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Abstract. In this paper we give sufficient conditions for the semicontinuity

of solution sets of general multivalued vector quasiequilibrium problems. All

kinds of semicontinuity are considered: lower semicontinuity, upper semicontinu-

ity, Hausdorff upper semicontinuity and closedness. Moreover, we investigate all

the “weak” and “middle” and “strong” solutions of quasiequilibrium problems.

Many examples are provided to give more insights and comparisons with recent

existing results.

Key Words. Quasiequilibrium problems, lower semicontinuity, upper semi-

continuity, Hausdorff upper semicontinuity, closedness of the solution multifunc-
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1. Introduction

Stability of the solution set of a parametric optimization problem has been

studied intensively in the literature, where stability can be understood as semi-

continuity, continuity, Lipschitz continuity or (generalized) differentiability. Refs.

1 − 6 deal with stability for equilibrium and quasiequilibrium problems. These

problems began to be of interest of an increasing number of authors, after Ref.

7, where they were introduced as a generalization of optimization and variational

inequality problems. This generalization has proved to be of great importance,

since the problems include many problems such as the fixed point and coincidence

point problems, the complementarity problem, the Nash equilibria problem, etc

and have a wide range of applications in industry and pure and applied sciences.

Until now, the generality of the problem settings has been extended to a very high

level, but the main efforts have been made for the study of existence of solutions.

See e.g. recent Refs 7− 15. For a recent survey see Ref. 16. For quasivariational

inclusions, which are related to quasiequilibrium problems, the reader is referred

to Refs. 17 and 18 about the Lipschitz continuity of the solution maps.

The aim of the present paper is to investigate various kinds of semicontinu-

ity of the solution sets of quasiequilibrium problems. Our problem settings are

general enough to include most of the known quasiequilibrium problems. The
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motivation for us to choose a weak type of stability as semicontinuity is that, as

usually appeared in the literature, to ensure a stability property of the solution

set, assumptions of the same property should be imposed on the data of the prob-

lem. However, in many practical situations such assumptions are not satisfied.

Moreover, for a number of applications, the semicontinuity of the solution sets is

enough, see e.g. the argument in Refs. 3, 19 and 20. We extend the results of

Refs. 1− 3 under more relaxed assumptions. Applying to variational and quasi-

variational inequalities, special cases of quasiequilibrium problems, our theorems

improve the corresponding results of Refs. 19 − 22. The results of the paper

are followed by many examples showing their advantages and counterexamples

explaining the invalidity of the converse assertions.

The organization of the paper is as follows. In the remaining part of this

section we formulate the problems under consideration, discuss some relations

and recall definitions needed in the sequel. Section 2 is devoted to lower semicon-

tinuity of the solution sets. In Section 3 three kinds of upper semicontinuity of

these sets are studied. We also investigate cases where some or all solution sets

of our problems coincide.

The problems under our consideration are as follows. Throughout the pa-

per, unless otherwise specified, let X, M , N and Λ be Hausdorff topological spaces
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and Y be a topological vector space. Let K : X × Λ → 2X , G : X × N → 2X

and F : X ×X ×M → 2Y be multifunctions. Let C ⊆ Y be a closed subset with

nonempty interior. As usual a problem involving single-valued mappings will be

splitted into many generalized ones while the mappings become multivalued. For

the sake of simplicity we adopt the following notations. Letters w, m and s are

used for a weak, middle and strong, respectively, kinds of considered problems.

For subsets A and B under consideration we adopt the notations

(u, v) w A×B means ∀u ∈ A,∃v ∈ B,

(u, v) m A×B means ∃v ∈ B, ∀u ∈ A,

(u, v) s A×B means ∀u ∈ A,∀v ∈ B,

α1(A, B) means A ∩B 6= ∅,

α2(A, B) means A ⊆ B,

(u, v) w̄ A×B means∃u ∈ A,∀v ∈ B and similarly for m̄ and s̄.

Let r ∈ {w, m, s}, r̄ ∈ {w̄, m̄, s̄} and α ∈ {α1, α2}. Our general parametric

multivalued vector quasiequilibrium problem is the following, for (λ, µ, η) ∈ Λ×

M ×N ,

(Prα) find x̄ ∈ clK(x̄, λ) such that (y, x̄∗) r K(x̄, λ)×G(x̄, η),

α
(
F (x̄∗, y, µ), Y \ −intC

)
.
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Let Srα(λ, µ, η) be the solution set of (Prα) corresponding to λ, µ and η. If λ, µ

and η are fixed and clearly recognized from the context we write simply Srα.

Moreover, Srα(., ., .) stands for the corresponding solution multifunction, where

λ, µ and η change the values as variables.

By the definition the following relations are clear:

Swα1 ⊇ Smα1 ⊇ Ssα1

|
S

|
S

|
S

Swα2 ⊇ Smα2 ⊇ Ssα2

The following examples show that there are not inclusions in the remaining

relations between: Smα1 and Swα2 , Ssα1 and Swα2 , Ssα1 and Smα2 .

