, M be Hilbert space, A ⊆ H be nonempty convex subset of H and g, h :

A×M → 2A. Consider the coincidence - point problem

(C) Find (x̄1, x̄2) ∈ A× A such that, x̄1 = g(x̄2, µ) and x̄2 = h(x̄1, µ).

To restate (C) as a particular case of (QEP) we set H = H×H, A = A×A,

B : A × M → A and f : A × A × M → R being defined as follows. For each

x = (x1, x2), y = (y1, y2) ∈ A× A,

B(x, µ) = g(x2, µ)× h(x1, µ),
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f(x, y, µ) = 〈x−B(x, µ), y − x〉

= 〈x1 − g(x2, µ), y1 − x1〉+ 〈x2 − h(x1, µ), y2 − x2〉.

We see that (C) is equivalent to the problem

(EP2) Find x̄ = (x̄1, x̄2) ∈ A× A such that, ∀y = (y1, y2) ∈ A× A,

〈x̄1 − g(x̄2, µ), y1 − x̄1〉+ 〈x̄2 − h(x̄1, µ), y2 − x̄2〉 ≥ 0. (3.1)

Indeed, if x̄ = (x̄1, x̄2) is a solution of (C), then x̄1 = g(x̄2, µ) and x̄2 =

h(x̄1, µ) and hence for each y = (y1, y2) ∈ A× A,

〈x̄1 − g(x̄2, µ), y1 − x̄1〉+ 〈x̄2 − h(x̄1, µ), y2 − x̄2〉 = 0.

Thus, x̄ = (x̄1, x̄2) is a solution of (EP2). Conversely, if x̄ = (x̄1, x̄2) is a solution of

(EP2), putting y1 = g(x̄2, µ) and y2 = h(x̄1, µ) in (3.1) we obtain ‖x̄1−g(x2, µ)‖ =

‖x̄2 − h(x̄1, µ)‖ = 0, i.e., x̄ = x(x̄1, x̄2) is a solution of (C).

The following results are directly derived from Corollaries 3.8 and 3.9.

Corollary 3.10. Assume for problem (C) that all assumption of Corollary 3.8

are fulfilled. Then, in a neighborhood of µ0, the coincidence point (x1(µ), x2(µ))

of g(., µ) and h(., µ) is unique and satisfies the Hölder condition

‖x(µ1)− x(µ2)‖ ≤ K‖µ1 − µ2‖δ1/(β−1),

for some K > 0.

Corollary 3.11. Corollary 3.10 is still valid if assumption (b3) is replaced by

(b’3) ∀µ ∈ V (µ0), (x, µ) 7→ x − B(x, µ) is quasimonotone in A and (x, µ) 7→

x−B(x, µ) is h.β-Hölder-strongly pseudomonotone in A.
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