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Abstract In this paper, several Lagrange multiplier characterizations of the solution
set of a convex infinite programming problem are given. Characterizations of solu-
tion sets of cone-constrained convex programs are derived as well. The procedure is
then adopted to a semi-convex problem with convex constraints. For this problem,
we present firstly a necessary and sufficient condition for optimality and secondly a
characterization of its optimal solution set, based on a Lagrange multiplier associated
with a given solution and on directional derivatives of the objective function.
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1 Introduction

Consider the following convex infinite optimization problem

(P) Minimize f (x)

subject to ft (x) ≤ 0, ∀t ∈ T ,

x ∈ C,
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where X is a locally convex Hausdorff topological vector space, f,ft : X → R ∪
{+∞}, t ∈ T , are proper, lower semi-continuous and convex functions, C is a non-
empty, closed convex subset of X, and T is an arbitrary index set (not necessarily
finite). The convex infinite problem of model (P) was considered in several papers
published recently (see Dinh et al. 2006a, 2007; Jeyakumar 1992, and references
therein), where optimality conditions, duality, and stability results were established
under various assumptions on the data. In this paper, we derive characterizations of
the solution set of (P) for the two cases: when a solution of (P) is known and when a
minimizing sequence of (P) is known instead. Characterizations of solution set for a
class of nonconvex problems are given as well.

Characterizations and properties of solution sets are important for understand-
ing the behavior of solution methods for nonlinear optimization problems that
have multiple solutions. These have attracted attention of many mathematicians
since the last decades of the last century (see Burke and Ferris 1991; Dinh et al.
2006b; Jeyakumar et al. 2004, 2006; Jeyakumar and Yang 1995; Mangasarian 1988;
Penot 2003). When a solution is known a fortiori, simple and elegant characteriza-
tions for an optimization problem of minimizing a (finite-valued) convex function
over a convex set were initially introduced in Mangasarian (1988). These results
have since been extended to various classes of optimization problems: the problem of
model (P) where T = ∅ and f is an extended real-valued function (Burke and Ferris
1991); the problem where f is pseudo-linear and T = ∅ (or T is finite and ft is linear)
in Jeyakumar and Yang (1995) (in Dinh et al. 2006b, respectively); vector minimiza-
tion problems in Jeyakumar et al. (2006); quasi-convex problems in Penot (2003).
In Jeyakumar et al. (2004), various characterizations of the solution set of a gen-
eral cone-constrained convex problem in Banach spaces (with applications to other
classes of problems, such as, semi-definite and fractional programs) were given.

In this work, motivated by the mentioned papers, we show that such kinds of
characterizations of solution sets can be extended to convex infinite programs of the
model (P). Moreover, other kinds of characterizations of solution sets are proposed.
Firstly, we establish Lagrange multiplier characterizations of the solution set of (P)
for the case where a solution of the problem is known. It is shown that the results
cover the ones for cone-constrained convex programs given in Jeyakumar et al. (2004)
and hence, the others in Burke and Ferris (1991) and Mangasarian (1988). Secondly,
we consider the case where an exact solution of the problem (P) is not known. We
present a new result on characterization of the solution set of (P) when a minimiz-
ing sequence is known instead (this is often the case when numerical methods are
applied). As a by-product, an optimality condition based on a known minimizing se-
quence is given. Thirdly, in the last part of the paper we give an extension of the
method to nonconvex problems. Concretely, in this part, we consider a problem of
minimizing a semi-convex function under convex constraints and a set constraint. We
establish necessary and sufficient optimality conditions for this problem and then,
based on these, derive several characterizations of the solution set for the problem
under consideration.

The layout of the paper is as follows: In Sect. 2, we recall some notations and
preliminary results which will be used in the sequel. In Sect. 3, basing on the fact that
the Lagrangian function with a fixed Lagrange multiplier associated with a known
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solution of (P) is constant on the solution set of (P), we establish several character-
izations of the solution set of (P). Next, we give a characterization of the solution
set of (P) when a minimizing sequence (instead of a solution) of (P) is known. Con-
sequences for cone-constrained convex problems are obtained as well. In the last
section, Sect. 4, we consider a semi-convex program with convex constraints. An op-
timality condition for the problem is established and characterizations of its solution
set are given, based on a Lagrange multiplier associated with a given solution and on
directional derivatives of the objective function.

2 Preliminaries

Throughout this paper (except for Sect. 4) X denotes a locally convex Hausdorff topo-
logical vector space and X∗ is its topological dual endowed with weak∗-topology. For
a subset D ⊂ X, the convex cone generated by D will be denoted by coneD. If A is
a convex subset of X and x̄ ∈ A, the normal cone to A at x̄ is defined by

NA(x̄) := {
x∗ ∈ X∗ | 〈x∗, x − x̄〉 ≤ 0, ∀x ∈ A

}
.

Let f : X → R ∪ {+∞} be a proper, lower semicontinuous and convex function.
The conjugate function of f , f ∗ : X∗ → R ∪ {+∞}, is defined by

f ∗(v) = sup
{〈v, x〉 − f (x) | x ∈ domf

}
.

The subdifferential of f at a ∈ domf , denoted by ∂f (a), is

∂f (a) = {
v ∈ X∗ | f (x) − f (a) ≥ 〈v, x − a〉,∀x ∈ X

}
.