Example 1.1 (Smα1 6⊆ Swα2). Let X = Y = R, Λ ≡ M ≡ N = [0, 1],

C = R+, K(x, λ) = [λ, λ + 1], λ0 = 0, G(x, λ) = [x, x + λ + 1] and F (x, y, λ) =

(−∞, x−y+λ]. Then, it is not hard to see that Smα1(0) = [0, 1] and Swα2(0) = ∅.

Example 1.2 (Swα2 6⊆ Smα1 and Swα2 6⊆ Ssα1). Let X, Y, Λ, M, N and C

be as above. Let K(x, λ) = [0, 3π
2

+ λ], λ0 = 0, G(x, λ) = [0, 3π
2

+ 2λ] and

F (x, y, λ) = {sin(x− y +3λ)}. Then, for any x∗ ∈ [0, 3π
2

], there is y ∈ [0, 3π
2

] such

that sin(x∗− y) < 0. Indeed, if x∗ < 3π
2

then take y = x∗ + ε ∈ [0, 3π
2

], 0 < ε < π;

if x∗ = 3π
2

then take y = 0. Thus, Smα1(0) = ∅, and hence Ssα1(0) = ∅. While

6



Swα2(0) = [0, 3π
2

] (put x∗ = y for each y ∈ [0, 3π
2

]).

Example 1.3 (Ssα1 6⊆ Swα2 and Ssα1 6⊆ Smα2). Let X, Y, Λ, M, N, C,K(x, λ)

and λ0 be as in Example 1.1. Let G(x, λ) = [0, λ + 1] and F (x, y, λ) = (−∞, x +

y + λ]. Then, Ssα1(0) = [0, 1] and Swα2(0) = Smα2(0) = ∅.

Example 1.4 (Smα2 6⊆ Ssα1). Let X, Y, Λ, M, N, C,K(x, λ) and λ0 be as in

Example 1.1. Let G(x, λ) = [−x + λ, 2− x + λ] and F (x, y, λ) = {x(y − x) + λ}.

Then, Smα2(0) = [0, 1] (take x∗ = 0 ∈ [−x, 2 − x]), and Ssα1(0) = ∅ (for each

x ∈ [0, 1] take x∗ = 1 ∈ [−x, 2− x] and y = 0 ∈ [0, 1]).

Recall now some notions. Let X and Y be as above and Q : X → 2Y be a

multifunction. Q is said to be lower semicontinuous (lsc) at x0 if: Q(x0)∩U 6= ∅

for some open set U ⊆ Y implies the existence of a neighborhood V of x0 such

that, for all x ∈ V, Q(x) ∩ U 6= ∅. An equivalent formulation is that: Q is lsc at

x0 if ∀xα → x0, ∀y ∈ Q(x0), ∃yα ∈ Q(xα), yα → y. Q is called upper semicon-

tinuous (usc) at x0 if for each open set U ⊇ Q(x0), there is a neighborhood V of

x0 such that U ⊇ Q(V ). Q is termed Hausdorff upper semicontinuious (H-usc)

at x0 if for each neighborhood B of the origin in Y , there is a neighborhood V

of x0 such that Q(V ) ⊆ Q(x0) + B. Q is said to be continuous at x0 if it is both

lsc and usc at x0 and to be H-continuous at x0 if it is both lsc and H-usc at x0.
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Q is called closed at x0 if for each net (xα, yα) ∈ graphQ := {(x, y) | y ∈ Q(x)},

(xα, yα) → (x0, y0), then y0 ∈ Q(x0). The closedness is closely related to the

upper (and Hausdorff upper) semicontinuity (see Section 3). We say that Q sat-

isfies a certain property in a subset A ⊆ X if Q satisfies it at every point of A. If

A = domQ := {x | Q(x) 6= ∅} we omit “in domQ” in the statement.

A topological space Z is called arcwisely connected if for each pair of points

x and y in Z, there is a continuous mapping ϕ : [0, 1] → Z such that ϕ(0) = x

and ϕ(1) = y.

Note finally that for equilibrium problems considered in the literature usu-

ally G(x, η) = {x}. However, the appearance of general multifunction G make

the problem setting include more practical situations.

2. Lower Semicontinuity

For λ ∈ Λ, let E(λ) = {x ∈ X | x ∈ clK(x, λ)}. Throughout the paper

assume that all the solution sets under consideration are nonempty for all (λ, µ, η)

in a neighborhood of (λ0, µ0, η0) ∈ Λ×M ×N .

Theorem 2.1. Assume that E(.) is lsc at λ0 and the following set is open

in clK(X, Λ)× {(λ0, µ0, η0)} :

Urα := {(x, λ, µ, η) ∈ X × Λ×M ×N | (y, x∗) r̄ K(x, λ)×G(x, η),
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α(F (x∗, y, µ), Y \ −intC}.

Then Srα is lsc at (λ0, µ0, η0).

