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1. Introduction

Let X and Y be normed spaces and S ⊆ X be nonempty. Let Y be ordered by a convex
cone C with nonempty interior. Let f : X → Y be a mapping. Our goal in this paper
is to derive necessary optimality conditions for local weakly efficient points (then also for
local efficient and local firm efficient points) and sufficient optimality conditions for local
firm efficient points (then for local efficient and local weakly efficient points as well) of the
following set-constrained vector optimization problem:

Min f(x), s.t. x ∈ S. (1.1)

We are interested in both first and second-order conditions. To avoid smoothness
assumptions via generalized differentiability, we apply the first-order approximation intro-
duced in [1] and the second-order approximation proposed in [2]. As far as we know, [1]-[4]
are the only papers in the literature to employ approximations for considering optimal-
ity conditions. [1] uses first-order approximations to study metric regularity and applies
approximate subdifferentials proposed by Mordukhovich in [5] and [6] for finite dimen-
sions and by Ioffe in [7] for Banach spaces, to establish optimality conditions. [2] proves
only second-order necessary conditions in terms of compact second-order approximations.
Second-order approximations of scalar functions and a scalarization technique using sup-
port functions are the tools in [3] to establish second-order optimality conditions under
strict differentiability and compactness assumptions. In the previous [4], using first and
second-order approximations we derive both necessary and sufficient conditions for ideal,
weak and Pareto efficiencies in unconstrained and constrained problems of the form (1.1).
In this work we improve and sharpen the necessary conditions obtained in [4] and provide
new sufficient conditions for firm efficiency (see definition in [8]).

It should be noted that a vast range of generalized differentiability constructions have
been developed for studying nonsmooth optimization-related problems in general, and
optimality conditions in particular. the reader is referred to [9]-[11], three recent excel-
lent books, for systematic expositions of the subject, and also to [12], [13] for deep and
detailed discussions of the issue. The reason for us to utilize first and second-order ap-
proximations is that their definitions are very simple and even discontinuous mappings
may have second-order approximations. We do not think that these approximations are
ones of the most powerful stools for nonsmooth analysis but we can motivate our choice by
showing advantages of our results over several recent papers in many situations provided
by examples.

The rest of the paper is organized as follows. Section 2 presents basic definitions and
preliminaries for the later use. In Section 3 we derive first-order optimality conditions.
The final Section 4 is devoted to second-order optimality conditions.

Our notations is basically standard. ‖.‖ is used for norms in any normed spaces (because
of the context no confusion occurs). N = {1, 2, ...n, ...}. For normed spaces X and Y , X∗

is the topological dual of X; 〈., .〉 means the canonical pairing; BX(x, r) is the open
ball in X of radius r and centered at x; L(X, Y ) denotes the space of the continuous
linear mappings of X into Y and B(X, X, Y ) denotes the space of the continuous bilinear
mappings of X×X into Y . For a cone C ⊆ X, C∗ stands for the positive polar cone of C.
For A ⊆ L(X, Y ) and x ∈ X (B ⊆ B(X, X, Y ) and x, z ∈ X), A(x) := {M(x) : M ∈ A}
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(B(x, z) := {N(x, z) : N ∈ B}, respectively). o(tk) for t > 0 and k ∈ N is used to denote
a moving point such that o(tk)/tk → 0 as t → 0+. C0,1 stands for the space of the locally
Lipschitz mappings and C1,1 for the space of the Fréchet differentiable mappings whose
Fréchet derivatives are locally Lipschitz. For a subset A ⊆ X, int A, cl A, bd A and
coA denote the interior, closure, boundary and convex hull of A, respetively; coneA and
spandA are the cone generated by A and linear hull of A, respectively, i.e.

coneA = {λa : λ ≥ 0, a ∈ A},
spandA = {

∑n
i=1 λiai : λi ∈ R, ai ∈ A,n ∈ N}.

2. Preliminaries

Throughout the paper X and Y are normed spaces if not otherwise stated.

Definition 2.1 [1, 2]. Let x0 ∈ X and g : X → Y .

(i) The set Ag(x0) ⊆ L(X, Y ) is said to be a first-order approximation of g at x0 if
there exists a neighborhood U of x0 such that, for all x ∈ U ,

g(x)− g(x0) ∈ Ag(x0)(x− x0) + o(‖x− x0‖).
(ii) A set (Ag(x0), Bg(x0)) ⊆ L(X, Y ) × B(X, X, Y ) is called a second-order approxi-

mation of g at x0 if

(a) Ag(x0) is a first-order approximation of g at x0;

(b) g(x)− g(x0) ∈ Ag(x0)(x− x0) + Bg(x0)(x− x0, x− x0) + o(‖x− x0‖2).

Assume now that X = Rn and Y = Rm. Let g ∈ C0,1 and ∂Cg(x0) (g ∈ C1,1 and
∂2

Cg(x0)) be the Clarke (generalized) Jacobian of g at x0, see [14] (the Clarke (generalized)
Hessian of g at x0, see [15], respectively). For g : Rn → Rm being continuous, let ∂g(x0)
be an approximate Jacobian of g at x0, see [16] and for g being continuously Fréchet
differentiable, let ∂2g(x0) be an approximate Hessian of g at x0, see [17]. We have the
following relations between the above-mentioned generalized derivatives.

Proposition 2.2 [1, 2].

(i) If g : Rn → Rm is locally Lipschitz at x0 then ∂Cg(x0) is a first-order approximation
of g at x0.

(ii) If g : Rn → Rm is in C1,1 at x0 then (g
′
(x0), 1

2∂2
Cg(x0)) is a second-order approxi-

mation of g at x0.

Proposition 2.3 [4].

(i) If g : Rn → Rm is continuous and has an approximate Jacobian mapping ∂g(.)
which is upper semicontinuous at x0, then co∂g(x0) is a first-order approximation of g at
x0.

(ii) If g : Rn → Rm is continuously differentiable in a neighborhood U of x0 and
has an approximate Hessian mapping ∂2g(.) which is upper semicontinuous at x0, then
(g

′
(x0), 1

2co∂2g(x0)) is a second-order approximation of g at x0.
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As shown by Examples 2.1-2.5 in [4], the converse of Proposition 2.3 does not hold and
under the assumptions of this proposition one still has other approximations in addition
to the mentioned one.

In the sequel the following relaxed compactness notions will be employed.