The subdifferential of f at a ∈ domf is a weak∗-closed (possibly empty) subset of
X∗. For ε ≥ 0, ε-subdifferential of f at a ∈ domf is

∂εf (a) = {
v ∈ X∗ | f (x) − f (a) ≥ 〈v, x − a〉 − ε,∀x ∈ domf

}
.

When ε > 0, ∂εf (a) is a non-empty, weak∗-closed convex subset of X∗. For more
details, see Zalinescu (2002). It is well-known that the epigraph of f ∗, epif ∗, can be
represented in the form (see Jeyakumar 1997)

epif ∗ =
⋃

ε≥0

{(
v, 〈v, a〉 + ε − f (a)

) | v ∈ ∂εf (a)
}
, (1)

for any a ∈ domf .
Now let Y be another locally convex Hausdorff topological vector space and let

K be a closed convex cone in Y . A mapping g : X → Y is said to be K-convex if for
every u,v ∈ X and for every t ∈ [0,1],

g
(
tu + (1 − t)v

) − tg(u) − (1 − t)g(v) ∈ −K.

From now on, such a mapping is always assumed to be continuous. Note that if g is
K-convex and continuous then the set g−1(−K) := {x ∈ X | g(x) ∈ −K} is a closed
and convex subset of X (Craven 1978).
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For a closed convex cone K ⊂ Y , the positive polar cone of K , denoted by K+, is
defined by

K+ := {
y∗ ∈ Y ∗ | 〈y∗, k〉 ≥ 0, ∀k ∈ K

}
.

It is easy to see that

y ∈ K ⇐⇒ 〈μ,y〉 ≥ 0, ∀μ ∈ K+.

In particular, g(x) ∈ −K if and only if μg(x) := 〈μ,g(x)〉 ≤ 0 for all μ ∈ K+.
For a non-empty index set T , denote

R
(T )
+ := {

λ = (λt ) ∈ R
(T ) | λt = 0 for all t ∈ T , except a finite number t ∈ T

}
.

The support of an element λ = (λt )t∈T ∈ R
(T )
+ will be denoted by T (λ), i.e., T (λ) =

{t ∈ T | λt > 0}. Moreover, let T̃ (λ) = T \ T (λ). Lastly, by convention, we under-
stand that 0 · (+∞) = 0.

3 Characterizations of the solution set of the problem (P)

In this section we will establish characterizations of the solution set of the problem
(P), based on the Lagrange multipliers associated to a known solution of (P). In the
case where a minimizing sequence (instead of a solution) is known, we also give a
characterization of the solution set based on this minimizing sequence.

Consider the convex infinite programming problem (P) in Sect. 1. Let A be the fea-
sible set of (P), i.e., A := {x ∈ X | x ∈ C,ft (x) ≤ 0,∀t ∈ T }. From now on, assume
that the solution set S of (P), S := {x ∈ A | f (x) ≤ f (y),∀y ∈ A}, is nonempty.

It is known that, under some constraint qualification condition (see, e.g., Dinh et
al. 2006a, 2007), a feasible point z is a solution of (P) if and only if there exists
λ = (λt ) ∈ R

(T )
+ such that

0 ∈ ∂f (z) +
∑

t∈T

λt∂ft (z) + NC(z), λtft (z) = 0, ∀t ∈ T . (2)

The element λ ∈ R
(T )
+ (may not be unique) satisfying (2) is called a Lagrange multi-

plier corresponding to the solution z. The set of all Lagrange multipliers correspond-
ing to a solution z of (P) will be denoted by M(z). As usual, the Lagrangian function
associated to (P) is defined as

L(x,λ) :=
{

f (x) + ∑
t∈T λtft (x), if x ∈ C,λ ∈ R

(T )
+ ,

+∞, otherwise.

For the cone-constrained convex problems (see Jeyakumar et al. 2004) or pseudo-
linear problems (see Dinh et al. 2006b), the Lagrangian function with a fixed La-
grange multiplier associated with a known solution is constant on the solution set of
the problem in consideration. This conclusion still holds for the class of problems of
model (P) and will be given in the next lemma. Its proof is quite similar to those in
the mentioned papers and will be omitted.
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Lemma 3.1 Suppose that z ∈ S and (2) holds with λ ∈ M(z). Then L(·, λ) is a con-
stant function on S. Moreover, ft (x) = 0 for all t ∈ T (λ) and for all x ∈ S.

We are now in a position to give characterizations of the optimal solution set of (P).

Theorem 3.1 For the problem (P), suppose that z ∈ S and (2) holds with λ ∈ R
(T )
+ .

Then S = S1 = S̄1, where

S1 := {
x ∈ C | ∃u ∈ ∂f (z) ∩ ∂f (x), 〈u,x − z〉 = 0, ft (x) = 0,∀t ∈ T (λ),

ft (x) ≤ 0,∀t ∈ T̃ (λ)
}
,

S̄1 := {
x ∈ C | ∃u ∈ ∂f (x), 〈u,x − z〉 = 0, ft (x) = 0,∀t ∈ T (λ),

ft (x) ≤ 0,∀t ∈ T̃ (λ)
}
.