Proof. Since r ∈ {w, m, s} and α ∈ {α1, α2}, we have in fact six cases

corresponding to six different combinations of values of r and α. However, the

proof techniques are similar. We consider only the case where r = w and α = α1.

Suppose to the contrary that Swα1(., ., .) is not lsc at (λ0, µ0, η0), i.e., ∃x0 ∈

Swα1(λ0, µ0, η0), ∃(λγ, µγ, ηγ) → (λ0, µ0, η0), ∀xγ ∈ Swα1(λγ, µγ, ηγ), xγ 6→ x0.

Since E(.) is lsc at λ0, there is a net x̄γ ∈ E(λγ), x̄γ → x0. By the contradic-

tion assumption, there must be a subnet x̄β such that, ∀β, x̄β /∈ Swα1(λβ, µβ, ηβ),

i.e., for some yβ ∈ K(x̄β, λβ), ∀x̄∗
β ∈ G(x̄β, ηβ),

F (x̄∗
β, yβ, µβ) ⊆ −intC. (1)

Hence, (x̄β, λβ, µβ, ηβ) /∈ Uwα1 . By the assumed openness, (x0, λ0, µ0, η0) /∈

Uwα1 , contradicting the fact that x0 ∈ Swα1(λ0, µ0, η0). �

To compare this theorem with the corresponding ones of Ref. 3 recall a

notion.

Definition 2.1 (Ref. 3). Let X and Y be as above and C ⊆ Y be such

that intC 6= ∅.

(a) A multifunction Q : X −→ 2Y is said to have the C−inclusion prop-

erty at x0 if, for any xγ → x0, Q(x0)∩ (Y \− intC) 6= ∅ ⇒ ∃γ̄, Q(xγ̄)∩
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(Y \ − intC) 6= ∅.

(b) Q is called to have the strict C− inclusion property at x0 if, for all

xγ → x0, Q(x0) ⊆ Y \ − intC ⇒ ∃γ̄, Q(xγ̄) ⊆ Y \ − intC.

Remark 2.1. Assume that K(., .) is usc and has compact values in clK(X,

Λ)×{λ0} and F (., ., .) has the C−inclusion property in clK(X, Λ)×{µ0}. Then

(i) if G(., .) is lsc in clK(X, Λ) × {η0}, then Uwα1 and Umα1 are open in

clK(X,Λ)× {(λ0, µ0, η0)};

(ii) if G(., .) is usc and compact-valued in clK(X, Λ) × {η0}, then Usα1 is

open in clK(X, Λ)× {(λ0, µ0, η0)}.

By the similarity we consider only Uwα1 in assertion (i). To show that the

complement U c
wα1

is closed, let (xγ, yγ, µγ, ηγ) → (x0, y0, µ0, η0) such that ∃yγ ∈

K(xγ, λγ),∀x∗
γ ∈ G(xγ, ηγ), F (x∗

γ, yγ, µγ) ⊆ −intC. As K(., .) is usc and compact-

valued at (x0, λ0), we we can assume that yγ → y0 for some y0 ∈ K(x0, λ0).

By the assumed lower semicontinuity of G(., .) at (x0, η0) , ∀x∗
0 ∈ G(x0, η0),

∃x∗
γ ∈ G(xγ, ηγ), x∗

γ → x∗
0. Suppose that

F (x∗
0, y0, µ0) ∩ (Y \ −intC) 6= ∅.

By the C−inclusion property of F (., ., .), ∃γ̄ such that F (x∗
γ̄, yγ̄, µγ̄)∩(Y \−intC) 6=

∅, which is impossible. Hence (x0, λ0, µ0, η0) ∈ U c
wα1

�

10



If G(x, η) = {x} then the problems (Pwα1), (Pmα1) and (Psα1) collapse to

problem (QEP) studied in Ref. 3. Remark 2.1 indicates that in this special case

Theorem 2.1 implies Theorem 2.2 of Ref. 3. The following three examples point

out that none of the three assertions of Remark 2.1 has the converse which is

true and hence Theorem 2.1 is strictly stronger than Theorem 2.2 of Ref. 3.

They show also that the assumption of Theorem 2.1 (and also that of the coming

results of the paper) is not difficult to be checked. (See also examples in Ref. 3.)

Example 2.1. Let X = Y = R, Λ ≡ M ≡ N = R, C = R+, K(x, λ) =

[0, 1], λ0 = 0 and

G(x, λ) =

{
[0, 1] if λ ∈ Q,

[2, 3] otherwise,

F (x, y, λ) = (x, +∞),

where Q is the set of all rational numbers. Then, Uwα1 is open and in fact

Swα1(λ) = [0, 1], ∀λ ∈ R, is lsc but G(., .) is not lsc at any (x, λ0).

Example 2.2. Let X, Y, Λ, M, N, C,K and λ0 be as in Example 2.1 and

let

G(x, λ) =

{
[0, 1] if λ ∈ Q,

[1, 2] otherwise,

F (x, y, λ) = (−∞, x− y].

