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Abstract. A general quasiequilibrium problem is proposed including, among

others, equilibrium problems, implicit variational inequalities, quasivariational in-

equalities involving multifunctions. Sufficient conditions for the existence of solu-

tions with and without relaxed pseudomonotonicity are established. Even semi-

continuity may not be imposed. These conditions improve several resent results in

the literature.
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1. Introduction

Equilibrium problems, which include as special cases various problems re-

lated to optimization theory such as fixed point problems, coincidence point prob-

lems, Nash equilibria problems, variational inequalities, complementarity prob-

lems, maximization problems, have been studied by many authors, see e.g., Refs.

1-6. A main attention has been paid to sufficient conditions for the existence of

solutions. It is also interested in getting such conditions for more general problem

settings and under weaker assumptions about continuity, monotonicity and com-

pactness.

In the present note we propose a general vector quasiequilibrium problem,

which includes vector equilibrium problems, vector quasivariational inequalities,

quasicomplementarity problems, etc. We establish sufficient conditions for solu-

tion existence with and without relaxed pseudomonotonicity.

In the sequel, if not otherwise specified, let X, Y and Z be real topological

vector spaces, X be Hausdorff and A ⊆ X be a nonempty closed convex subset.

Let C : A → 2Y , K : A → 2X and T : A → 2Z be multifunctions such that
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C(x) is a closed convex cone with int C(x) 6= ∅ and K(x) is nonempty convex,

for each x ∈ A. Let f : T (A) × A × A → Y be a single-valued mapping. The

quasiequilibrium problem under our consideration is of

(QEP) finding x̄ ∈ A
⋂

clK(x̄) such that for each y ∈ K(x̄), there exists

t̄ ∈ T (x̄) satisfying

f(t̄, y, x̄) /∈ int C(x̄).

To motivate the problem setting let us look at several special cases of (QEP).

(a) If K(x) ≡ A and Z = L(X,Y ), the space of linear continuous mappings

of X into Y , then (QEP) coincides with an implicit vector variational inequality

studied in Refs. 7 and 8: find x̄ ∈ A such that for each y ∈ A, there exists t̄ ∈ T (x̄)

satisfying f(t̄, y, x̄) /∈ int C(x̄).

(b) If K(x) ≡ A and T is single-valued, then setting f(T (x), y, x):= h(y, x),

(QEP) becomes the vector equilibrium problem of (considered, e.g., in Refs. 1, 2,

3, 5, and 6)

(EP) finding x̄ ∈ A such that, for each y ∈ A,
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h(y, x̄) /∈ int C(x̄).

(c) If Z = L(X,Y ), f(t, y, x) = (t, x− y), where (t, x) denotes the value of a

linear mapping t at x, then (QEP) reduces to the vector quasivariational inequality

problem of (investigated by many authors)

(QVI) finding x̄ ∈ A
⋂

clK(x̄) such that for each y ∈ K(x̄), there exists

t̄ ∈ T (x̄) satis fying

(t̄, y − x̄) /∈ − int C(x̄).

(d) Let X be a Banach space, Y = R,Z = X∗, C(x) ≡ R+, A be a closed

convex cone, T : A → 2X∗

and S : A → 2A. A quasicomplementarity problem is of

(QCP) finding x̄ ∈ A such that ∀s̄ ∈ K
⋂

S(x̄),∃ t̄ ∈ (−A∗)
⋂

T (x̄) satis-

fying

< t̄, s̄ > = 0,

where < t, s > denotes the value of a linear functional t at s.

Then, setting K(x) := x−A
⋂

S(x)+A and f(t, y, x) :=< t, x−y >, (QEP)
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collapses to (QCP), see Ref. 9.

(e) Consider the maximization problem of

(MP) finding a Pareto maximizer of a mapping J : A → Y,

where Y is ordered by a convex cone C. Then setting C(x) ≡ C,K(x) ≡ A, T (x) =

{x} and f(T (x), y, x) := J(y) − J(x), (QEP) is equivalent to (MP).

Our aim now is to develop sufficient conditions for existence of solutions

to (QEP) under weak assumptions and to derive as consequences several improve-

ments of known results for vector equilibrium problems and vector quasivariational

inequalities.