Proof We will prove that S ⊂ S1 ⊂ S̄1 ⊂ S. It is obvious that S1 ⊂ S̄1. Firstly, we
show that S̄1 ⊂ S. Let x ∈ S̄1. Then x ∈ A, and there exists u ∈ ∂f (x) such that
〈u,x − z〉 = 0. This yields f (z) − f (x) ≥ 〈u, z − x〉 = 0, which shows x ∈ S. So,
S̄1 ⊂ S.

We now prove that S ⊂ S1. It follows from (2) that there exist u ∈ ∂f (z), v ∈∑
t∈T (λ) λt ∂ft (z), w ∈ NC(z) such that u+v +w = 0, and ft (z) = 0 for all t ∈ T (λ).

As w ∈ NC(z), 〈w,y − z〉 ≤ 0 for all y ∈ C. Moreover, since v ∈ ∑
t∈T (λ) λt ∂ft (z) ⊂

∂(
∑

t∈T (λ) λtft )(z), we get

∑

t∈T (λ)

(λtft )(y) −
∑

t∈T (λ)

(λtft )(z) ≥ 〈v, y − z〉, ∀y ∈ X. (3)

Observe that if y ∈ A then the left-hand side of (3) is less than or equal to zero as
λ = (λt ) ∈ R

(T )
+ and λtft (z) = 0 for all t ∈ T . Hence, 〈v, y − z〉 ≤ 0 for all y ∈ A.

This, together with the facts that u + v + w = 0 and 〈w,y − z〉 ≤ 0 for all y ∈ C,
implies 〈u,y − z〉 = −〈v + w,y − z〉 ≥ 0 for all y ∈ A.

If x ∈ S then x ∈ A and f (x) = f (z). Hence,

0 = f (x) − f (z) ≥ 〈u,x − z〉 ≥ 0,

which ensures 〈u,x − z〉 = 0. Moreover, for all y ∈ X,

f (y) − f (x) = f (y) − f (z)

≥ 〈u,y − z〉
= 〈u,y − x〉 + 〈u,x − z〉
= 〈u,y − x〉.

Therefore, u ∈ ∂f (x), and hence, u ∈ ∂f (z) ∩ ∂f (x). Thus, x ∈ S1 and the inclusion
S ⊂ S1 holds. The proof is complete. �

It is worth observing from the definitions of the sets S1 and S̄1 that the active
constraints corresponding to λt > 0 (the number of such constraints is finite) remain
active for all other solutions x ∈ S.
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Example 3.1 Let X = l2, the Banach space of all real sequences x = (ξn)n with

‖x‖ := (
∑∞

n=1 ξn
2)

1
2 < +∞. Let further C := {x = (ξn)n ∈ l2 | 0 ≤ ξn ≤ n, ∀n ∈ N}.

It is clear that C is a closed convex subset of X. Consider the problem

Minimize f (x) := ∑∞
n=2

ξn

n3

subject to 1 − tξ1 ≤ 0, t ∈ (2,+∞),

x = (ξn)n ∈ C.

Let T := (2,+∞) and ft (x) := 1− tξ1 for all t ∈ T . It is obvious that f is continuous
and convex on C. The feasible set of the problem is:

A := {
(ξn) ∈ l2 | 1/2 ≤ ξ1 ≤ 1,0 ≤ ξn ≤ n,n = 2,3, . . .

}
.

A solution of the problem is z = (1,0, . . .). On the other hand, for x ∈ C,

∂f (x) = {(
0,1/23,1/33, . . .

)}
,

∂ft (z) = {
(−t,0,0, . . .)

}
, ∀t ∈ T ,

NC(z) =
{

(un)n ∈ l2 | u1(ξ1 − 1) +
∞∑

n=2

unξn ≤ 0,∀x = (ξn)n ∈ C

}

.

Let λ = (λt ) with λt = 0, for all t ∈ T . Then λ ∈ M(z). By Theorem 3.1, the solution
set of the problem is

S = {
x = (ξn)n ∈ C | 〈u,x − z〉 = 0, u ∈ ∂f (x), ft (x) ≤ 0, ∀t ∈ T

}

=
{

(ξn)n ∈ A | u1(ξ1 − 1) +
∞∑

n=2

unξn = 0, (un)n ∈ ∂f (x)

}

= {
(ξn)n ∈ l2 | 1/2 ≤ ξ1 ≤ 1, ξi = 0,∀i ≥ 2

}
.

We now give a characterization of S using subdifferentials of the Lagrangian func-
tion. Let z ∈ S and let λ ∈ M(z). It follows from (2) that

0 ∈ ∂

(
f +

∑

t∈T (λ)

λtft

)
(z) + NC(z), λtft (z) = 0, ∀t ∈ T ,

which means that

∂xL(z,λ) ∩ (−NC(z)
) �= ∅, λtft (z) = 0, ∀t ∈ T . (4)

This suggests a way of characterizing the solution set S of (P) in terms of subdiffer-
entials of the Lagrangian function L(·, λ). To this aim, we need the following lemma.

Lemma 3.2 Suppose that z ∈ S and (2) holds with λ ∈ M(z). Then for each x ∈ S,

∂xL(x,λ) ∩ (−NC(x)
) = ∂xL(z,λ) ∩ (−NC(z)

)
.