Then Umα1 is open and Smα1(λ) = [0, 1], ∀λ ∈ R, is lsc but G(., .) is not lsc at
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any point (x, λ0).

Example 2.3. Let X, Y, C and λ0 be as in Example 2.1. Let Λ ≡ M ≡

N = [0, 1], K(x, λ) = [λ, λ + 1] and

G(x, λ) =

{
[1, +∞) if λ ∈ Q,

(−∞,−1] otherwise,

F (x, y, λ) =

{
{1} if λ ∈ Q,

{0} otherwise.

Then Usα1 is open and Ssα1(λ) = [λ, λ + 1], ∀λ ∈ [0, 1], is lsc but G(., .) is not usc

at any (x, λ0) and does not have compact values.

Remark 2.2. Assume that K(., .) is usc and has compact values in clK(X,

Λ)× {λ0} and F (., ., .) has the strict C−inclusion property in clK(X, Λ)× {µ0}.

Then the following assertions hold.

(i) If G(., .) is lsc in clK(X, Λ) × {η0}, then Uwα2 and Umα2 are open in

clK(X,Λ)× {(λ0, µ0, η0)}.

(ii) If G(., .) is usc and compact values in clK(X, Λ) × {η0}, then Usα2 is

open in clK(X, Λ)× {(λ0, µ0, η0)}.

We can check the assertions similarly as for Remark 2.1.

This remark shows that, for the special case where G(x, η) = {x}, Theorem

2.1 derives Theorem 2.4 of Ref. 3. The following three examples demonstrate
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that none of the three assertions in Remark 2.2 has the converse which is valid

and hence Theorem 2.1 is strictly stronger than this Theorem 2.4.

Example 2.4. Let X, Y, Λ, M, N, C,K and λ0 be as in Example 2.1 and

G(x, λ) =

{
(1, +∞) if λ ∈ Q,

(−∞, 1) otherwise,

F (x, y, λ) = [x, +∞).

Then Uwα2 is open and Swα2(λ) = [0, 1], ∀λ ∈ R, is lsc but G(., .) is not lsc at any

(x, λ0).

Example 2.5. Let X, Y, Λ, M, N, C,K and λ0 be as in Example 2.3 and

let

G(x, λ) =

{
[−1, +∞) if λ ∈ Q,

(−∞, 1] otherwise,

F (x, y, λ) = [x(x− y), +∞).

The Umα2 is open and Smα2(λ) = [λ, λ + 1], ∀λ ∈ [0, 1], but G(., .) is not lsc at

any (x, λ0).

Example 2.6. Example 2.3 can be used here since, F (., ., .) is single-

valued.

The openness assumptions imposed in Theorem 2.1 can be replaced by more

usual semicontinuity assumptions as follows (but we have to impose additional
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assumptions).

Theorem 2.2. Assume that K(., .) is usc and has compact values in

clK(X,Λ)×{λ0} and E(.) is lsc at λ0. Assume further that ∀x ∈ Srα(λ0, µ0, η0),

(y, x∗) r K(x, λ0)×G(x, η0), α(F (x∗, y, µ0), Y \C). Then the following assertions

hold.

(i) If α = α1 and r = w (or m), G(., .) is lsc in clK(X, Λ) × {η0} and

F (., ., .) is lsc in clK(X, Λ) × clK(X, Λ) × {µ0}, then Swα1 (or Smα1 ,

respectively) is lsc at (λ0, µ0, η0).

(ii) If α = α1 and r = s, G(., .) is usc and compact-valued in clK(X, Λ)×

{η0} and F (., ., .) is lsc in clK(X, Λ) × clK(X, Λ) × {µ0}, then Ssα1

is lsc at (λ0, µ0, η0).

(iii) If α = α2 and r = w (or m), G(., .) is lsc in clK(X, Λ) × {η0} and

F (., ., .) is usc in clK(X,Λ)× clK(X, Λ)× {µ0}, then Swα2 (or Smα2)

is lsc at (λ0, µ0, η0).

(iv) If α = α2 and r = s, G(., .) is usc and compact-valued in clK(X,Λ)×

{η0} and F (., ., .) is usc in clK(X, Λ) × clK(X, Λ) × {µ0}, then Ssα2

is lsc at (λ0, µ0, η0).
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Proof. As an example we demonstrate only (ii). Suppose ∃x0 ∈ Ssα1(λ0,

µ0, η0), ∃(λγ, µγ, ηγ) → (λ0, µ0, η0), ∀xγ ∈ Ssα1(λγ, µγ, ηγ), xγ 6→ x0. By the lower

semicontinuity of E(.), there is x̄γ ∈ E(λγ), x̄γ → x0. The contradiction as-

sumption yields a subnet x̄β such that x̄β /∈ Ssα1(λβ, µβ, ηβ), ∀β, i.e. for some

yβ ∈ K(x̄β, λβ) and x̄∗
β ∈ G(x̄β, ηβ) one has

F (x̄∗
β, yβ, µβ) ⊆ −intC.