2. Preliminaries

We recall first some definitions needed in the sequel. Let X and Y be topo-

logical spaces. A multifunction F : X → 2Y is said to be upper semicontinuous

(usc) at x0 ∈ domF := {x ∈ X : F (x) 6= ∅} if for each neighborhood U of F (x0),
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there is a neighborhood N of x0 such that F (N) ⊆ U . F is called usc if F is

usc at each point of domF . In the sequel all properties defined at a point will

be extentded to domains in this way. F is called lower semicontinuous (lsc) at

x0 ∈ domF if for each open subset U satisfying U ∩ F (x0) 6= ∅ there exists a

neighborhood N of x0 such that, for all x ∈ N, U ∩ F (x) 6= ∅. F is said to be

continuous at x ∈ domF if F is both usc and lsc at x. F is termed closed at x ∈

domF if ∀xα → x, ∀yα ∈ F (xα) such that yα → y, then y ∈ F (x). It known that

if F is usc and has closed values, then F is closed.

A multifunction H of a subset A of a topological vector space X into X is said

to be a KKM mapping in A if for each {x1, ..., xn} ⊆ A, one has co{x1, ..., xn} ⊆

⋃n

i=1
H(xi), where co{.} stands for the convex hull.

The main machinary for proving our results is the following well-known

KKM-Fan theorem (Ref. 10).

Theorem 2.1. Assume that X is a topological vector space, A ⊆ X is

nonempty and H : A → 2X is a KKM mapping with closed values. If there is

a subset X0 contained in a compact convex subset of A such that
⋂

x∈X0
H(x) is
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compact, then
⋂

x∈A H(x) 6= ∅.

The following fixed point theorem is a slightly weaker version (suitable for

our use) of Tarafdar’s theorem (Ref. 11), which is equivalent to Theorem 2.1.

Theorem 2.2. Assume that X is a Hausdorff topological vector space,

A ⊆ X is nonempty and convex and ϕ : A → 2A is a multifunction with nonempty

convex values. Assume that

(i) ϕ−1(y) is open in A for each y ∈ A;

(ii) there exists a nonempty subset X0 contained in a compact convex set of

A such that A \
⋃

y∈X0
ϕ−1(y) is compact or empty.

Then, there exists x̂ ∈ A such that x̂ ∈ ϕ(x̂).

The next theorem on fixed points is modified (for our use) from a theorem

in Ref. 12.

Theorem 2.3. Assume that V is a convex set in a Hausdorff topological

vector space and f : V → 2V is a multifunction with convex values. Assume that

(i) V =
⋃

x∈V intf−1(x);
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(ii) there exists a nonempty compact subset D ⊆ V such that for all finite

subsets M ⊆ V , there is a compact convex subset LM of V , containing

M , such that LM\D ⊆
⋃

x∈LM
f−1(x).

Then, there is a fixed point of f in V .

Using Theorem 2.3 we derive the following modification of Theorem 2.1.

Theorem 2.4. Assume that V is a convex set in a Hausdorff topological

vector space and H : V → 2V is a KKM mapping in V with closed values. Assume

further that there exists a nonempty compact subset D ⊆ V such that for all finite

subsets M ⊆ V , there is a compact convex subset LM of V , containing M , such

that

LM\D ⊆
⋃

x∈LM
(V \H(x)). (2)

Then,
⋂

x∈V H(x) 6= ∅.

Proof. Suppose that
⋂

x∈V H(x) = ∅. Defined multifunction g : V →

2V by g(y) = {x ∈ V : y /∈ H(x)}. Then g(y) 6= ∅ ∀y ∈ V , and g−1(x) =

V \H(x). Hence, g−1(x) is open and V =
⋃

x∈V g−1(x). Define further f : V → 2V

by f(x) =cog(x), where co means the convex hull. One has V =
⋃

x∈V f−1(x).
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Moreover, LM\D ⊆
⋃

x∈LM
g−1(x) ⊆

⋃

x∈LM
f−1(x).