Characterizations of optimal solution sets

Proof If u ∈ ∂xL(x,λ) ∩ (−NC(x)) then
{

L(y,λ) − L(x,λ) ≥ 〈u,y − x〉, ∀y ∈ X,

〈u,y − x〉 ≥ 0, ∀y ∈ C.
(5)

Since L(·, λ) is constant on S (Lemma 3.1) and z ∈ S, it follows from (5) that 〈u, z −
x〉 = 0. Thus, 〈u,y − x〉 = 〈u,y − z〉 + 〈u, z − x〉 = 〈u,y − z〉 for all y ∈ X. This
together with (5) entails

{
L(y,λ) − L(z,λ) ≥ 〈u,y − z〉, ∀y ∈ X,

〈u,y − z〉 ≥ 0, ∀y ∈ C,

which shows that u ∈ ∂xL(z,λ) ∩ (−NC(z)). Thus,

∂xL(x,λ) ∩ (−NC(x)
) ⊂ ∂xL(z,λ) ∩ (−NC(z)

)
.

The converse inclusion holds by a similar argument. �

Theorem 3.2 Suppose that z ∈ S and (2) holds with λ ∈ M(z). Then S = Ŝ, where
the later set is defined by

Ŝ := {
x ∈ C | ∂xL(x,λ) ∩ (−NC(x)

) = ∂xL(z,λ) ∩ (−NC(z)
)
,

ft (x) = 0,∀t ∈ T (λ), ft (x) ≤ 0,∀t ∈ T̃ (λ)
}
.

Proof The inclusion S ⊂ Ŝ follows from Lemma 3.1 and Lemma 3.2. For the con-
verse inclusion, let x ∈ Ŝ. Then by (4) and Lemma 3.2,

∂xL(x,λ) ∩ (−NC(x)
) = ∂xL(z,λ) ∩ (−NC(z)

) �= ∅.

Then there exists u ∈ ∂xL(x,λ) with −u ∈ NC(x), and we get
{

L(z,λ) − L(x,λ) ≥ 〈u, z − x〉,
〈u, z − x〉 ≥ 0.

(6)

Note that for all t ∈ T (λ), ft (x) = ft (z) = 0. It now follows from (6) that f (x) ≤
f (z), which ensures x ∈ S. �

The characterizations of the solution set S given in Theorems 3.1, 3.2 (also in
Burke and Ferris 1991; Dinh et al. 2006b; Jeyakumar et al. 2004; Jeyakumar and
Yang 1995; Mangasarian 1988) base upon an a priori assumption that one solution of
the considered problem is known.

We now turn to the case where the mentioned assumption fails to hold, i.e., an
exact solution of (P) is not known. Suppose that Inf(P ) = α is finite and a minimizing
sequence (an)n of (P) is known, i.e., (an)n ⊂ A such that limn→∞ f (an) = α. This is
often the case when some numerical method applies. In such a situation, we propose
a way to characterize the solution set of (P), based on minimizing sequences as shown
in the next theorem.
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Theorem 3.3 Suppose that Inf(P ) = α is finite. If (an)n is a minimizing sequence of
(P) and epif ∗ + epi δ∗

A is weak∗-closed, then

S = {
x ∈ C | ∃u ∈ ∂f (x), 〈u,an − x〉 ≥ 0,∀n ∈ N, ft (x) ≤ 0,∀t ∈ T

}
.

Proof Let B := {x ∈ C | ∃u ∈ ∂f (x), 〈u,an − x〉 ≥ 0, ft (x) ≤ 0,∀t ∈ T }. If x ∈ B

then x ∈ A and there exists u ∈ ∂f (x) such that 〈u,an − x〉 ≥ 0 for all n ∈ N. This
gives

f (an) − f (x) ≥ 〈u,an − x〉 ≥ 0, ∀n ∈ N,

which entails f (x) ≤ f (an) for all n ∈ N. Letting n → +∞, we get f (x) ≤ α. Thus
x ∈ S.

Now, if x ∈ S then x ∈ C and ft (x) ≤ 0 for all t ∈ T . Moreover,

0 ∈ ∂(f + δA)(x). (7)

Since epif ∗ + epi δ∗
A is weak∗-closed, by Corollary 1 in Burachik and Jeyakumar

(2005) (see also Lemma 2 in Dinh et al. 2007), (7) implies

0 ∈ ∂f (x) + NA(x). (8)

Therefore, there exists u ∈ ∂f (x) such that −u ∈ NA(x), which implies that 〈u,an −
x〉 ≥ 0 for all n ∈ N, since (an)n ⊂ A. Thus x ∈ B . The proof is complete. �

It is worth noting that the proofs of Theorems 3.1, 3.2 base on the optimality con-
dition (2), which is often established under some constraint qualifications (see Dinh
et al. 2006a, 2007), while that of Theorem 3.3 bases on (8) instead. The assumption
that the set epif ∗ + epi δ∗

A is weak∗-closed guarantees the validity of (8). So, the
presence of this condition in the statement of Theorem 3.3 is not a restriction.

The Theorem 3.3 also gives us an optimality condition for problem (P) based on a
known minimizing sequence which is given in the corollary below.