Since K(., .) and G(., .) are usc and have compact values in clK(X, Λ) × {λ0}

and clK(X,Λ) × {η0}, respectively, one can assume that yβ → y0 ∈ K(x0, λ0)

and x∗
β → x∗

0 ∈ G(x0, η0). By the common assumption of the theorem there

exists f0 ∈ F (x∗
0, y0, µ0) \ −C. From the lower semicontinuity of F (., ., .) there

is fβ ∈ F (x̄∗
β, yβ, µβ) such that fβ → f0 /∈ −C, which is a contradiction, since

fβ ∈ −intC, ∀β. �

Remark 2.3.

(a) If G(x, η) = {x}, then Theorem 2.2 is reduced to Theorems 2.1 and

2.3 together of Ref. 3.

(b) If G(x, η) = {x} and F (x, y, µ) = (T (x, µ), y − g(x, µ)), where T :

X × M → 2L(X,Y ) and g : X × M → X is continuous (L(X, Y )

is the space of all continuous linear mappings of X into Y ), then
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our problem becomes vector quasivariational inequalities. If, further-

more, Y = R, then Theorem 2.2 collapses to Theorems 3.1, 3.2 and

3.3 together of Ref. 20.

(c) Even for the case, where G and F are as in (b), Theorem 2.1 is new

for vector quasivariational inequalities.

3. Upper Semicontinuity

In this section we investigate sufficient conditions for the solution multi-

functions to be usc in each of the three senses mentioned in Section 1.

Mention first some relations between the three notions of upper semiconti-

nuity. Let X and Y be as before and G : X → 2Y be a multifunction.

Proposition 3.1 (Ref. 3).

(i) If G is usc at x0 then G is H-usc at x0. Conversely if G is H-usc at

x0 and if G(x0) is compact, then G is usc at x0.

(ii) If G is H-usc at x0 and G(x0) is closed, then G is closed at x0.

(iii) If G(A) is compact for any compact subset A of domG and G is closed

at x0, then G is usc at x0.
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(iv) If Y is compact and G is closed at x0, then G is usc at x0.

Theorem 3.1. Assume that E(.) is usc at λ0 and E(λ0) is compact. As-

sume further that the set Urα (defined in Theorem 2.1) is closed in clK(X,Λ)×

{(λ0, µ0, η0)}. Then Srα is both usc and closed at (λ0, µ0, η0).

Proof. Similar arguments can be applied to prove the six cases. We

present only the proof for the case where r = m and α = α1. Suppose to the

contrary that there is an open superset U of Smα1(λ0, µ0, η0) such that, for any

(λγ, µγ, ηγ) → (λ0, µ0, η0), there exists xγ ∈ Smα1(λγ, µγ, ηγ)\U , ∀γ. Since E(.) is

usc and E(λ0) is compact, one can assume that xγ → x0 for some x0 ∈ E(λ0). As

xγ ∈ Smα1(λγ, µγ, ηγ), ∃x∗
γ ∈ G(xγ, ηγ), ∀yγ ∈ K(xγ, λγ), F (x∗

γ, yγ, µγ) 6⊆ −intC.

By the closedness assumption one has (x0, α0, µ0, η0) ∈ Umα1 , i.e., ∃x∗
0 ∈ G(x0, η0),

∀y0 ∈ K(x0, λ0), F (x∗
0, y0, µ0) 6⊆ −intC. This means that x0 ∈ Smα1(λ0, µ0, η0) ⊆

U , which contradicts the fact that xγ /∈ U , ∀γ.

The proof of the closedness of Smα1(., ., .) is similar. �

Remark 3.1. Assume that K(., .) is lsc in clK(X, Λ) × {λ0}, G(., .) is

usc and compact-valued in clK(X, Λ) × {η0} and F (., ., .) is usc in clK(X, Λ) ×

clK(X, Λ)× {µ0}. Then Uwα1 and Umα1 are closed in clK(X, Λ)× {(λ0, µ0, η0)}.

Indeed, consider Uwα1 for instance. Assume that (xγ, λγ, µγ, ηγ) → (x0, λ0, µ0, η0),
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such that ∀yγ ∈ K(xγ, λγ),∃x∗
γ ∈ G(xγ, ηγ), F (x∗

γ, yγ, µγ) 6⊆ −intC. By the as-

sumption about G(., .), there is a subnet x∗
β and x∗

0 ∈ G(x0, η0) such that x∗
β → x∗

0.

As K(., .) is lsc, ∀y0 ∈ K(x0, λ0),∃yβ ∈ K(xβ, λβ), yβ → y0. Since F (., ., .) is usc

and F (x∗
β, yβ, µβ) 6⊆ −intC, one has F (x∗

0, y0, µ0) 6⊆ −intC, i.e. Uwα1 is closed.

The following examples tell us that the converse is not true.