By Theorem 2.3 there is x0 ∈ V such that x0 ∈ f(x0). Therefore, one can find

xj ∈ g(x0) and λj ≥ 0, j = 1, ...,m,
∑m

j=1
λj = 1 such that x0 =

∑m

j=1
λjxj. By

the definition of g, x0 /∈ H(xj), j = 1, ...,m. Thus x0 =
∑m

j=1
λjxj /∈

⋃m

j=1
H(xj),

which is impossible, since H is KKM. �

3. Main Results

We propose first a very relaxed quasiconcavity. Let Z,A,C, T and f be as

for problem (QEP). For x ∈ A, the mapping f is said to be 0-level-quasiconcave

with respect to T (x) if for any finite subsets {y1, ..., yn} ⊆ A, and any αi ≥ 0,

i = 1, ..., n, with
∑n

i=1
αi = 1, there exists t ∈ T (x) such that

[f(T (x), yi, x) ⊆ int C(x), i = 1, ..., n]

⇒ [f(t,
∑n

i=1
αiyi, x) ∈ int C(x)].

In the sequel let E := {x ∈ A : x ∈ cl K(x)}. Our first sufficient condition

for the existence of solutions to (QEP) is the following.

Theorem 3.1. Assume for (QEP) the existence of a (single-valued) mapping

g : T (A) × A × A → Y such that
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(i) for all x, y ∈ A, if g(T (x), y, x) 6⊆ int C(x), then f(T (x), y, x) 6⊆ int C(x);

(ii) g(., ., x) is 0-level-quasiconcave with respect to T (x) and g(t, x, x) 6∈

int C(x) for all x ∈ A and all t ∈ T (x) ;

(iii) for each y ∈ A, {x ∈ A : f(T (x), y, x) 6⊆ int C(x)} is closed;

(iv) A ∩ K(x) 6= ∅ for all x ∈ A , K−1(y) is open in A for all y ∈ A and

cl K(.) is usc;

(v) there exist a nonempty compact subset D of A and a subset X0 of a

compact convex subset of A such that ∀x ∈ A\D, ∃yx ∈ X0 ∩ K(x),

f(T (x), yx, x) ⊆ int C(x).

Then, (QEP) has a solution.

Proof. For x, y ∈ A and i = 1, 2 set

P1(x) := { z ∈ A : f(T (x), z, x) ⊆ int C(x)},

P2(x) := { z ∈ A : g(T (x), z, x) ⊆ int C(x)},

Φi(x) :=

{

K(x) ∩ Pi(x) if x ∈ E,

A ∩ K(x) if x ∈ A\E,

Qi(y) := A\Φ−1

i (y).

Observe that, by (ii), x /∈ P2(x) and then y ∈ Q2(y) for each y ∈ A, by the

definition of Q2(y). Furthermore we claim that Q2(.) is a KKM mapping in A.
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Indeed, suppose there is a convex combination x̂ :=
∑n

j=1
αjyj in A such that

x̂ 6∈
⋃n

j=1
Q2(yj). Then, x̂ 6∈ Q2(yj), i.e., yj ∈ Φ2(x̂) for j = 1, ..., n. If x̂ ∈ E,

one has yj ∈ P2(x̂), i.e., g(T (x̂), yj, x̂) ⊆ int C(x̂) for j = 1, ..., n. In virtue of

the 0-level-quasiconcavity with respect to T (x̂) of g(., ., x̂), there is t̂ ∈ T (x̂) such

that g(t̂, x̂, x̂) ∈ int C(x̂), contradicting (ii). On the other hand, if x̂ ∈ A\E (i.e.,

x̂ 6∈ cl K(x̂)), then yj ∈ Φ2(x̂) = A∩K(x̂), j = 1, ..., n. So x̂ ∈ A∩K(x̂), another

contradiction. Thus, Q2 must be KKM. By (i), for x ∈ A, one has P1(x) ⊆ P2(x)

and then Φ1(x) ⊆ Φ2(x). Hence, Q2(y) ⊆ Q1(y) for all y ∈ A, which results in

that Q1(.) is also KKM.

