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Abstract. In the present paper we prove an integral
representation for multiply self-decomposable processes
which is similar to a known representation of Rajput,
B.S. and Rosinski J. [3] for Gaussian , stable and infin-
itely divisible processes .

I.Introduction, notation and prelimilaries.

The classical spectral representation theory for Gauss-
ian processes has been widely studied and applied in
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various branches of sciences such as prediction and fil-
tration problems, signal transmissions, biological mod-
els, quantum mechanics, ... It is then a natural idea
to develop the theory for wider classes of processes
containing stable processes, semi-stable processes and
infinitely divisible (i.d.) processes.In the sequel, we
study the above problem for multiply self-decomposable
(shortly, m.s.d.) real-valued processes only although
our method as well as results are true for general sepa-
rable Banach spacesses.

We say that a stochastic process Xt, t ≥ 0, is a Lévy
process (cf. Sato [4]), if

(i) X(0) = 0, (P.1);
(ii) It is an independent increment process;
(iii) It is temporally homogeneous;
(iv) With P.1 its realizations are CADLAG, i.e.

continuous from the right having the left limits.
Let P denote the class of all p.m.’s on the σ-field

B of Borel subsets of the real line R equipped with the
weak convergence. Given a positive number c and a
p.m. µ ∈ P let Tcµ denote a p.m. given by

(1) (Tcµ)(E) = µ({c−1x : x ∈ E}),

where E ∈ B.
Suppose that X1, X2, ... is a sequence of real-valued

independent r.v.’s and {an}, {bn} are sequences of real
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numbers such that an > 0, n = 1, 2, ... and the triangu-
lar array Xn,k := anXk obey the uniformly asymptoti-
cally negligible (UAN), that is Xn,k → 0 uniformly in k
in probability. The class L = L1 of possible shift limit
laws µ (distributions) of the sum Sn = Σn

k=1Xn,k is
non-empty and consists of all self-decomposable p.m.’s
on R (cf. Loe’ve [2], p. 323).

Recall that a p.m. µ ∈ P is called self-decomposable
(shortly, s.d.), if for every c ∈ (0, 1) there exists a p.m.
µc such that

(2) µ = (Tcµ) ∗ µc,

where ∗ denotes the ordinary convolution of p.m.’s.

It is known ([2],p. 323) that if µ is s.d. then µ and µc

are both i.d. Let L0 denote the class of all i.d.p.m.’s
on R. The classes Ln, n = 1, 2, ... of n-times s.d.p.m.’s
were first introduced and studied by Urbanik [7] and
then studied further by many other authors (cf., for ex-
ample, [1,5,6]).They are defined recurssively as follows:
A p.m. µ ∈ Ln, n = 2, 3, ... if and only if µ ∈ L1 and
for each c ∈ (0, 1) the component µc in (1.2) belongs to
Ln−1.

It has been proved by Thu ([6], Proposition 1.1 ) that
a p.m. µ ∈ Ln, n = 1, 2, ..., if and only if, for every
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c ∈ (0, 1) there exists a p.m. ν := µc,n ∈ L0 such that
the following equality holds:

(3) µ = ∗∞k=1(Tckν)∗rk,n ,

where the power is taken in the convolution sense and,
for n=1,2, ... ; k=0,1,2,... we put

(4) rk,n =
(

n + k − 1
k

)
.

The formulas (3) and (4) lead to the following interpo-
lation of classes Ln ( cf.Thu [6]):

For each α > 0 we put

(5)
(

α

k

)
=

{
1 k = 0,

α(α− 1)...(α− k + 1)/k! k = 1, 2, ...

and introduce the class α-times s.d. p.m.’s as the fol-
lowing:

1. Definition (cf.Thu [6]). A p.m. µ ∈ Lα, α > 0,
if and only if, for every c ∈ (0, 1) there exists a p.m.
ν := µc,α ∈ L0 such that the following equality holds:

(6) µ = ∗∞k=1(Tckν)∗rk,α ,

where, the power is taken in the convolution sense and,
for α > 0; k = 0, 1, 2, ... we put

(7) rk,α =
(

α + k − 1
k

)
.
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It should be noted that the infinite convolution (6) is
weakly convergent if and only if

(8)
∫ ∞

−∞
logα(1 + |x|)ν(dx) < ∞.