Definition 2.4

(i) Let fα and f be in L(X, Y ). The net fα is said to pointwisely converge to f and
written as fα

p−→ f or f = p-lim fα if lim fα(x) = f(x) for all x ∈ X. A similar definition
is adopted for fα, f ∈ B(X, X, Y ).

(ii) A subset A ⊆ L(X, Y ) (B ⊆ B(X, X, Y ), respectively) is called asymptotically
pointwisely compact, or asymptotically p-compact if

(a) each bounded net (fα) ⊆ A (⊆ B, respectively) has a subnet (fβ) and f ∈ L(X, Y )
(f ∈ B(X, X, Y ), respectively) such that f = p-lim fβ ,

(b) each net (fα) ⊆ A (⊆ B, respectively) with lim ‖fα‖ = ∞, the net (fα/‖fα‖) has
a subnet which pointwisely converges to some f ∈ L(X, Y ) \ {0} (f ∈ B(X, X, Y ) \ {0},
respectively).

(iii) If in (ii), pointwise convergence, i.e. p-lim, is replaced by convergence, i.e. lim, a
subset A ⊆ L(X, Y ) (or B ⊆ B(X, X, Y )) is called asymptotically compact.

Note that the asymptotical p-compactness in Definition 2.4 is equivalent to the relative
p-compactness and the asymptotical p-compactness together defined in [4]. Note also that
the asymptotical compactness, corresponding to asymptotical p-compactness in [4], was
introduced in [18].

For A ⊆ L(X, Y ) and B ⊆ B(X, X, Y ) we adopt the notations:

p-cl A = {f ∈ L(X, Y ) : ∃(fα) ⊆ A, f = p-lim fα}, (2.1)

p-cl B = {g ∈ B(X, X, Y ) : ∃(gα) ⊆ B, g = p-lim gα}, (2.2)

A∞ = {f ∈ L(X, Y ) : ∃(fα) ⊆ A,∃tα → 0+, f = lim tαfα}, (2.3)

p-A∞ = {f ∈ L(X, Y ) : ∃(fα) ⊆ A,∃tα → 0+, f = p-lim tαfα}, (2.4)

p-B∞ = {g ∈ B(X, X, Y ) : ∃(gα) ⊆ B,∃tα → 0+, g = p-lim tαgα}. (2.5)

The sets (2.1), (2.2) are pointwise closures; (2.3) is a recession cone; (2.4), (2.5) are
pointwise recession cones.

Remark 2.5

(i) In finite dimensions a convergence occurs if and only if the corresponding pointwise
convergence does, but in infinite dimensions the ”if” does not hold, see [4, Example 3.1].

(ii) In finite dimensions every subset is asymptotically p-compact and asymptotically
compact but in infinite dimensions the asymptotical compactness is stronger, as shown by
[4, Example 3.2].

(iii) Assume that X is a Banach space. If xα → x in X and Aα
p−→ A in L(X, Y ), then

Aαxα → Ax in Y . Similarly, if xα → x, yα → y in X and Bα
p−→ B in B(X, X, Y ), then
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Bα(xα, yα) → B(x, y) in Y .

In the sequel we will use the following tangent sets.

Definition 2.6. Let x0, v ∈ X and S ⊆ X.

(a) The contingent (or Bouligand) cone of S at x0 [19] is

T (S, x0) = {v ∈ X : ∃tn → 0+,∃vn → v,∀n ∈ N, x0 + tnvn ∈ S}.

(b) The interior tangent (or Dubovitskii-Milyutin) cone of S at x0 [20] is

IT (S, x0) = {v ∈ X : ∃δ > 0,∀t ∈ (0, δ),∀u ∈ BX(v, δ), x0 + tu ∈ S}.

(c) The second-order contingent set of S at (x0, v) [21, 22] is

T 2(S, x0, v) = {w ∈ X : ∃tn → 0+,∃wn → w,∀n ∈ N, x0 + tnv + 1
2 t2nwn ∈ S}.

(d) The asymptotic second-order tangent cone of S at (x0, v) [22, 23] (the name is
proposed by Penot in [23]) is

T
′′
(S, x0, v) = {w ∈ X : ∃(tn, rn) → (0+, 0+) : tn

rn
→ 0,∃wn → w,

∀n ∈ N, x0 + tnv + 1
2 tnrnwn ∈ S}.

Proposition 2.7 [24, 25]. Let S ⊆ X, x0 ∈ cl S and v ∈ X. If S is convex and int S 6= ∅,
then

int cone(S − x0) = IT (intS, x0).

Note from this that if x0 ∈ bdS, then

0 6∈ int cone(S − x0).

Proposition 2.8 [24]. Assume that X = Rm and x0 ∈ S ⊆ X. If xn ∈ S \ {x0} tends to
x0, then there exists u ∈ T (S, x0) \ {0} and a subsequence, denoted again by xn, such that

(i) 1
tn

(xn − x0) → u, where tn = ‖xn − x0‖;

(ii) either z ∈ T 2(S, x0, u) ∩ u⊥ exists such that (xn − x0 − tnu)/ 1
2 t2n → z or z ∈

T
′′
(S, x0, u)∩u⊥\{0} and rn → 0+ exist such that tn

rn
→ 0+ and (xn−x0−tnu)/ 1

2 tnrn → z.

Definition 2.9 [26]. Let y ∈ Y and A ⊆ Y . The signed distance from y to A, denoted by
D(y, A), is defined by

D(y, A) = d(y, A)− d(y, Y \A),

where d(y, A) = inf{‖y − a‖ : a ∈ A} is the usual distance.

D(y, A) is called also oriented distance or directed distance in the literature. This
concept is widely used in [27] to study second-order optimality conditions.

Proposition 2.10 [28]. If Y = Rm and A is a convex cone then
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D(y,−A) = sup
v∗∈A∗,‖v∗‖=1

〈v∗, y〉.

3. First-order optimality conditions for problem (1.1)

Consider problem (1.1) stated in Section 1. Recall first notions of vector optimization.

Definition 3.1

(i) (Classical notion). A point x0 ∈ S is called a local weakly efficient solution (local
efficient solution) of (1.1) if there is a neighborhood U of x0 such that, ∀x ∈ U ∩ S,

f(x)− f(x0) 6∈ (−C) \ C

(f(x)− f(x0) 6∈ −int C, respectively).