Next we verify the closedness of Q1(y), ∀y ∈ A. One has

Φ−1

1 (y) = {x ∈ E : y ∈ K(x) ∩ P1(x)} ∪ {x ∈ A\E : y ∈ K(x)}

= {x ∈ E : x ∈ K−1(y) ∩ P−1

1 (y)} ∪ {x ∈ A\E : x ∈ K−1(y)}

= [E ∩ K−1(y) ∩ P−1

1 (y)] ∪ [(A\E) ∩ K−1(y)]

= [(A\E) ∪ P−1

1 (y)] ∩ K−1(y).

Therefore,

Q1(y) = A\{[(A\E) ∪ P−1

1 (y)] ∩ K−1(y)}

= {A\[(A\E) ∪ P−1

1 (y)]} ∪ (A\K−1(y)]

= [E ∩ (A\P−1

1 (y))] ∪ (A\K−1(y)). (1)
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Since A ∩ K(x) 6= ∅ ,∀x ∈ A, we have
⋃

y∈A K−1(y) = A. Theorem 2.2 in turn

assures that K(.) has a fixed point in A (hence E 6= ∅). Indeed, only (ii) of

Theorem 2.2 is to be checked. By assumption (v),

A\D ⊆
⋃

x∈X0

K−1(x) ⊆ A

and then, A\
⋃

x∈X0
K−1(x) ⊆ D and is compact, i.e. (ii) of Theorem 2.2 is

satisfied. Furthermore, since cl K(.) is usc and has closed values, cl K(.) is closed.

Hence, E is closed. We have also

A\P−1

1 (y) = {x ∈ A : y 6∈ P1(x)}

= {x ∈ A : f(T (x), y, x) 6⊆ int C(x)},

which is closed by (iii). It follows from (1) that Q1(y) is closed. By assumption

(v), ∀x ∈ A\D, ∃yx ∈ X0 such that yx ∈ Φ1(x). Therefore,

A\D ⊆
⋃

x∈X0

Φ−1

1 (x) ⊆ A.

Hence, A\
⋃

x∈X0
Φ−1

1 (x) ⊆ D, i.e.,
⋂

x∈X0
A\Φ−1

1 (x) ⊆ D and then
⋂

x∈X0
Q1(x)

is compact. Applying Theorem 2.1 one obtains a point x̄ such that

x̄ ∈
⋂

y∈A

Q1(y) = A\
⋃

y∈A

Φ−1

1 (y).
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So, x̄ 6∈ Φ−1

1 (y), ∀y ∈ A, i.e., Φ1(x̄) = ∅. If x̄ ∈ A\E, then, Φ1(x̄) = A∩K(x̄), con-

tradicting (iv). In the remaining case, x̄ ∈ E, one has ∅ = Φ1(x̄) = K(x̄)∩P1(x̄).

Thus, for all y ∈ K(x̄), y 6∈ P1(x̄), i.e., f(T (x̄), y, x̄) 6⊆ int C(x̄), which means that x̄

is a solution of (QEP). �

Remark 3.1

(a) Apart from (ii) and (iv), which have clear meanings, we can explain the

other assumptions as follows. (i) is a kind of relaxed monotonicity. It may be said

to be a pseudomonotonicity of f with respect to g. (iii) defines a kind of lower

semicontinuity of f(T (.), y, .) with respect to moving cone C(.). (v) is a coercivity

condition.

(b) If K(x) ≡ A and Z = L(X,Y ), then (QEP) reduces to the implicit vec-

tor variational inequality considered in Refs. 7 and 8. In this case Theorem 3.1 is

different from Theorem 3.1 in Refs. 7 and 8. However, we can observe that our

theorem avoids strict continuity assumptions for mapping f, needed in Refs. 7 and

8.
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(c) Theorem 3.1 is still valid if the coercivity assumption (v) is replaced by

(v’) there are a compact subset D of A and x0 ∈ A such that, ∀x ∈ A\D, x0 ∈

K(x) and g(T (x), x0, x)⊆ int C(x).

So, if K(x) ≡ A and T is single-valued, in nature Theorem 3.1 becomes the main

result (Theorem 2.1) of Ref. 14, but with (ii) and (v) being slightly weaker than

the corresponding assumptions in Ref. 14.