Corollary 3.1 (Optimality condition) Suppose that Inf(P ) = α is finite, (an)n is a
minimizing sequence of (P), and z ∈ A. Suppose further that epif ∗ + epi δ∗

A is weak∗-
closed and the solution set S of (P) is none-empty. Then z ∈ S if and only if there exists
u ∈ ∂f (z) such that 〈u,an − z〉 ≥ 0 for all n ∈ N.

Proof It is obvious from the proof of Theorem 3.3. �

As an application of the previous results, let us consider the cone-constrained con-
vex minimization problem (Jeyakumar et al. 2004)

(P1) Minimize f (x)

subject to g(x) ∈ −K,

x ∈ C,
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where f,X,C are as in the beginning of this section, Y is a locally convex Hausdorff
topological vector space, K is a closed convex cone in Y , and g : X → Y is a contin-
uous and K-convex mapping. Let A and S be the feasible set and the solution set of
(P1), respectively. Assume that S �= ∅.

Since g(x) ∈ −K if and only if μg(x) ≤ 0 for all μ ∈ K+, the problem (P1) can
be rewritten as

(P̃1) Minimize f (x)

subject to μg(x) ≤ 0, μ ∈ K+,

x ∈ C.

Thus, the problem (P1) can be reduced to the model of (P). It is worth emphasizing
that the converse is not true. Indeed, all the functions ft in (P) allowed to be extended
real-valued functions while the corresponding ones in (P̃1) have the form μg, μ ∈
K+, which are always real-valued functions.

We now show that the results established in Theorems 3.1 and 3.2 are extensions
of the ones introduced in Jeyakumar et al. (2004).

Note that for the Problem (P̃1) the optimality condition (2) reads as

0 ∈ ∂f (z) +
∑

μ∈T (λ)

λμ∂(μg)(z) + NC(z), λμμg(z) = 0, ∀μ ∈ K+ (9)

for some λ = (λμ)μ∈K+ ∈ R
(K+)
+ . Here, T (λ) := {μ ∈ K+ | λμ > 0}.

Set λ̄ = ∑
μ∈T (λ) λμμ. Then λ̄ ∈ K+, and (9) can be rewritten in the form:

0 ∈ ∂f (z) + ∂(λ̄g)(z) + NC(z), λ̄g(z) = 0. (10)

We now can apply Theorem 3.1 to (P̃1) to get a characterization of the solution set
S of (P1) in terms of subdifferentials of f and the Lagrange multiplier λ̄ ∈ K+.

Corollary 3.2 Assume that z ∈ A is a solution of (P1) and (10) satisfies with λ̄ ∈ K+.
Then S = S2 = S̄2, where

S2 := {
x ∈ C | ∃u ∈ ∂f (z) ∩ ∂f (x), 〈u,x − z〉 = 0, λ̄g(x) = 0

}
,

S̄2 := {
x ∈ C | ∃u ∈ ∂f (x), 〈u,x − z〉 = 0, λ̄g(x) = 0

}
.

Proof The conclusion follows from Theorem 3.1 (applies to (P̃1)) and from the fact
that

λμ(μg)(x) = 0, ∀μ ∈ K+ ⇐⇒
∑

μ∈T (λ)

(λμμ)g(x) =
〈 ∑

μ∈T (λ)

λμμ,g(x)

〉

= λ̄g(x) = 0. �

Similarly, we can get a characterization of the solution set of (P1) in terms of
subdifferentials of the Lagrange function. The same conclusion as in Corollary 3.2
was established recently in Jeyakumar et al. (2004) for problem (P1) where X is a
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Banach space and f : X → R is a continuous, convex function. So, Corollary 3.2
improves the results in Jeyakumar et al. (2004), and Theorems 3.1, 3.2 extend the
results in Jeyakumar et al. (2004) to convex infinite problems.

To conclude this section, note that the same argument as in the proof of Theo-
rem 3.3 leads to a characterization of the solution set of (P1) where a minimizing
sequence (instead of an exact solution) of this problem is known.

Corollary 3.3 Suppose that Inf(P1) = α is finite. If (an)n is a minimizing sequence
of (P1) and epif ∗ + epi δ∗

A is weak∗-closed, then

S = {
x ∈ A | ∃u ∈ ∂f (x), 〈u,an − x〉 ≥ 0,∀n ∈ N

}
.

4 Semi-convex programs

In this section we will consider a semi-convex problem with convex constraints. We
first establish an optimality condition and then give a characterization for the solution
set of this problem in terms of the directional derivatives of the objective functional.

Throughout this section, X is a Banach space. We first recall some definitions and
notations on locally Lipschitz functions and semi-convex functions.

Let f : X → R be a locally Lipschitz function at x ∈ X. The generalized direc-
tional derivative of f at x in the direction d ∈ X is defined by (see Clarke 1983,
page 25)

f ◦(x;d) := lim sup
h→0
t↓0

f (x + h + td) − f (x + h)

t
,

and the Clarke’s subdifferential of f at x, denoted by ∂cf (x), is

∂cf (x) := {
u ∈ X∗ | 〈u,d〉 ≤ f ◦(x;d),∀d ∈ X

}
.