The set of all local weakly efficient solutions of (1.1) is denoted by LWE(f, S) and that
of local efficient ones by LE(f, S).

(ii) See e.g. [8]. For m ∈ N, x0 ∈ S is said to be a local firm efficient solution of order
m, denoted by x0 ∈ LFE(m, f, S) if there are α > 0 and a neighborhood U of x0 such
that, ∀x ∈ U ∩ S \ {x0},

(f(x)+C)∩BY (f(x0), α‖x−x0‖m) = ∅. (3.1)

Remark 3.2

(i) For p ≥ m it is clear that

LFE(m, f, S) ⊆ LFE(p, f, S) ⊆ LE(f, S) ⊆ LWE(f, S).

Therefore, necessary conditions for the right-most term hold true also for the others
and sufficient conditions for the left-most term are valid for the others as well.

(ii) Instead of ”firm efficient” other terms like ”strict efficient”, ”isolated efficient” are
also used in the literature. Definition (3.1) is equivalent to each of the following two
assertions

(a) d(f(x)− f(x0),−C) ≥ α‖x− x0‖m, ∀x ∈ U ∩ S \ {x0};

(b) x0 is a local firm optimal solution of order m of the scalar optimization problem

Min ϕ(x), s.t. x ∈ S,

where ϕ(x) = D(f(x)− f(x0),−C),∀x ∈ X, or in other words, ∀x ∈ U ∩ S \ {x0},

ϕ(x) ≥ ϕ(x0) + α‖x− x0‖m.

(iii) If X = Rn, Y = Rm and C ⊆ Y is a closed convex cone, then x0 ∈ LWE(f, S) if
and only if x0 is a local optimal solution of (SP).

Theorem 3.3. Assume that x0 ∈ LWE(f, S).

(i) If Af (x0) is a first-order approximation of f at x0 and Af (x0) is asymptotically
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compact, then

∀v ∈ T (S, x0),∃M ∈ clAf (x0)
⋃

(Af (x0)∞ \ {0}), Mv 6∈ −int C.

(ii) If X is a Banach space, Af (x0) is a first-order approximation of f at x0 and Af (x0)
is asymptotically p-compact, then

∀v ∈ T (S, x0),∃M ∈ p-clAf (x0)
⋃

(p-Af (x0)∞ \ {0}), Mv 6∈ −int C.

Proof. The two parts are proved similarly. We consider the more complicated part (ii).
For any v ∈ T (S, x0), there are (tn, vn) → (0+, v) such that x0 + tnvn ∈ S, ∀n ∈ N. By
Definition 2.1(i), for large n, Mn ∈ Af (x0) exists such that

f(x0 + tnvn)− f(x0) = tnMnvn + o(tn). (3.2)

Since x0 ∈ LWE(f, S), for n large enough, one has

f(x0 + tnvn)− f(x0) 6∈ −int C. (3.3)

If {Mn} is bounded, by extracting a subsequence if necessary we assume Mn
p−→ M ∈

p-clAf (x0). Dividing (3.2) by tn, using (3.2) and (3.3) and passing to the limit we obtain
Mv 6∈ −int C.

If {Mn} is unbounded, we can assume that ‖Mn‖ → ∞ and Mn

‖Mn‖
p−→ M ∈ p-Af (x0)∞

\{0}. Dividing (3.2) by ‖Mn‖tn and passing to the limit we have Mv 6∈ −int C. �

Theorem 3.4. Assume that X = Rm and x0 ∈ S ⊆ X, then x0 ∈ LFE(1, f, S) if one of
the following conditions is satisfied.

(i) For an asymptotically compact first-order approximation Af (x0) of f at x0,

∀v ∈ T (S, x0) \ {0},∀M ∈ clAf (x0)
⋃

(Af (x0)∞ \ {0}), Mv 6∈ −cl C.

(ii) For an asymptotically p-compact first-order approximation Af (x0) of f at x0,

∀v ∈ T (S, x0) \ {0},∀M ∈ p-clAf (x0)
⋃

(p-Af (x0)∞ \ {0}), Mv 6∈ −cl C.

Proof. We prove (ii) since (i) can be demonstrated similarly. Suppose to the contrary the
existence of xn ∈ BX(x0,

1
n ) \ {x0} and cn ∈ C such that

f(xn)− f(x0) + cn ∈ BY (0, 1
n‖xn − x0‖).

We can assume that (xn − x0)/‖xn − x0‖ → v for some v ∈ T (S, x0) \ {0}. Then by the
definition of Af (x0), for large n, there is Mn ∈ Af (x0) such that

Mn(xn − x0) + o(‖xn − x0‖) + cn ∈ BY (0, 1
n‖xn − x0‖). (3.4)

Dividing (3.4) by ‖xn − x0‖ if {Mn} is bounded and pointwisely converges to M and by
‖Mn‖‖xn−x0‖ if ‖Mn‖ tends to infinity and Mn

‖Mn‖ pointwisely converges to M , from (3.4)
we arrive at a contradiction that Mv ∈ −cl C. �

Remark 3.5. Mv 6∈ −int C is equivalent to the existence of a Lagrange multiplier c∗ ∈ C∗

such that 〈c∗,Mv〉 ≥ 0 and Mv 6∈ −cl C is equivalent to 〈c∗,Mv〉 > 0. Therefore, we have
the following two observations from Theorems 3.3 and 3.4.

(a) The gap between the above necessary and sufficient conditions is rather minimal
(besides the fact that ∀M replaces ∃M): the strict inequality replaces the inequality (in
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other words, the gap is only the boundary of −C). Note that here we do not explicitly
need any convexity assumption for the sufficient condition.

(b) Here the multiplier c∗ depends on the given feasible direction v. In [29] such di-
rectional Lagrange multipliers are clearly stated and studied for the first time. This kind
of multipliers is considered in [30] for quasidifferentiable (see [31]) optimization and in
[32] for problems with data which are directionally differentiable. The following example
shows a directionally nondifferentiable case (so the results in [30, 32] are not applicable
but Theorem 3.3 is).

Example 3.6. Let X = Y = R, S = [0,+∞), C = R+, x0 = 0 and

f(x) =
{
−1/x if x 6= 0,
0 if x = 0.