(d) Theorem 3.1 is also in forte if we replace (i) and (ii) respectively by the

following (i’) and(ii’):

(i’) ∀x, y ∈ A, if g(T (x), y, x) 6⊆C(x), then f(T (x), y, x) 6⊆ int C(x);

(ii’) ∀{y1, ..., yn} ⊆ A, n ≥ 2, ∀x̄ ∈ co{y1, ..., yn}, x̄ 6= yi, i = 1, ..., n, ∃j ∈

{1, ..., n}, ∀x ∈ A, g(T (x̄), yj, x̄) 6⊆ C(x̄) and f(T (x), x, x) 6⊆ C(x).

Indeed, in the proof we modify P2(x) as follows

P2(x) := {y ∈ A : g(T (x), y, x) ⊆ C(x)}\{x}.

Then, all what we obtained before from (i) and (ii), namely the fact that Q2(.) is

KKM and that P1(x) ⊆ P2(x), ∀x ∈ A, can be derived from (i’) and (ii’).

If Y = R, C(x) ≡ R+ and K(x) ≡ A, Theorem 3.1, with (i’) and (ii’), is
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an improvement of Theorem 3.2 of Ref. 3 in the sense that in (v) D needs not be

convex and x0 needs not be fixed, but flexible in a subset X0.

Assumptions (i) and (i’) of Theorem 3.1 about a kind of relaxed pseudomono-

tonicity are commonly wanted to be avoided. The following result gets rid of this

assumption.

Theorem 3.2. Assume for (QEP) that (iv) and (v) of Theorem 3.1 are

satisfied. Assume also the following conditions

(ii”) this is (ii) with mapping g replaced by f ;

(iii’) if x, y ∈ A, xα → x, xα ∈ A and tα ∈ T (xα), then there are t ∈ T (x), u

∈ C(x) + f(t, y, x) and subnets xβ and tβ such that f(tβ, y, xβ) → u;

(vi) Y \ int C(.) is closed.

Then, (QEP) has a solution.

Proof. For x, y ∈A, let P1(x), Φ1(x) and Q1(x) be as in the proof of The-

orem 3.1. As for Theorem 3.1, we have (1). We have also the nonemptiness and

closedness of E. To see the closedness of A\P−1

1 (y) let xα ∈ A\P−1

1 (y), xα → x̂.

Then, y 6∈ P1(xα), i.e., there exists tα ∈ T (xα), f(tα, y, xα) 6∈ int C(xα). By (iii’)

there are t ∈ T (x̂), u ∈ C(x̂) + f(t, y, x̂) and subnets xβ and tβ ∈ T (xβ) such that

f(tβ, y, xβ) → u. It follows from (vi) that u ∈ Y \ int C(x̂). One has
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f(t, y, x̂) = u + (f(t, y, x̂) − u) ∈ Y \ int C(x̂) − C(x̂)

= Y \ int C(x̂),

i.e., y 6∈ P1(x̂). Hence, x̂ ∈ A\P−1

1 (y), showing the required closedness. Thus,

looking at (1) one sees that Q1(y) is closed, ∀y ∈ A. Similarly as for Theorem 3.1,

we have also that
⋂

x∈X0
Q1(x) is compact.

Next we verify that Q1(.) is KKM in A. Suppose the existence of a con-

vex combination x∗ :=
∑n

j=1
αjyj in A such that x∗ 6∈

⋃n

j=1
Q1(yj). Then,

yj ∈ Φ1(x
∗), j = 1, ..., n. If x∗ ∈ E, then yj ∈ P1(x

∗), i.e., f(T (x∗), yj, x
∗) ⊆

int C(x∗). Consequently, the quasiconcavity in (ii”) gives a t ∈ T (x∗) such that

f(t, x∗, x∗) ∈ int C(x∗), a contradiction . Now if x∗ ∈ A\E, i.e., x∗ 6∈ cl K(x∗),