For d ∈ X, if the limit

lim
t↓0

f (x + td) − f (x)

t

exists then it is called the directional derivative of f at x in the direction d and is
denoted by f ′(x;d). The function f is said to be regular at x (in the sense of F.H.
Clarke) if f ′(x;d) exists and equals to f ◦(x;d) for each d ∈ X (see Clarke 1983;
Clarke et al. 1998).

Definition 4.1 (Mifflin 1977) Let C be a closed convex subset of X. The function
f : X → R is said to be semi-convex at x ∈ C if f is locally Lipschitz and regular
at x, and satisfies the following condition

x + d ∈ C,f ′(x;d) ≥ 0 =⇒ f (x + d) ≥ f (x).

The function f is said to be semi-convex on C if f is semi-convex at every point
x ∈ C.
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Remark 4.1 Suppose that f is semi-convex at x ∈ C. Then it is easy to see that if
there exists u ∈ ∂cf (x) such that 〈u, z − x〉 ≥ 0 then f (z) ≥ f (x).

The Lemma 4.1 below was proved in Mifflin (1977) (Theorem 8) for the case
where X = R

n and C is a closed convex subset of X. The conclusion holds for an
arbitrary closed convex subset C of a Banach space X without any change in the
proof.

Lemma 4.1 Suppose that f is semi-convex on a closed convex set C ⊂ X. Then for
x ∈ C, d ∈ X with x + d ∈ C,

f (x + d) ≤ f (x) =⇒ f ′(x;d) ≤ 0.

We now consider the following semi-convex minimization problem under convex
constraints

(SP) Minimize f (x)

subject to ft (x) ≤ 0, t ∈ T ,

x ∈ C,

where C,T ,ft are as in Sect. 3 and f is a semi-convex function on an open subset
containing C. Let A and S be the feasible set and the solution set of (SP), respectively.
Assume that S �= ∅.

The following lemma can be derived from Corollary 2 in Dinh et al. (2007) where
the corollary was proved by using some optimality condition for a convex infinite
problem established therein. Here, we give a direct proof.

Lemma 4.2 Let z ∈ A. If cone{⋃t∈T epif ∗
t ∪epi δ∗

C} is weak∗-closed then v ∈ NA(z)

if and only if there exists λ = (λt ) ∈ R
(T )
+ such that ft (z) = 0 for all t ∈ T (λ) and

v ∈
∑

t∈T (λ)

λt ∂ft (z) + NC(z).

Proof Let v ∈ NA(z). Then

x ∈ A =⇒ 〈v, x〉 ≤ 〈v, z〉. (11)

Since the set cone{⋃t∈T epif ∗
t ∪ epi δ∗

C} is weak∗-closed, it follows from Farkas
lemma (Theorem 4.1 in Dinh et al. 2006a) that (11) is equivalent to

(
v, 〈v, z〉) ∈ cone

{⋃

t∈T

epif ∗
t ∪ epi δ∗

C

}
.

Hence, there exists λ = (λt ) ∈ R
(T )
+ such that

(
v, 〈v, z〉) ∈

∑

t∈T (λ)

λtepif ∗
t + epi δ∗

C.
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Using representation (1) for epif ∗
t and epi δ∗

C , there exist ut ,w ∈ X∗, εt , ρ ∈ R+,
t ∈ T (λ) such that

(
v, 〈v, z〉) =

∑

t∈T (λ)

λt

(
ut , 〈ut , z〉 + εt − ft (z)

) + (
w, 〈w,z〉 + ρ − δC(z)

)
,

where ut ∈ ∂εt ft (z) and w ∈ ∂ρδC(z). Hence,
⎧
⎪⎪⎨

⎪⎪⎩

v =
∑

t∈T (λ)

λtut + w,

〈v, z〉 =
∑

t∈T (λ)

λt

[〈ut , z〉 + εt − ft (z)
] + 〈w,z〉 + ρ − δC(z).

This implies that
∑

t∈T (λ)

λt εt −
∑

t∈T (λ)

λtft (z) + ρ = 0.

Since z ∈ A, ft (z) ≤ 0 for all t ∈ T . Moreover, λt ≥ 0 for all t ∈ T . The last equality
yields ρ = 0, λt εt = 0, and λtft (z) = 0 for all t ∈ T (λ). As λt > 0 for all t ∈ T (λ),
we get ρ = 0, εt = ft (z) = 0 for all t ∈ T (λ), which ensures w ∈ ∂δC(z) = NC(z),
ut ∈ ∂ft (z). Consequently,

v ∈
∑

t∈T (λ)

λt ∂ft (z) + NC(z).

Conversely, let v ∈ ∑
t∈T (λ) λt ∂ft (z) + NC(z) with λ = (λt ) ∈ R

(T )
+ satisfying

ft (z) = 0 for all t ∈ T (λ). Then

v ∈ ∂

( ∑

t∈T (λ)

λtft + δC

)
(z),

and hence,
( ∑

t∈T (λ)

λtft + δC

)
(x) −

( ∑

t∈T (λ)

λtft + δC

)
(z) ≥ 〈v, x − z〉, ∀x ∈ X.

If x ∈ A then δC(x) = 0 and ft (x) ≤ 0 for all t ∈ T . Taking the fact that ft (z) = 0 for
all t ∈ T (λ) into account, the last inequality gives 〈v, x − z〉 ≤ 0 for all x ∈ A, which
shows that v ∈ NA(z). �

We are now in a position to establish an optimality condition for the problem (SP),
which paves the way to characterize its solution set (see Theorem 4.2).