Then T (S, x0) = S. For α < 0 fixed we can take Af (x0) = (−∞, α) as a first-order
approximation of f at x0. Then

clAf (x0) = (−∞, α], Af (x0)∞ = (−∞, 0].

Choosing v = 1 ∈ T (S, x0), one sees that Mv = M ∈ −int C, ∀M ∈ clAf (x0)
⋃

(Af (x0)∞
\{0}) = (−∞, 0). By Theorem 3.3, x0 6∈ LWE(f, S). Since f is directional nondifferen-
tiable, not locally Lipschitz at x0 and Df(0, u) = ∅,∀u ∈ R, (where Df(0, u) is the upper
Hadamard directional derivative of f at 0 in the direction u, see [37]), the results in [30],
[32]-[37] cannot be employed.

Example 3.7. Let X = R, Y = R2, C = R2
+, S = [0,∞), x0 = 0 and f(x) = (|x|, 3

√
x).

Then T (S, x0) = [0,∞), and for any α > 0 and fixed, we have a first-order approximation
and related sets:

Af (x0) = {(x, y) ∈ R2 : x = ±1, y > α},
clAf (x0) = {(x, y) ∈ R2 : x = ±1, y ≥ α},
Af (x0)∞ = {(0, y) ∈ R2 : y ≥ 0}.

Then the compactness assumption in Theorem 3.4(i) is satisfied. ∀v ∈ (0,∞), ∀M ∈
clAf (x0), Mv = (±v, yv) 6∈ −C since y ≥ α > 0. ∀M ∈ Af (x0)∞ \ {0}, Mv = (0, yv) 6∈
−C. Following Theorem 3.4, x0 ∈ LFE(1, f, S). Observe that f is not locally Lipschitz
at x0. So many results based on local Lipschitz property cannot be employed, e.g. that
in [33]-[36]. f is even not calm (see [9]) at x0 and hence Theorem 3.2 in [37] cannot be
applied either.

Note also that Theorem 3.3(i) includes Theorem 3.3(i) and Theorem 4.1(i) in [4]; The-
orem 3.4(ii) sharpens Theorem 3.4(i) and Theorem 4.2(i) in [4].

4. Second-order optimality conditions for problem (1.1)

4(a). Differentiable case
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In this Subsection 4(a), we consider (1.1) with the assumption that f is Fréchet differ-
entiable at x0 ∈ S.

Theorem 4.1. Assume that x0 ∈ LWE(f, S).

(i) Assume that (f
′
(x0), Bf (x0)) is an asymptotically compact second-order approxi-

mation of f at x0. Then, for any v ∈ T (S, x0), f
′
(x0)v 6∈ −int C. If f

′
(x0)v ∈ −bd C,

then

(a) ∀w ∈ T 2(S, x0, v), either ∃N ∈ clBf (x0), f
′
(x0)w + 2N(v, v) 6∈ −E,

or ∃N ∈ Bf (x0)∞ \ {0}, N(v, v) 6∈ −E;

(b) ∀w ∈ T
′′
(S, x0, v), either ∃N ∈ Bf (x0)∞, f

′
(x0)w + N(v, v) 6∈ −E,

or ∃N ∈ Bf (x0)∞ \ {0}, N(v, v) 6∈ −E,

where E = int cone(C + f
′
(x0)v).

(ii) If X is a Banach space, the compactness assumption in (i) can be reduced to point-
wise compactness replacing all the subsets clBf (x0) and Bf (x0)∞ by p-clBf (x0) and p-
Bf (x0)∞, respectively.

Proof. (i) (a) For w ∈ T 2(S, x0, v), by the definition there are tn → 0+ and xn ∈ S such
that

wn := (xn − x0 − tnv)/ 1
2 t2n → w.

Then by the definition of Bf (x0), for large n, there is Nn ∈ Bf (x0) such that

f(xn)− f(x0) = tnf
′
(x0)(v + 1

2 tnwn) + t2nNn(v + 1
2 tnwn, v + 1

2 tnwn) + o(t2n). (4.1)

If {Nn} is bounded then we can assume that Nn converges to some N ∈ clBf (x0).
Hence

(f(xn)−f(x0)−tnf
′
(x0)v)/ 1

2 t2n → f
′
(x0)w+2N(v, v) =: c. (4.2)

Suppose c ∈ −E. By Proposition 2.7, α > 0 exists such that, ∀t ∈ (0, α),

f
′
(x0)v + t(c + BY (0, α)) ⊆ −int C.

Then, for large n,

f
′
(x0)v + 1

2 tn(f(xn)− f(x0)− tnf
′
(x0)v)/ 1

2 t2n ∈ −int C.

So 1
tn

(f(xn)− f(x0)) ∈ −int C, contradicting the local weak efficiency of x0.
If {Nn} is unbounded we can assume that ‖Nn‖ → ∞ and Nn/‖Nn‖ → N ∈ Bf (x0)∞\

{0}. Therefore, by (4.1),

(f(xn)− f(x0)− tnf
′
(x0)v)/t2n‖Nn‖ → N(v, v). (4.3)

Suppose N(v, v) ∈ −E, i.e. β > 0 exists such that, ∀t ∈ (0, β),

f
′
(x0)v + t(N(v, v)+BY (0, β)) ⊆ −int C. (4.4)

Since f
′
(x0)v ∈ −bd C, by Proposition 2.7, N(v, v) 6= 0. Then, it follows from (4.3) that
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tn‖Nn‖ → 0. Consequently, (4.4) implies that, for large n,

f
′
(x0)v + tn‖Nn‖(f(xn)− f(x0)− tnf

′
(x0)v)/t2n‖Nn‖ ∈ −int C,

and then f(xn)− f(x0) ∈ −int C, a contradiction.

(b) If w ∈ T
′′
(S, x0, v), there are (tn, rn) → (0+, 0+) : tn

rn
→ 0+ and xn ∈ S such that

wn := (xn − x0 − tnv)/ 1
2 tnrn → w.

By definition of second-order approximations, for large n there is Nn ∈ Bf (x0) such that

(f(xn)− f(x0)− tnf
′
(x0)v)/ 1

2 tnrn

= f
′
(x0)wn + (2tn/rn)(Nn(v + 1

2rnwn, v + 1
2rnwn) + o(t2n))/ 1

2 tnrn. (4.5)

By using subsequences if necessary, we have only the following three subcases.