Example 3.1. Let X = Y = R, Λ ≡ M ≡ N = R, C = R+,

K(x, λ) = [λ, λ + 1], λ0 = 0 and

G(x, λ) =

{
{1} if λ ∈ Q,

{−1} otherwise,

F (x, y, λ) =

{
{1} if λ ∈ Q,

{0} otherwise.

Then, it is not hard to see that Uwα1 is closed and in fact Swα1(λ) = [λ, λ + 1],

for all λ ∈ R, is usc and closed. But G(., .) and F (., ., .) are not even H-usc.

Example 3.2. Let X = Y = R, Λ ≡ M ≡ N = R, C = R+, K(x, λ) =

[0, 1], λ0 = 0 and

G(x, λ) =

{
(−∞, 2x) if λ ∈ Q,

(−2x, +∞) otherwise,

F (x, y, λ) =

{
{x(x2 − y)} if λ ∈ Q,

(−∞,−x2 + 1) otherwise.

Then, we have the closedness of Umα1 and in fact Smα1(λ) = [0, 1], for all λ ∈ R,

is usc and closed. But G(., .) and F (., ., .) are not usc.
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Remark 3.2. If K(., .) is lsc in clK(X, Λ)×{λ0}, G(., .) is lsc in clK(X, Λ)×

{η0} and F (., ., .) is usc in clK(X, Λ) × clK(X, Λ) × {µ0}, then Usα1 is closed.

The converse is not valid as indicated by

Example 3.3. Let X,Y, Λ, M, N, C,K and λ0 be as in Example 3.2. Let

G(x, λ) =

{
[0, +∞) if λ ∈ Q,

(−∞, 0] otherwise,

F (x, y, λ) =

{
(1, +∞) if λ ∈ Q,

(−∞, 0] otherwise.

Then Usα1 is closed and Ssα1(λ) = [0, 1], for all λ ∈ R. But G(., .) and F (., ., .)

are neither usc nor lsc in R× {0} and R×R× {0}, respectively.

If G(x, η) = {x} then the first three cases of our problem coincide with

problem (QEP) in Ref. 3. Three remarks and examples above show that even for

this special case Theorem 3.1 is strictly stronger than Theorem 3.2 of Ref. 3. It

should be noted here that the assumption clK(., .) is usc and has compact values

in X × {λ0} in Ref. 3 is not enough (the proof there has a mistake). In fact this

assmption should be replaced by “E(.) is usc and has compact values at λ0” as

made in Theorem 3.1.

Remark 3.3. If G(., .) is usc and has compact values in clK(X, Λ)×{η0}

and F (., ., .) is lsc in clK(X, Λ)×clK(X, Λ)×{µ0}, then Uwα2 is closed. However,

Example 3.1 proves that the converse is false.
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Remark 3.4. If K(., .) is lsc in clK(X,Λ)×{λ0}, and G(., .) and F (., ., .)

are as in Remark 3.3, then Umα2 is closed. The converse does not hold as shown

by

Example 3.4. Let X,Y, Λ, M, N, C,K and λ0 be as in Example 3.2. Let

G(x, λ) =

{
(1, +∞) if λ ∈ Q,

(−∞,−1) otherwise,

F (x, y, λ) =

{
{1} if λ ∈ Q,

{0} otherwise.

Then Umα2 is closed and in fact Smα2(λ) = [0, 1], for all λ ∈ Λ, is both usc and

closed. But G(., .) and F (., ., .) are neither usc nor lsc in clK(X, Λ) × {0} and

clK(X, Λ)× clK(X, Λ)× {0}, respectively.

Remark 3.5. If K(., .), G(., .) and F (., ., .) are lsc in clK(X,Λ) × {λ0},

clK(X, Λ) × {η0} and clK(X, Λ) × clK(X, Λ) × {µ0}, respectively, then Usα2 is

closed. The converse is not valid by Example 3.4.

If G(x, η) = {x} then the last three cases of our problem fall into problem

(SQEP) studied in Ref. 3. The previous three remarks indicate that Theorem

3.1 strictly improves Theorem 3.4 of Ref. 3.

Remark 3.6. Theorem 3.1 is strictly stronger than the corresponding re-

sult in Refs. 1 and 2, since many assumptions there, like convexity, boundedness,
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monotonicity are omitted.

Now we pass to considering Hausdorff upper semicontinuity.

Theorem 3.2 Assume that K(., .) is lsc in clK(X, Λ)×{λ0}, E(.) is H-usc

at λ0, E(λ0) is compact and F (., ., .) are H-usc in clK(X, Λ)× clK(X, Λ)×{µ0}.

Assume further that ∀BX (neighborhood of 0 in X), ∀x 6∈ Srα1(λ0, µ0, η0) +

BX ,∃BY (neighborhood of 0 in Y ), (y, r∗) r̄ K(x, λ0)×G(x, η0), ᾱ1(F (x∗, y, µ0) +

BY , Y \ −intC). Then the following hold.

(i) If r = w (or m) and G(., .) is H-usc and compact-valued in clK(X, Λ)×

{η0}, then Swα1 (or Smα1 , respectively) is H-usc at (λ0, µ0, η0).