Theorem 4.1 Let z ∈ A. If the set cone{⋃t∈T epif ∗
t ∪ epi δ∗

C} is weak∗-closed then z

is the solution of (SP) if and only if there exists λ ∈ R
(T )
+ such that

0 ∈ ∂cf (z) +
∑

t∈T (λ)

λt ∂ft (z) + NC(z), ft (z) = 0, ∀t ∈ T (λ). (12)
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Proof We first prove that z is a solution of (SP) if and only if

0 ∈ ∂cf (z) + NA(z). (13)

Suppose that z is a minimizer (SP). Then

0 ∈ ∂cf (z) + NA(z), (14)

(see Clarke 1983, page 52) where NA(z) is the Clarke normal cone of A at z which
coincides with the normal cone of A at z in the sense of convex analysis, since A is
convex.

Conversely, suppose that (14) holds. Then there exists u ∈ ∂cf (z) satisfying

x ∈ A ⇒ 〈u,x − z〉 ≥ 0.

Since f is semi-convex, it follows from Remark 4.1 that

f (x) ≥ f (z).

Since this inequality holds for all x ∈ A, z is a solution of (SP). The inclusion (13)
holds.

The conclusion of the theorem now follows from (13) and Lemma 4.2. �

It is worth observing that if, in addition, f is convex on C, then the optimality
condition (12) collapses to the well-known one (2). For an asymptotic optimality
condition (without any constraint qualification condition) for a special case of (SP)
where C = X and T is a finite index set, see Jeyakumar (1997).

The following theorem gives a characterization of the solution set of Problem (SP).

Theorem 4.2 For the problem (SP), assume that z is a solution and (12) holds with
λ ∈ R

(T )
+ . Then S = S3, where

S3 := {
x ∈ C | f ′(x, z − x) ≥ 0, ft (x) = 0,∀t ∈ T (λ) and ft (x) ≤ 0,∀t ∈ T̃ (λ)

}
.

Proof Let x ∈ S3. Then x ∈ A and f ′(x; z − x) ≥ 0. Since z = x + (z − x) ∈ A, it
follows from the definition of semi-convex function that f (z) ≥ f (x). Hence, x ∈ S,
since z is a solution of (SP).

Conversely, let x ∈ S. Then x ∈ A. Since z ∈ S and λ ∈ R
(T )
+ satisfies (12), there

exists u ∈ X∗ such that
⎧
⎨

⎩

u ∈ ∂cf (z),

−u ∈
∑

t∈T (λ)

λt ∂ft (z) + ∂δC(z), ft (z) = 0, ∀t ∈ T (λ).

Thus,

−u ∈ ∂

( ∑

t∈T (λ)

λtft + δC

)
(z), ft (z) = 0, ∀t ∈ T (λ),
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which implies that
∑

t∈T (λ)

λtft (y) ≥ −〈u,y − z〉, ∀y ∈ X. (15)

In particular, with y = x ∈ S (note that λtft (x) ≤ 0 for all t ∈ T ), we get

〈u,x − z〉 ≥ 0. (16)

Since u ∈ ∂cf (z) and f is semi-convex at z, f ◦(z, d) = f ′(z, d), and 〈u,d〉 ≤
f ′(z, d) for all d ∈ X. On the other hand, x and z are solutions of (SP), f (z + (x −
z)) = f (x) = f (z). By Lemma 4.1,

f ′(z;x − z) ≤ 0.

Hence, 〈u,x −z〉 ≤ 0. Combining this with (16), we get 〈u,x −z〉 = 0. It now follows
from (15) that λtft (x) = 0 for all t ∈ T (λ), and hence,

ft (x) = 0, ∀t ∈ T (λ) and ft (x) ≤ 0, ∀T̃ (λ). (17)

On the other hand, since A is convex and x, z ∈ A, x + t (z − x) = (1 − t)x + tz ∈ A

for all t ∈ (0,1). We get

f ′(x; z − x) = lim
t↓0

f [x + t (z − x)] − f (x)

t
≥ 0,

because x is a solution of (SP). This inequality, together with (17), implies that
x ∈ S3. The proof is complete. �

Example 4.1 Consider the problem (P2)

Minimize sin(x − y)

subject to ty − x ≤ 0, t ∈ (0, 1
2 ],

(x, y) ∈ C := {
(x, y ∈ R

2 | x2 + y2 ≤ 1, y ≤ x
}
.

Let f (x, y) := sin(x − y), ft (x, y) := ty − x for all t ∈ T := (0, 1
2 ]. It is easy to

verify that the feasible set of (P2) is

A = {
(x, y) ∈ R

2 | x2 + y2 ≤ 1, y ≤ x, x ≥ 0
}
,

f is semi-convex on A, and z = (0,0) is a minimizer of (P2).
Let (x, y) ∈ A, (d1, d2) ∈ R

2, a simple computation gives

f ′((x, y); (d1, d2)
) = (d1 − d2) cos(x − y),

∂f c(0,0) = {
(u1, u2) | u1d1 + u2d2 ≤ d1 − d2,∀(d1, d2) ∈ R

2},

and

∂ft (0,0) = {(−1, t)}, ∀t ∈ (0, 1
2 ],
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NC(0,0) = {
(u, v) ∈ R

2 | u = −v, v ≥ 0
}
.