First subcase. If (2tn/rn)Nn → 0, (4.5) implies that

(f(xn)− f(x0)− tnf
′
(x0)v)/ 1

2 tnrn → f
′
(x0)w. (4.6)

We claim that f
′
(x0)w 6∈ −E, i.e. we have the first possibility in (i)(a) with N = 0. In

fact, if there were α > 0 such that, ∀t ∈ (0, α),

f
′
(x0)v + t(f

′
(x0)w + BY (0, α)) ⊆ −int C,

then, for large n,

f
′
(x0)v + 1

2rn(f(xn)− f(x0)− tnf
′
(x0)v)/ 1

2 tnrn ∈ −int C

and hence f(xn)− f(x0) ∈ −int C, a contradiction.

Second subcase. If (2tn/rn)‖Nn‖ → a > 0, then ‖Nn‖ → ∞ and tn‖Nn‖ → 0. We can
assume that Nn

‖Nn‖ → N ∈ Bf (x0)∞ \ {0}. Hence it follows from (4.5) that

a(f(xn)−f(x0)− tnf
′
(x0)v)/t2n‖Nn‖ → f

′
(x0)w +aN(v, v) =: c. (4.7)

If c were in −E, β > 0 would exist such that, ∀t ∈ (0, β),

f
′
(x0)v + t(c + BY (0, β)) ⊆ −int C.

Hence, for large n,

f
′
(x0)v + tn‖Nn‖(f(xn)− f(x0)− tnf

′
(x0)v)/t2n‖Nn‖ ∈ −int C,

and then f(xn)− f(x0) ∈ −int C, impossible.

Third subcase. If (2tn/rn)‖Nn‖ → ∞, then ‖Nn‖ → ∞ and we can assume that
Nn

‖Nn‖ → N ∈ Bf (x0)∞ \ {0}. Hence we have (4.3). Similarly as for part (a), we arrive at
N(v, v) 6∈ −E.

(ii) is proved similarly as (i). �

The first and second-order approximations contain many other generalized differential
constructions as particular cases. As instances we derive the following direct consequences
of Theorem 4.1, based on Propositions 2.2 and 2.3.

Corollary 4.2. Assume that X = Rn, Y = Rm and f : X → Y is of the class C1,1 at
x0 ∈ S ⊆ X. If x0 ∈ LWE(f, S) then, ∀v ∈ T (S, x0), f

′
(x0)v 6∈ −int C. Moreover, if
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f
′
(x0)v ∈ −bd C then

(i) ∀w ∈ T 2(S, x0, v), ∃N ∈ ∂2
Cf(x0), f

′
(x0)w + N(v, v) 6∈ −E;

(ii) ∀w ∈ T
′′
(S, x0, v), f

′
(x0)w 6∈ −E,

where E = int cone(C + f
′
(x0)v).

Corollary 4.3. Assume that X = Rn, Y = Rm and f : X → Y is of the class C1 at
x0 ∈ S ⊆ X. Assume further that f has an approximate Hessian mapping ∂2f(.) which
is upper semicontinuous at x0. If x0 ∈ LWE(f, S) then, ∀v ∈ T (S, x0), f

′
(x0)v 6∈ −int C.

Moreover, if f
′
(x0)v ∈ −bd C then

(i) ∀w ∈ T 2(S, x0, v), either ∃N ∈ clco∂2f(x0), f
′
(x0)w + N(v, v) 6∈ −E or

∃N ∈ co∂2f(x0)∞ \ {0}, N(v, v) 6∈ −E;

(ii) ∀w ∈ T
′′
(S, x0, v), either ∃N ∈ co∂2f(x0)∞, f

′
(x0)w + N(v, v) 6∈ −E or

∃N ∈ co∂2f(x0)∞ \ {0}, N(v, v) 6∈ −E,

where E = int cone(C + f
′
(x0)v).

In the following examples, T 2(S, x0, v) = ∅ and hence the results using this second
contingent set cannot be applied.

Example 4.4. Let X = Y = R2, S = {(x, y) ∈ R2 : x3 + y2 = 0}, x0 = (0, 0), C = R2
+

and

f(x, y) = ( 1
2x|x| − y + 1

2y|y|, x− 1
2x|x|+ 1

2y|y|).

T (S, x0) = {(v1, 0) ∈ R2 : v1 ≤ 0}, f ∈ C1,1 and f
′
(x0) =

(
0 −1
1 0

)
. Choose v = (−1, 0) ∈

T (S, x0) we have f
′
(x0)v = (0,−1) ∈ −bd C. Furthermore T 2(S, x0, v) = ∅ and choose

w ∈ T
′′
(S, x0, v) = R2, w = (w1, w2) with w2 > 0 we have f

′
(x0)w ∈ −E = {(x1, x2) ∈

R2 : x1 < 0}. Therefore, Corollary 4.2 shows that x0 6∈ LWE(f, S). However, since
∀v ∈ T (S, x0) \ {0}, f

′
(x0)v 6∈ −int C and int S = ∅, Theorems 3.1 and 4.1 in [37] fail to

be applied.

In the next example, f 6∈ C1,1 at the reference point.

Example 4.5. Let X = R2, Y = R, C = R+, x0 = (0, 0),

S = {(x1, x2) ∈ R2 : x2 = |x1|5/4},

f(x1, x2) = − 2
3 |x1|3/2 + 1

2x2
2 − x2.

Then T (S, x0) = {(x1, x2) ∈ R2 : x2 = 0}, f
′
(x1, x2) = (−|x1|1/2, x2−1), f

′
(x0) = (0,−1),

f 6∈ C1,1 at x0 and E = int C. We can take

Bf (x0) =
{ (

α 0
0 1/2

)
: α < 0

}
.
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Hence

clBf (x0) =
{ (

α 0
0 1/2

)
: α ≤ 0

}
,

Bf (x0)∞ =
{ (

α 0
0 0

)
: α ≤ 0

}
.

To apply Theorem 4.1 we choose v = (1, 0) ∈ T (S, x0) to see that

f
′
(x0)v = 0 ∈ −bd C, T 2(S, x0, v) = ∅, T

′′
(S, x0, v) = R2.