then yj ∈ A ∩K(x∗), and hence x∗ ∈ A ∩K(x∗), another contradiction. Thus, Q1

is KKM. By virtue of Theorem 2.1, there exists x̄ ∈
⋂

y∈A Q1(y) and, similarly as

in the proof of Theorem 3.1, x̄ is a solution of (QEP). �

Remark 3.2. In Ref. 15 a quasiequilibrium problem slightly different from

our (QEP) is studied and several existence results different from Theorems 3.1

and 3.2 are obtained. For the special case of (QEP), where Z = L(X,Y ) and

K(x) ≡ A, our Theorem 3.2 is different from Theorem 3.2 in Ref. 8. However, our

assumption (iii’) is weaker than the corresponding continuity assumption in Ref. 8.
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Moreover, if K(x) ≡ A and T is single-valued, (QEP) collapses to the equilibrium

problem considered by many authors. Theorem 3.2 contains improvements when

compared with several known results. The 0-level-quasiconcavity in (ii”) is weaker

than concavity used in Ref. 5.

The following example gives a case where our Theorem 3.2 can be applied

even when T is neither usc nor lsc and f is discontinuous (so the theorems in Refs.

7 and 8 cannot used).

Example 3.1. Let X = Y = Z = R, A = [0, 1], K(x) ≡ [0, 1], C(x) ≡ R+,

T (x) =

{

[−2,−1.5] if x = 0.5,

[−1,−0.5] otherwise,

f(t, y, x) =

{

2t if x = 0.5,

t otherwise.

All, but assumption (iii’), are clearly satisfied. We check (iii’). If x 6= 0.5, y ∈ A

is arbitrary, xn → x, xn 6= 0.5 and tn ∈ T (xn) = [−1,−0.5], then there are

t ∈ [−1,−0.5] = T (x) and a subsequence tnk
such that tnk

→ t. Taking u = t ∈

C(x) + f(t, y, x) we see that f(tnk
, y, xnk

) = tnk
→ u.

Now assume that x = 0.5, y ∈ A is arbitrary, xn → x and tn ∈ T (xn). Since

for (iii’) we have to find required subsequence xnk
, we have to consider only two

possibilities.

If xn ≡ 0.5, then tn ∈ [−2,−1.5] and there are t∗ ∈ [−2,−1.5] and tnk
such

18



that tnk
→ t∗. Taking t = −2 and u = 2t∗ we see that (iii’) is satisfied.

If xn 6= 0.5, ∀n, then tn ∈ [−1,−0.5] and there are t∗∗ ∈ [−1,−0.5] and tnk

such that tnk
→ t∗∗. Choosing t = −2 and u = t∗∗ we see also that (iii’) is fulfilled.

Thus, Theorem 3.2 can be applied.

The next example shows that assumption (ii”) of Theorem 3.2 is essential.

Example 3.2. Let X,Y, Z,A,K and C(x) be as in Example 3.1, T (x) =

[0, 1] and

f(t, y, x) =

{

−1 if y = 0.5,

1 otherwise.

It is obvious that in this case (QEP) do not have solutions and all assumptions

of Theorem 3.2, but (ii”), are fulfilled. To see that (ii”) is violated let x be arbi-

trary, y1 = 0, y2 = 1, α1 = α2 = 0.5. Then f(T (x), yi, x) = {1} ⊆ int C(x) but

f(T (x), α1y1 + α2y2, x) = {−1}, which does not meet int C(x).

We now modify Theorem 3.1 to include some main results in Refs. 7 and 8.

Theorem 3.3. Assume (i)-(iv) of Theorem 3.1 and replace assumption (v)
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there by

(v”) there exists a nonempty compact subset D ⊆ A such that for all finite

subsets M ⊆ A, there is a compact convex subset LM of A, containing

M , such that ∀x ∈ LM\D, ∃yx ∈ LM , yx ∈ K(x) and f(T (x), yx, x) ⊆

int C(x).

Then, (QEP) has a solution.

Proof. We define Pi, Φi and Qi, i = 1, 2, and argue as for Theorem 3.1 to

see that Q1 is KKM and has closed values. To apply Theorem 2.4 instead of The-

orem 2.1 we verify assumption (2) of Theorem 2.4. By (v”), ∀x ∈ LM\D, ∃yx ∈

Φ1(x)
⋂

LM . Hence x ∈ Φ−1

1 (yx), i.e. x ∈ A\Q1(yx). Thus, x ∈
⋃

y∈LM
A\Q1(y),

i.e., (2) is satisfied. Then, by using Theorem 2.4 in the same way as employing

Theorem 2.1 for Theorem 3.1 we complete the proof. �

Corollary 3.1. Assume (ii”) of Theorem 3.2, (iii) and (iv) of Theorem 3.1

and (v”) of Theorem 3.3. Then (QEP) has solutions.