(ii) If r = s and G(., .) is lsc in clK(X, Λ) × {η0}, then Ssα1 is H-usc at

(λ0, µ0, η0).

Proof. We demonstrate only for Swα1 . Arguing by the contradiction sup-

pose ∃BX , ∃(λγ, µγ, ηγ) → (λ0, µ0, η0), ∃xγ ∈ Swα1(λγ, µγ, ηγ), xγ /∈ Swα1(λ0, µ0,

η0) + BX . By the Hausdorff upper semicontinuity of E(.) at λ0 and the com-

pactness of E(λ0) one can assume that xγ → x0 for some x0 ∈ E(λ0). If

x0 /∈ Swα1(λ0, µ0, η0) + BX , ∃BY , ∃y0 ∈ K(x0, λ0), ∀x∗
0 ∈ G(x0, η0), F (x∗

0, y0, µ0)

+BY ⊆ −intC. Since K(., .) is lsc, ∃yγ ∈ K(xγ, λγ), yγ → y0. As xγ ∈
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Swα1(λγ, µγ, ηγ), ∃x∗
γ ∈ G(xγ, ηγ),

F (x∗
γ, yγ, µγ) ∩ (Y \ − intC) 6= ∅. (2)

Because of the Hausdorff upper semicontinuity of G(., .) and the compact-

ness of G(x0, η0), one has a subnet x∗
β and x∗

0 ∈ G(x0, η0), x∗
β → x∗

0. Since F (., ., .)

is H-usc, one can assume that

F (x∗
β, yβ, µβ) ⊆ F (x∗

0, y0, µ0) + BY ⊆ −intC,

which contradicts (2). �

Remark 3.7. If G(x, η) = {x} then Theorem 3.2 collapses to Theorem

3.3 of Ref. 3. However, it should be added that the assumption that K(., .) is H-

usc and has compact values in X × {λ0} in Ref. 3 should be replaced by “E(.)

is H- usc and has compact values in X × {λ0}” as in Theorem 3.2, since there is

an error in the proof in Ref. 3.

4. Comparison of the six solution sets

In this section we investigate the sufficient conditions for possible coinci-

dences of solution sets.

Lemma 4.1. Assume that ∀x ∈ Swα1(λ0, µ0, η0),∀y ∈ K(x, λ0), F (G(x, η0),

y, µ0) is arcwisely connected and does not meet the boundary of −C. Then
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Swα1(λ0, µ0, η0) = Smα1(λ0, µ0, η0) = Swα2(λ0, µ0, η0).

Proof. We always have Swα2(λ0, µ0, η0) ⊆ Swα1(λ0, µ0, η0). To see the

reverse inclusion let x /∈ Swα2(λ0, µ0, η0) then ∃y ∈ K(x, λ0), ∀x∗ ∈ G(x, η0),

∃z1 ∈ F (x∗, y, µ0) ∩ −intC. Suppose that x ∈ Swα1(λ0, µ0, η0). Then ∃x∗∗ ∈

G(x, η0),∃z2 ∈ F (x∗∗, y, µ0)\(−C). Since F (G(x, η0), y, µ0) is arcwisely con-

nected, there exists a continuous mapping ϕ : [0, 1] → F (G(x, η0), y, µ0) such

that ϕ(0) = z1 and ϕ(1) = z2. Let T = {t ∈ (0, 1] : ϕ([t, 1]) ⊆ Y \(−C)} and

t0 = inf T . Since z1 ∈ −intC there is an open set A such that A∩F (G(x, η0), y, µ0)

is arcwisely connected and z1 ∈ A ⊆ −intC. Then ϕ−1(A ∩ F (G(x, η0), y, µ0)) ∩

T = ∅. Since ϕ−1(A ∩ F (G(x, η0), y, µ0)) is open in [0, 1], it is of the form [0, t1).

So it contains 0 and 0 < t1 ≤ t0. Similarly, t0 < 1. Then, for all large n, there is

tn ∈
(
t0 − 1

n
, t0

]
such that ϕ(tn) ∈ −C. Then ϕ(t0) ∈ −C, since tn → t0 and −C

is closed. On the other hand, for all large n, there is tn ∈
(
t0, t0 + 1

n

)
such that

ϕ(tn) ∈ Y \(−C). So ϕ(t0) ∈ cl(Y \(−C)). Thus ϕ(t0) is in the boundary of −C,

contradicting the fact that ϕ(t0) ∈ F (G(x, η0), y, µ0).

Similarly, one has Smα1(λ0, µ0, η0) ⊆ Swα1(λ0, µ0, η0). To see the reverse in-

clusion let x1 /∈ Smα1(λ0, µ0, η0), i.e., ∀x∗
1 ∈ G(x1, η0), ∃y1 ∈ K(x1, λ0) such that

F (x∗
1, y1, µ0) ⊆ −intC. Suppose that x1 ∈ Swα1(λ0, µ0, η0). Then ∃x∗∗

1 ∈ G(x1, η0)

such that ∃z3 ∈ F (x∗∗
1 , y1, µ0), z3 /∈ −C. The further argument is the same as
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above. �

The following two examples show that the arcwise connectedness condition

is essential.