Then taking w = (0, 1) ∈ T
′′
(S, x0, v) we have

f
′
(x0)w + N(v, v) = −1 + α ∈ −E, ∀N ∈ Bf (x0)∞,

N(v, v) = α ∈ −E, ∀N ∈ Bf (x0)∞ \ {0}.
Consequently, x0 6∈ LWE(f, S) by Theorem 4.1. Since f 6∈ C1,1 many known results fail
to be applied. Because T 2(S, x0, v) = ∅, the theorems in [4] are not applicable.

The following example constitutes an infinite dimensional case where Theorem 4.1 can
easily reject a suspected point.

Example 4.6. Let X = l2, Y = R, C = R+, x0 = 0,

S = {(x1, x2, ...) ∈ l2 : |x2|3 = x4
1},

f(x) =
∑∞

i=2
1
i xi − (

∑∞
i=1 x2

i )
3/4 =

∑∞
i=2

1
i xi − ‖x‖3/2.

Then T (S, x0) = {x ∈ l2 : x2 = 0}, f
′
(x0) = (0, 1

2 , 1
3 , ...) and

Bf (x0) = {Nα ∈ B(l2, l2, R) : α < −1},
where, for x, y ∈ l2,

Nα(x, y) = α
∑∞

i=1 xiyi.

Since Nα ∈ spand{N1}, (f
′
(x0), Bf (x0)) is an asymptotically p-compact second-order

approximation of f at x0. We have

p-clBf (x0) = {Nα ∈ B(l2, l2, R) : α ≤ −1},
p-Bf (x0)∞ = {Nα ∈ B(l2, l2, R) : α ≤ 0}.

Taking v = (1, 0, 0, ...) ∈ T (S, x0) we see that f
′
(x0)v = 0 ∈ −bd C, E = int C and

T 2(S, x0, v) = ∅, T
′′
(S, x0, v) = l2.

Choosing now w = (1,−1, 0, 0, ...) ∈ T
′′
(S, x0, v), we obtain

f
′
(x0)w + N(v, v) = − 1

2 + α ∈ −E, ∀N ∈ p-Bf (x0)∞,

N(v, v) = α ∈ −E, ∀N ∈ p-Bf (x0)∞ \ {0}.
By virtue of Theorem 4.1, x0 6∈ LWE(f, S). Of course we cannot employ approximate
Hessians and Clarke Hessians here as l2 is infinite dimensional. The results in [4] are also
not applicable since T 2(S, x0, v) = ∅.
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Theorem 4.7. Assume that X = Rm, f is Fréchet differentiable at x0 ∈ S and one of
the following conditions is satisfied.

(i) (f
′
(x0), Bf (x0)) is an asymptotically compact second-order approximation of f at

x0 and ∀v ∈ T (S, x0) \ {0} with f
′
(x0)v ∈ −cl C, ∀N ∈ Bf (x0)∞ \ {0}, N(v, v) 6∈ −F ,

and

(a) ∀w ∈ T 2(S, x0, v) ∩ v⊥, ∀N ∈ clBf (x0),

f
′
(x0)w + 2N(v, v) 6∈ −F ;

(b) ∀w ∈ T
′′
(S, x0, v) ∩ v⊥ \ {0}, ∀N ∈ Bf (x0)∞,

f
′
(x0)w + N(v, v) 6∈ −F ,

where F = cl cone(C + f
′
(x0)v).

(ii) is assertion (i) with ”compact” replaced by ”p-compact” and clA and A∞ replaced
by p-clA and p-A∞ for all involved subsets.

Then x0 ∈ LFE(2, f, S).

Proof. (i) Suppose to the contrary that there are xn ∈ S ∩ BX(x0,
1
n ) \ {x0} and cn ∈ C

such that

f(xn)− f(x0) + cn ∈ BY (0, 1
n t2n), (4.8)

where tn = ‖xn−x0‖. We can assume that 1
tn

(xn−x0) → v ∈ T (S, x0)\{0}. Dividing (4.8)
by tn and passing to the limit one gets f

′
(x0)v ∈ −cl C. On the other hand, by Proposition

2.8, it suffices to consider the following two cases (using subsequences if necessary).

First case. By the definition of Bf (x0), for large n one has Nn ∈ Bf (x0) satisfying
(4.1). If {Nn} is bounded we have N ∈ clBf (x0) satisfying (4.2). On the other hand, it
follows from (4.8) that

[(f(xn)− f(x0)− tnf
′
(x0)v) + (cn + tnf

′
(x0)v)]/t2n → 0.

Then, from (4.2), c := f
′
(x0)w + 2N(v, v) ∈ −F , contradicting assumption (a).

While {Nn} is unbounded, we can assume {Nn} → ∞, Nn

‖Nn‖ → N ∈ Bf (x0)∞ \ {0}
and (4.3). From (4.8) we see that

(f(xn)− f(x0)− tnf
′
(x0)v)/t2n‖Nn‖+ (cn + tnf

′
(x0)v)/t2n‖Nn‖ → 0.

Then, (4.3) implies that N(v, v) ∈ −F , a contradiction.

Second case. There is rn → 0+ such that tn

rn
→ 0+ and wn := (xn−x0− tnv)/ 1

2 tnrn →
w ∈ T

′′
(S, x0, v) ∩ v⊥ \ {0}. Again by the definition of Bf (x0), for large n, there exists

Nn ∈ Bf (x0) satisfying (4.5). It suffices to investigate the following three subcases.

(1) (2tn/rn)Nn → 0. Then one has (4.6). On the other hand, (4.8) implies that

[(f(xn)− f(x0)− tnf
′
(x0)v) + (cn + tnf

′
(x0)v)]/tnrn → 0.

Hence, f
′
(x0)w ∈ −F , a contradiction to assumption (b) with N = 0.

(2) (2tn/rn)‖Nn‖ → a > 0. Then, ‖Nn‖ → ∞ and tn‖Nn‖ → 0. Therefore, Nn

‖Nn‖ →
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N ∈ Bf (x0)∞\{0} and one gets (4.7). Similarly as above, (4.8) implies also a contradiction.

(3) (2tn/rn)‖Nn‖ → ∞. Then, ‖Nn‖ → ∞, Nn

‖Nn‖ → N ∈ Bf (x0)∞ \ {0} and one has
again (4.3). Analogously as before, one arrives at N(v, v) ∈ −F , again a contradiction.

(ii) can be proved similarly as (i). �

Remark 4.8 The gap between second-order necessary and sufficient conditions given in
Theorems 4.1 and 4.7 is only the boundary of the ”shifted” ordering cone.