The above definition is equivalent to the following two
definitions:

1.Definition (cf.Thu [6]). A p.m. µ ∈ Lα, α > 0
if and only if, for every c ∈ (0, 1) there exists a p.m.
ν := µc,α ∈ L0 such that the condition (5) is satisfied
and µ is the distribution of the following random series

(9) Σ∞k=0Zkck,

where Zk, k = 0, 2, 3, ... are independent r.v.’s with dis-
tributions ν∗rk,α , respectively.

1”. Definition (cf.Hong [1]). A p.m. µ ∈ Lα, α > 0
if and only if there exists a Lévery process (X(t)) such
that

(10) µ
d=

∫ ∞

0

exp(t1/α)X(dt),

where the Lévy process (X(t)) must satisfy the condition

Elogα(1 + |X(1)| < ∞.

It should be noted that for any 0 < α < β we have Lβ ⊂
Lα and the intersection L∞ of all classes Lα, α >
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0 is non-void, since it contains Gaussian and stable
p.m.’s. The p.s.’s in the class L∞ are called completely
s.d., or, mixed stable ( cf. Thu [5,6], Urbanik [7]).

In the sequel we shall need the following represen-
tation of i.d. and m.s.d.p.m.’s:

2. Theorem (cf.Loéve [2])A p.m. µ is i.d. if and only
if its characteristic function µ̂(t) is of the unique form:

(11)
{ −logµ̂(t) = iat + σ2t2

−
∫∞
−∞(eitx − 1− iτ(x))M(dx),

where a, σ2 are real constants; M is a Lévy measure on
R characterized by the property that M(0) = 0 , M is
finite ouside of very neighberhood of the origin and∫ 1

1

x2

1 + x2
M(dx) < ∞;

the function τ(x) is defined by

(12) τ(x) =


x x ∈ I;
1 x > 1;
−1 x < −1,

I being the closed unit interval [-1,1].
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3. Theorem (cf.Thu [6], Theorem 3.2) A p.m. µ ∈
Lα, α > 0 if and only if its characteristic function µ̂(t)
is of the unique form

(13)
{ −logµ̂(t) = iat + σ2t2−∫∞

−∞ vα(x)(
∫∞
0

k(e−ux, t)uα−1du)m(dx),

where m is a finite measure on R vanishing at the ori-
gin; a, σ2 are real constants; the weight function vα(x)
and the kernel k(y, t) are defined by

(14) v−1
α (x) =

∫ ∞

0

e−2tx2

1 + e−2tx2
tα−1dt

and
k(y, t) = exp(ity − 1− iτ(y)),

where the function τ(y) is given by the formula (12).
Consequently, the Lévy measure M of µ is of the form
(15)

M(A) =
∫ ∞

−∞
vα(x)(

∫ ∞

0

χA(e−ux)uα−1du)m(dx),

where A is a Borel subset of the real line separated from
0.

4. Theorem (cf.Thu [5]) A p.m. µ is mixed-stable (
i.e. µ ∈ L∞) if and only if its characteristic function
µ̂(t) is of the unique form

(16)

{
−logµ̂(t) = iat + σ2t2

−
∫ 1

−1

∫∞
0

q(x, t)h(x)ν(du),
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where the constants a, σ2 are the same as in the above
theorems and ν is a finite measure on the open interval
(-1,1),

(17)


q(x, t) =

−|tx|2|x| − itanπ|x|signxt2|x|+1 2|x| 6= 1
−|x|t− 2i

π txlog|tx| 2|x| = 1.

Consequently, the Lévy measure of µ is given by

(18) M(A) =
∫ 1

−1

∫ ∞

0

χA(tx)
dt

t2|x|+ 1
h(x)ν(dx)

2. Definition Let T be a parameter set Z of all integers
or R of all real numbers. A stochastic process Xt, t ∈ T
is said to be i.d., stable, mixed-stable, α − s.d., if for
any t1, t2, ..., tn ∈ T and λ1, λ2, ..., λn, n = 1, 2, ...
the r.v. Σn

1λjXtj is i.d.,stable,mixed-stable, α − s.d,
respectively.

3. Definition Let Λ = {Λ(A) : A ∈ S}be a real sto-
chastic process defined on a probability space (Ω,F ,P),
where S stands for a σ−ring of subsets of an arbitrary
non-empty set S satisfying the following condition :

There exists an increasing sequence Sn, n = 1, 2, ...
of sets in S with

⋂
n Sn = S.
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We call Λ to be an independently scattered random mea-
sure ( or r.m. for short), if, for every sequence {An}
of disjoint sets in S, the random variables Λ(An), n =
1, 2, ... are independent, and , if ∪nAn belongs to S,
then we also have

Λ(∪nAn) = ΣnΛ(An) a.s.,

where the series is assumed to be convergent a.s. In
addition, if for every A ∈ S the distribution of Λ(A) is
i.d., stable, mixed-stable, m.s.d. respectively, then we
say that Λ is an i.d., stable,mixed stable, α− s.d.r.m.