Example 4.1. Let X = Y = R,Λ = M = N = [0, 1], C = R+, K(x, λ) =

[0, 1], λ0 = µ0 = η0 = 0 and G(x, η) = {x}, F (x, y, µ) = {−x, x}. Then, it is not

hard to see that Swα1(0, 0, 0) = [0, 1], but Swα2(0, 0, 0) = {0}. The reason is that

F (G(x, η0), y, µ0) = {−x, x} is not arcwisely connected ∀x ∈ (0, 1] ⊆ Swα1(0, 0, 0).

Example 4.2. Let X, Y, Λ, M, N, C,K, λ0, µ0 and η0 be as in Example 4.1.

Let G(x, η) = [0, 1] and

F (x, y, µ) =

{
{1} if x + y + µ ∈ Q,

{−1} otherwise.

Since ∀x ∈ [0, 1],∀y ∈ [0, 1],∃x∗ := 1−y ∈ [0, 1] = G(x, η0) such that F (x∗, y, µ0)

/∈ −intC, one has Swα1(0, 0, 0) = [0, 1]. But Smα1(0, 0, 0) = ∅. The reason is that

F (G(x, η0), y, µ0) = {−1, 1} is not arcwisely connected ∀x ∈ [0, 1] = Swα1(0, 0, 0).

Lemma 4.2. Assume that ∀x ∈ Smα1(λ0, µ0, η0),∀y ∈ K(x, λ0), F (G(x, η0),

y, µ0) is arcwisely connected and does not meet the boundary of −C. Then

Smα1(λ0, µ0, η0) = Ssα1(λ0, µ0, η0) = Smα2(λ0, µ0, η0).

Proof. The proof is similar to that of Lemma 4.1. The only difference is

that the order of y and x∗ is disposed vice versa. �
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The following two examples explain why we assume that F (G(x, η0), y, µ0)

does not meet the boundary of −C.

Example 4.3. Let X, Y, Λ, M, N, C,K, λ0 and G(x, η) be as in Example

4.1 and let F (x, y, µ) = [−x, x]. Then, Smα1(0, 0, 0) = [0, 1], but Smα2(0, 0, 0) =

{0}. The reason is that F (G(x, η0), y, µ0) = [−x, x] meet the boundary of

−C,∀x ∈ [0, 1] = Smα1(0, 0, 0) .

Example 4.4. Let X, Y, Λ, M, N, C,K and λ0 be as in Example 4.1 and

let G(x, η) = [1 − x, 1 + x], F (x, y, µ) = (−∞, x − y + µ]. Then, ∀x ∈ [0, 1],

∃x∗ = 1 ∈ G(x, η0),∀y ∈ [0, 1], F (x∗, y, µ0) = (−∞, x∗ − y + µ0], F (x∗, y, µ0) ∩

−intC 6= ∅, so Smα1(0, 0, 0) = [0, 1]. But Ssα1(0, 0, 0) = {0}, since ∀x ∈ (0, 1],

∃x∗ := 1 − x ∈ G(x, η0), ∃y = 1 ∈ [0, 1] and F (x∗, y, µ0) = (−∞, x∗ − y + µ0],

F (x∗, y, µ0) ∩ −intC = ∅. The reason is that F (G(x, η0), y, µ0) = (−∞, 1 + x]

meet the boundary of −C,∀x ∈ [0, 1] = Smα1(0, 0, 0).

The proof of the following three lemmas are similar to that of Lemma 4.1.

Lemma 4.3. Assume that ∀x ∈ Ssα1(λ0, µ0, η0),∀y ∈ K(x, λ0), F (G(x,

η0), y, µ0) is arcwisely connected and does not meet the boundary of −C. Then

Ssα1(λ0, µ0, η0) = Ssα2(λ0, µ0, η0).

Lemma 4.4. Assume that ∀x ∈ Swα2(λ0, µ0, η0),∀y ∈ K(x, λ0), F (G(x,
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η0), y, µ0) is arcwisely connected and does not meet the boundary of −C. Then

Swα2(λ0, µ0, η0) = Smα2(λ0, µ0, η0).

Lemma 4.5. Assume that ∀x ∈ Smα2(λ0, µ0, η0),∀y ∈ K(x, λ0), F (G(x,

η0), y, µ0) is arcwisely connected and does not meet the boundary of −C. Then

Smα2(λ0, µ0, η0) = Ssα2(λ0, µ0, η0).

Summarizing the lemmas one obtains

Theorem 4.6. Assume that ∀x ∈ Swα1(λ0, µ0, η0), ∀y ∈ K(x, λ0), F (G(x, η0),

y, µ0) is arcwisely connected and does not meet the boundary of −C. Then all

the six solution sets at (λ0, µ0, η0) are equal.
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