Example 4.9. Let X = R, Y = R2, S = [0,∞), x0 = 0, C = R2
+ and f(x) = ( 1

2x2, 3
4

3
√

x4).
Then T (S, x0) = S, f

′
(x0) = (0, 0). For α > 0 and fixed we can take Bf (x0) = {( 1

2 , y) : y >

α}, Bf (x0)∞ = {(0, y) : y ≥ 0}. ∀v ∈ T (S, x0) \ {0} = (0,∞), f
′
(x0)v = 0 ∈ −cl C and

F = C. So ∀N ∈ Bf (x0)∞ \ {0}, N(v, v) = (0, yv2) 6∈ −F . ∀w ∈ T 2(S, x0, v) ∩ v⊥ = {0},
∀N ∈ clBf (x0), f

′
(x0)w+2N(v, v) = (v2, 2yv2) 6∈ −F (as y ≥ α). T

′′
(S, x0, v)∩v⊥\{0} =

∅. Following Theorem 4.7(i), x0 ∈ LFE(2, f, S). We see that f 6∈ C1,1 and then second-
order conditions using the Clarke generalized Hessian cannot be applied. Since f

′
is not

calm at x0, the results in [37] cannot be employed either.

4(b). Nondifferentiable case

For general cases, to establish similar second-order necessary optimality conditions we
have to use some first-order approximation Af (x0) which is rather good in the sense of
boundedness as follows.

Theorem 4.10. Assume for problem (1.1) that Af (x0) is a bounded first-order approxi-
mation of f at x0 ∈ LWE(f, S).

(i) Assume that (Af (x0), Bf (x0)) is an asymptotically compact second-order approxi-
mation of f at x0 and ∀v ∈ T (S, x0), ∃M ∈ clAf (x0), Mv 6∈ −int C. Assume further that
∀v ∈ T (S, x0), Af (x0)v ⊆ −bd C. Then

(a) ∀w ∈ T 2(S, x0, v), either ∃ M ∈ clAf (x0), ∃N ∈ clBf (x0), Mw + 2N(v, v) 6∈

−int C, or ∃N ∈ Bf (x0)∞ \ {0}, N(v, v) 6∈ −int C;

(b) ∀w ∈ T
′′
(S, x0, v), either ∃ M ∈ clAf (x0), ∃N ∈ Bf (x0)∞, Mw + N(v, v) 6∈

−int C, or ∃N ∈ Bf (x0)∞ \ {0}, N(v, v) 6∈ −int C.

(ii) If X is a Banach space then the compactness assumption in (i) can be reduced
to the pointwise compactness replacing clAf (x0), clBf (x0) and Bf (x0)∞ by p-clAf (x0),
p-clBf (x0) and p-Bf (x0)∞, respectively.

Proof. (a) By the similarity of (i) and (ii) we prove only (ii). For any v ∈ T (S, x0), ∃M ∈
clAf (x0), Mv 6∈ −int C by Theorem 3.3. For w ∈ T 2(S, x0, v), there are tn → 0+ and
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xn ∈ S such that

wn := (xn − x0 − tnv)/ 1
2 t2n → w.

As x0 ∈ LWE(f, S), for large n, there are Mn ∈ Af (x0) and Nn ∈ Bf (x0) such that

f(xn)− f(x0) = tnMn(v + 1
2 tnwn) + t2nNn(v + 1

2 tnwn, v + 1
2 tnwn) + o(t2n)

6∈ −int C.

Since Af (x0)v ⊆ −bd C, this implies, for large n, that

Mnwn + 2Nn(v + 1
2 tnwn, v + 1

2 tnwn) + 2o(t2n)/t2n 6∈ −int C. (4.9)

By the boundedness and the assumed compactness of Af (x0), we can assume that Mn
p−→

M ∈ p-clAf (x0). Similarly, if {Nn} is bounded, assume that Nn
p−→ N ∈ p-clBf (x0).

Passing (4.9) to the limit we get

Mw + 2N(v, v) 6∈ −int C.

While {Nn} is unbounded, we can assume ‖Nn‖ → ∞ and Nn

‖Nn‖
p−→ N ∈ Bf (x0)∞ \ {0}.

Dividing (4.9) by ‖Nn‖ and passing to the limit we arrive at N(v, v) 6∈ −int C.

(b) For w ∈ T
′′
(S, x0, v), there are (tn, rn) → (0+, 0+) : tn

rn
→ 0+ and xn ∈ S such that

wn := (xn − x0 − tnv)/ 1
2 tnrn → w.

Similarly as for (a) one has, for n sufficiently large,

Mnwn + (2tn/rn)Nn(v + 1
2 tnwn, v + 1

2 tnwn) + 2o(t2n)/tnrn 6∈ −int C. (4.10)

We can assume that Mn
p−→ M ∈ p-clAf (x0). Considering subsequences if necessary from

(4.10) we have only the following three subcases.

First subcase. (2tn/rn)Nn → 0. Passing (4.10) to the limit one gets Mw 6∈ −int C,
i.e. (b) with N = 0.

Second subcase. (2tn/rn)‖Nn‖ → a > 0. Then ‖Nn‖ → ∞ and we can assume that
Nn

‖Nn‖
p−→ N ∈ Bf (x0)∞ \ {0}. Passing (4.10) to the limit one gets (b) (with N as aN).

Third subcase. (2tn/rn)‖Nn‖ → ∞. Then, similarly, dividing (4.10) by (2tn/rn)‖Nn‖
and passing to the limit one arrives at N(v, v) 6∈ −int C. �

Note that Theorem 4.10(ii)(a) includes Theorem 4.1 in [4] as a special case where
Af (x0) = {f ′

(x0)}. The other parts of Theorem 4.10 are new.

Example 4.11. Let X = Y = R2, C = R2
+, S = {x ∈ R2 : x1 + x

2/3
2 = 0}, x0 = (0, 0) and

f(x1, x2) = (−x2, x1 + |x2|). Then

T (S, x0) = {(v1, 0) : v1 ≤ 0},
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Af (x0) = {
(

0 −1
1 ±1

)
}, Bf (x0) = {0}.

Choose v = (−1, 0). Then

Af (x0)v = (0,−1) ∈ −bd C, T 2(S, x0, v) = ∅, T
′′
(S, x0, v) = R2.