By virtue of Theorem 2 each random variable Λ(A), A ∈
S has the characteristic function

(19)

{
−logEexp(itΛ(A) = itν0(A) + 1

2 t2ν1(A)

−
∫∞
−∞(eitx − 1− itτ(x))FA(dx),

where t ∈ R, A ∈ S and −∞ < v0(A) < ∞, 0 6
v1(A) < ∞ and FA is a Lévy measure on R. More-
over, v0 is a signed measure , v1 a measure and FA a
Lévy measure.

The above representation implies the following
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5.Theorem (cf.Raiput, Rosinski [3], Proposition 2.1)
The characteristic function (19) can be rewritten in the
unique form:

(20) Eexp(itΛ(A)) = exp(
∫

A

K(t, s)λ(ds)),

, where t ∈ R, A ∈ S and

(21)
{

K(t, s) = ita(s)− 1/2t2σ2(s)
+

∫
A
(eitx − 1− itτ(x))ρ(s, dx),

with

(22) a(s) =
dv0

dλ
(s),

and

(23) σ2(s) =
dv1

dλ
(s)

and ρ is given by Lemma 2.3 in [3]. Moreover, we have

|a(s)|+
∫

R
min{1, x2}ρ(s, dx) = 1 a.e.[λ].

4.Definition(cf.Urbanik and Woyczynski [8])
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(a) If f is a simple function on S, f = ΣjxjχAj
, Aj ∈ S

then we put, for each A ∈ σ(S)∫
A

fdΛ = Σjλ(A ∩Aj);

(b) A measurable function f : (S, σ(S)) → (R,B(R) is
said to be Λ−integrable if there exists a sequence {fn}
of simple functions as defined in (a) such that

(i) fn → f a.e.[λ],
(ii) For every A ∈ σ(S), the sequence {

∫
A

fndΛ}
converges in prob., as n →∞. if f is Λ−integrable,
then we put

{
∫

A

fdΛ = P − limn→∞

∫
A

fndΛ,

where {fn} satisfies (i) and (ii).

Now, combining Theorems 3,4,5 we get the following:

6.Theorem Given α > 0 let Λ(A), A ∈ S be a α −
s.d.r.m. Then, the characteristic function of Λ(A) is of
the unique form (20) where

(24)
{

K(t, s) = ita(s)− 1/2t2σ2(s)
+

∫
A
(eitx − 1− itτ(x))ρ(s, dx),

with

(25) a(s) =
dv0

dλ
(s),
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and

(26) σ2(s) =
dv1

dλ
(s)

and ρ is given by Lemma 2.3 in [3]. Moreover, we have

|a(s)|+
∫

R
min{1, x2}ρ(s, dx) = 1 a.e.[λ].

Proof By virtue of (13) it follows that for any A ∈
S and t ∈ R Λ(A) has the representation

(27)

{
−logEexp(itΛ(A)) = itν0(A) + 1

2 t2ν1(A)−∫∞
−∞ vα(x)(

∫∞
0

k(e−ux, t)uα−1du)m(A, dx),

which, by a similar argument of Proposition 2.1 in [3],
implies that there exists a unique finite measure ν on
σ(S)× B(R) such that

ν(A×B) = m(A,B), for any A ∈ S, B ∈ B(R).

Moreover, for every A ∈ σ(S) we have ν(A, {0}) = 0.

Now,we are in the position to present the following the-
orem whose proof is a simple combination of Theorem
6 and the Komogorov extension theorem and Threorem
5.2 in [3].
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7.Theorem Given 0 < α 6 ∞ let {Xt : t ∈ T} be
an α − s.d. stochastic process defined on a probability
space (Ω

′
,P ′

). Then there exists an α − s.d.r.m., say
Λ, defined on the probability space (Ω,P) such that(

Ω = Ω
′
× [0, 1],P = P

′
× Leb

)
,

Leb being the Lebesgue measure on [0,1] and

{Xt : t ∈ T} = {
∫

S
ft(s)dΛ(s) : t ∈ T},

where ft(s) : t ∈ T, s ∈ S denote some measurable
functions on S.
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