Choose λ ∈ R
(T )
+ with λt = 0 for all t ∈ (0, 1

2 ], (1,−1) ∈ ∂f c(0,0), and (−1,1) ∈
NC(0,0). It is easy to see that (12) holds.

On the hand, if (x, y) ∈ A then cos(x − y) > 0, and hence,

f ′[(x, y); (0,0) − (x, y)
] ≥ 0 ⇔ −(x − y) cos(x − y) ≥ 0

⇔ x − y ≤ 0

⇒ x = y

(note that (x, y) ∈ A then y ≤ x). By Theorem 4.2,

S = {
(x, y) ∈ C | f ′[(x, y); (0,0) − (x, y)

] ≥ 0, and ty − x ≤ 0, t ∈ (0, 1
2 ]}

= {
(x, y) ∈ C | x = y, and ty − x ≤ 0, t ∈ (0,

1

2
]}

= {
(x, y) ∈ R

2 | x = y,0 ≤ x ≤
√

2
2

}
.

It is easy to verify that if the objective function f is convex and locally Lipschitz
near x ∈ X then f is semi-convex at x. In such a case, one may expect that the
characterization of the solution set S of (SP) given in Theorem 4.2 (S = S3) can be
rewritten in terms of subdifferentials of f as those in Theorem 3.1. This is true, as
we will see below. We start with an elementary proposition.

Proposition 4.1 Suppose that the objective function f is convex locally Lipschitz
on an open set containing A. Let z be a solution of (SP) and (12) holds for some
λ ∈ R

(T )
+ . Then for any feasible point x ∈ A, it holds

(∃u ∈ ∂f (x) ∩ ∂f (z), 〈u,x − z〉 = 0
) ⇔ (

f ′(x; z − x) ≥ 0
)
.

Moreover, in this case, x is also a solution of (SP).

Proof Suppose that there exists u ∈ ∂f (x)∩ ∂f (z) such that 〈u,x − z〉 = 0. Then u ∈
∂f (x) and 〈u,x − z〉 = 0, and hence, f (z)−f (x) ≥ 〈u, z−x〉 = 0. So, f (z) ≥ f (x),
which proves that x is a solution of (SP). The inequality f ′(x; z− x) ≥ 0 holds by an
elementary calculation.

Conversely, assume that f ′(x; z − x) ≥ 0. Since f is semi-convex at x, we have
f (x + z − x) = f (z) ≥ f (x), which shows that x is also a solution of (SP). On the
other hand, it follows from (12) that there exists u ∈ ∂cf (z) = ∂f (z) such that

−u ∈
∑

t∈T (λ)

λt ∂ft (z) + NC(z), ft (z) = 0, ∀t ∈ T (λ).

By the same argument as in the second part of the proof of Theorem 3.1 we get
u ∈ ∂f (x) and 〈u,x − z〉 = 0. The proof is complete. �
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Due to Proposition 4.1, when f is locally Lipschitz and convex on an open set con-
taining C, the set S3 in Theorem 4.2 is the same as the set S1 defined in Theorem 3.1.
So, Theorem 4.2 can be considered as an extension of Theorem 3.1 to semi-convex
problems.

To conclude this section, we consider the following semi-convex minimization
problem under a cone-constrained and a geometrical set constraint

(SP1) minimize f (x)

subject to g(x) ∈ −K,

x ∈ C.

Here X,C,f are the same as in the first part of this section, Y is a locally convex
Hausdorff topological vector space, K is a closed convex cone in Y , and g : X → Y

is a continuous and K-convex mapping. Let us again denote the solution set and the
feasible set of (SP1) by S and A, respectively. Assume that S �= ∅.

Similar to the last part of Sect. 3, the problem (SP1) can be rewritten in the form
of (SP), say problem (S̃P1), with T = K+ and for each μ ∈ T , fμ is defined by
fμ(x) := 〈μ,g(x)〉.

Suppose that the set cone{⋃μ∈K+ epi(μg)∗ ∪ epi δ∗
C} is weak∗-closed. Applying

Theorem 4.1 and using a similar argument as for Problem (P1), we can conclude that
a point z ∈ A is a minimizer of (SP1) if and only if there exists λ ∈ K+ such that

0 ∈ ∂cf (z) + ∂(λg)(z) + NC(z), λg(z) = 0. (18)

We now give a characterization of the solution set of (SP1).

Corollary 4.1 If z is a solution of (SP1) and (18) holds with λ ∈ K+ then

S = {
x ∈ C | f ′(x; z − x) ≥ 0, λg(x) = 0

}
.

Proof The same as the proof of Corollary 3.2, using Theorem 4.2 instead of Theo-
rem 3.1. �

If, in addition, f is convex on C then, by Proposition 4.1, f ′(x; z − x) ≥ 0 is
equivalent to the fact that there exists u ∈ ∂f (x) ∩ ∂f (z) such that 〈u,x − z〉 = 0 for
any x ∈ A. So, Corollary 4.1 extends Corollary 3.2 to semi-convex problems with
convex constraints.
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