Choose further w = (−2, 1) ∈ T
′′
(S, x0, v) we see that, ∀M ∈ clAf (x0),

Mw = (−1,−2± 1) ∈ −int C.

Therefore, Theorem 4.10 rejects x0 from the expected local weak efficiency. As before,
since T 2(S, x0, v) = ∅, the results in [4] are not applicable. Moreover, it is easy to see that
our Theorems 3.3 and 4.1 and the results in [34]-[37] fail to be applied either, since the
necessary conditions there are satisfied.

The following theorem can be proved in the same way as Theorems 3.4 and 4.2 in [4]
but the conclusion is stronger.

Theorem 4.12. Consider problem (1.1) with X = Rm and C is closed. x0 ∈ S belongs
to LFE(2, f, S) if one of the following conditions is satisfied.

(i) (Af (x0), Bf (x0)) is an asymptotically compact second-order approximation of f at
x0 and

(a) ∀u ∈ X \ {0}, ∀M ∈ clAf (x0)
⋃

(Af (x0)∞ \ {0}), Mu ∈ Y \ (−C \ C);

(b) ∀v ∈ T (S, x0) \ {0}, ∃M ∈ clAf (x0)
⋃

(Af (x0)∞ \ {0}), ∀N ∈ clBf (x0)⋃
(Bf (x0)∞ \ {0}), Mv ∈ C ∩ (−C) and N(v, v) ∈ int C.

(ii) is assertion (i) with ”compact” replaced by ”p-compact” and cl A and A∞ replaced
by p-cl A and p-A∞, respectively, for all involved subsets.

(iii) Y is finite dimensional and ∀u ∈ cone(S−x0), ∀v ∈ T (S, x0), ∀M ∈ Af (x0),∀N ∈
clBf (x0)

⋃
(Bf (x0)∞ \ {0}), Mu 6∈ −int C and N(v, v) ∈ int C.

The gap between the necessary condition and sufficient one in Theorems 4.10 and 4.12
is rather big. Employing additionally second-order tangent sets we reduce this gap to
−bdC, as for the differentiable case, in the following theorem.

Theorem 4.13. Suppose that X = Rm and x0 ∈ S.

(i) Assume that (Af (x0), Bf (x0)) is an asymptotically compact second-order approxi-
mation of f at x0 with Af (x0) being bounded. Assume further that, ∀v ∈ T (S, x0) \ {0},
Af (x0) ⊆ (−cl C)∩cl C and ∀N ∈ Bf (x0)∞ \ {0}, N(v, v) 6∈ −cl C. Assume for second-
order tangent sets that

(a) ∀v ∈ T (S, x0) \ {0}, ∀w ∈ T 2(S, x0, v) ∩ v⊥, ∀M ∈ clAf (x0), ∀N ∈ clBf (x0),

Mw + 2N(v, v) 6∈ −cl C;

(b) ∀v ∈ T (S, x0) \ {0}, ∀w ∈ T
′′
(S, x0, v) ∩ v⊥ \ {0}, ∀M ∈ clAf (x0), ∀N ∈ Bf (x0)∞,

Mw + N(v, v) 6∈ −cl C.

Then x0 ∈ LFE(2, f, S).

(ii) is (i) with ”compact” is replaced by ”p-compact” and cl A and A∞ by p-cl A and
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p-A∞, respectively, for the involved subsets.

Proof. (i) Suppose that xn ∈ S ∩BX(x0,
1
n ) \ {x0} and cn ∈ C exist such that (4.8) holds.

We can assume that 1
tn

(xn − x0) → v ∈ T (S, x0) \ {0}. By Proposition 2.8 we have only
two cases as follows.

First case. wn := (xn − x0 − tnv)/ 1
2 t2n → w ∈ T 2(S, x0, v) ∩ v⊥. On the other hand,

for large n, by (4.8) there are Mn ∈ Af (x0) and Nn ∈ Bf (x0) satisfying

Mnwn + 2Nn(v + 1
2 tnwn, v + 1

2 tnwn) + o(t2n)/ 1
2 t2n = dn/ 1

2 t2n − c
′

n, (4.11)

where dn ∈ BY (0, 1
t2n

) and c
′

n = (cn + tnMnv)/ 1
2 t2n ∈ cl C.

By the boundedness of Af (x0), M ∈ clAf (x0) exists such that Mn → M (using a sub-
sequence if necessary). If {Nn} is bounded we can assume that Nn → N for some N ∈
clBf (x0). Letting n →∞ in (4.11) one gets the contradiction

Mw + 2N(v, v) ∈ −cl C.

{Nn} is unbounded one can assume that ‖Nn‖ → ∞ and Nn

‖Nn‖ → N for some N ∈
Bf (x0)∞ \ {0}. Dividing (4.11) by ‖Nn‖ and passing to the limit one obtains N(v, v) ∈
−clC, contradicting (a) with M = 0.

Second case. There is rn → 0+ such that tn

rn
→ 0+ and

wn := (xn − x0 − tnv)/ 1
2 tnrn → w ∈ T

′′
(S, x0, v) ∩ v⊥ \ {0}.

On the other hand, (4.8) implies that, for n sufficiently large,

Mnwn+(2tn/rn)Nn(v+ 1
2rnwn, v+ 1

2rnwn)+o(t2n)/ 1
2 tnrn = dn/ 1

2 tnrn−c
′

n, (4.12)

where dn ∈ BY (0, 1
n t2n) and c

′

n = (cn + tnMnv)/ 1
2 tnrn ∈ cl C.

As before Mn → M ∈ clAf (x0). We have now three subcases.

(1) (2tn/rn)Nn → 0. Passing n →∞ in (4.12) one sees the contradiction Mw ∈ −clC.

(2) (2tn/rn)‖Nn‖ → a > 0. Then ‖Nn‖ → ∞ and Nn

‖Nn‖ → N ∈ Bf (x0)∞ \ {0}.
Dividing (4.12) by (2tn/rn)‖Nn‖ and passing to the limit one receives the contradiction

Mw + aN(v, v) ∈ −cl C.

(3) (2tn/rn)‖Nn‖ → ∞. Then doing as for the subcase (2) one arrives at the contra-
diction N(v, v) ∈ −cl C. �
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24. Jiménez B, Novo V (2004) Optimality conditions in differentiable vector optimization
via second-order tangent sets, Appl Math Optim 49: 123-144
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