Proof. Apply Theorem 3.3 with g ≡ f . �

Corollary 3.1 improves Theorem 3.1 of Ref. 7 and Theorem 3.1 of Ref. 8 by

getting rid of many strict assumptions on continuity, compactness, pseudomono-
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tonicity and concavacity. For example, our assumption (iii) can be satisfied even

when f is not continuous. To see this take X = Y = Z = R, A = [0, 1], C(x) ≡ R+,

T (x) ≡ [0, 1] and

f(t, y, x) =

{

−1 if t 6= 0,

−0.5 if t = 0.

Then {x ∈ A : f(T (x), y, x) * R+} = [0, 1] is closed but f is not continuous.

It is not hard to see that for this example all assumptions of Theorem 3.1

are also fulfilled.

Remark 3.3. After submitting the paper we observed Refs. 15 - 20 with re-

cent related results on equilibrium problems. Ref. 15 considers a similar problem

setting but requires some assumptions different from ours, e.g. K has compact

values, f is continuous and properly quasiconvex (in the second variable) and

C(x) ≡ C whose polar cone has a weak* compact base (Theorem 1). Refs. 16 - 20

consider cases where f is multivalued. The problem setting in Refs. 16 and 20 is

similar to ours but K(x) ≡ A (i.e. an equilibrium problem, not quasiequilibrium).

Refs. 17 and 18 also investigate equilibrium problems, but here f has two vari-

ables (not three and not include multifunction T ). In Ref. 19 a quasiequilibrium

problem with f having two variables is studied. In each of Refs. 16 - 20 there are
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several assumptions different from that of the present paper.

4. Applications to Quasivariational Inequalities

As aforementioned in the introduction, in the special case, where Z = L(X,Y )

and f(t, y, x) = (t, h(x) − y) with h : A → A being a given mapping, (QEP) col-

lapses to the quasivariational inequality

(QVI), find x̄ ∈ A∩ cl K(x̄) such that for each y ∈ K(x̄), there exists t̄ ∈ T (x̄)

such that

(t̄, y − h(x̄)) 6∈ − int C(x̄).

In this special case the 0-level-quasiconcavity with respect to T (x) of f(., ., x) is ob-

vious. Rewriting Theorem 3.1 and 3.2 for this case we get the following new results.

Corollary 4.1. Assume that

(ii) (T (x), h(x) − x) ⊆ Y \−int C(x), ∀x ∈ A;

(iii) for each y ∈ A, the set {x ∈ A : (T (x), h(x) − y) 6⊆ int C(x)} is closed;

(iv) A ∩ K(x) 6= ∅ for each x ∈ A, K−1(y) is open in A for each y ∈ A and

cl K(.) is usc;

(v) there exists a nonempty closed compact subset D of A and a subset X0
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of a compact convex subset of A such that ∀x ∈ A\D, ∃yx ∈ X0 ∩K(x),

(T (x), g(x) − yx) ⊆ int C(x).

Then, (QVI) has a solution.

Corollary 4.2. Assume (ii), (iv) and (v) as in Corollary 4.1. Assume further

that

(iii’) if x, y ∈ A, xα → x, xα ∈ A and tα ∈ T (xα), ∃t ∈ T (x), ∃u ∈ C(x) +

(t, h(x) − y), ∃xβ, ∃tβ (subnets), (tβ, h(xβ) − y) → u;

(vi) Y \ int C(.) is closed.

Then, (QVI) has a solution.

Observe that Corollary 4.2 is in nature an extention of Theorem 2.1 of Ref. 9

to the case where A being noncompact. Assumption (ii) of Corollary 4.2 is slightly

more strict but (iii’) is weaker than the corresponding assumption in Ref. 9.
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