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Abstract: We consider symmetric multivalued vector quasiequilibrium prob-

lems in topological vector spaces. Sufficient conditions for the solution existence are

established under relaxed assumptions, which are shown by examples to be essential,

easy to check and more advantageous than recent known results. Some typical ap-

plications are given for particular cases as lower and upper bounded quasiequilibrium

problems and coincidence point problems.
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1 Introduction

The equilibrium problem was proposed in Blum and Oettli (1994) and has been

intensively studied so far. This problem setting proves to be general and conve-

nient for applying various mathematical tools in investigation. It contains many

optimization− related problems such as variational inequalities, complementarity

problems, vector optimization, fixed point and coincidence point problems, the

Nash equilibrium problem, etc. As usual for various fields of research, the solu-

tion existence is one of the most important issues and so is the aim of numerous

papers (see e.g., Bianchi et al., 1997; Ansari et al., 2001; Lin and Chen, 2005;

Hai and Khanh, in press) and the references therein. To include more practical

problems in a unified framework, a number of extended problem settings have

been considered: variational inclusion problems (Luc and Tan, 2004; Tan, 2004;

Hai and Khanh, 2006 in press), systems of equilibrium or quasiequilibrium prob-

lems (Ansari et al., 2000 and 2002; Hai and Khanh, 2006; Lin, 2006), systems

of variational inclusion problems (Hai and Khanh, in press). Noor and Oettli

(1994) introduced a symmetric quasiequilibrium problem, which proved to be

more suitable in modeling several practical situations. In Fu (2003) this result

was extended from the scalar case to the vector case in Hausdorff locally convex

spaces. Farajzadeh (in press) supplied a further extension to Hausdorff topologi-
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cal vector spaces with several assumptions being relaxed.

Our goal is extending the problem considered in Noor and Oettli (1994); Fu

(2003) and Farajzadeh (in press) from the single−valued case to the multivalued

case, in Hausdorff topological vector spaces. Since we use mathematical tools

other than that employed in Noor and Oettli (1994); Fu (2003) and Farajzadeh

(in press), the results here for this more general problems are different from the

ones in these references, when applied to their particular cases. However, our

several assumptions are more relaxed than the corresponding ones in Noor and

Oettli (1994); Fu (2003) and Farajzadeh (in press).

In the sequel, if not otherwise specified, let X and Y be Hausdorff topologi-

cal vector spaces, Z be a topological vector space. Let K, D and C be nonempty

closed convex subsets of X, Y and Z, respectively, with the interior intC being

nonempty. Let S, A : K×D → 2K , T, B : K×D → 2D, F : K×D×K → 2Z and

G : D ×K ×D → 2Z be multivalued mappings , with S(x, y) and T (x, y) being

nonempty and convex, ∀(x, y) ∈ K × D. The two symmetric quasiequilibrium

problems under our consideration are as follows

(SVQEP1) find (x̄, ȳ) ∈ K ×D such that x̄ ∈ S(x̄, ȳ), ȳ ∈ T (x̄, ȳ) and

F (x, ȳ, x∗) ∩ (Y \ − intC) 6= ∅,∀x ∈ S(x̄, ȳ),∀x∗ ∈ A(x̄, ȳ),

G(y, x̄, y∗) ∩ (Y \ − intC) 6= ∅,∀y ∈ T (x̄, ȳ),∀y∗ ∈ B(x̄, ȳ);
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(SVQEP2) find (x̄, ȳ) ∈ K ×D such that x̄ ∈ S(x̄, ȳ), ȳ ∈ T (x̄, ȳ) and

F (x, ȳ, x∗) ⊆ Y \ − intC,∀x ∈ S(x̄, ȳ),∀x∗ ∈ A(x̄, ȳ),

G(y, x̄, y∗) ⊆ Y \ − intC,∀y ∈ T (x̄, ȳ),∀y∗ ∈ B(x̄, ȳ).

If F and G are single−valued, C is a closed convex cone with intC 6= ∅ and

A(x, y) = {x} and B(x, y) = {y}, for all (x, y) ∈ K ×D, then our two problems

collapse to problem (SVQEP) investigated in Farajzadeh (in press). If in addition

X and Y are locally convex and C and D are compact, the two problems become

problem (SVQEP) of Fu (2003). If furthermore Z = R and C = R+, these prob-

lems coincide with the scalar problem studied in Noor and Oettli (1994).

If Y ≡ {y} ≡ {0}, G(y, x̄, y∗) ≡ C, B(x, y) ≡ {y} and T (x, y) ≡ {y}

then these problems are reduced to multivalued vector quasiequilibrium prob-

lems considered by many authors. If, more specifically, Y ≡ {y} ≡ {0}, A(x, y) =

S(x, y),∀x ∈ K, and F (x, y, x∗) =
(
H(x), x∗ − x

)
where H : X → 2L(X,Z) and

(h, x) is the value of linear mapping h at x, then the two problems become a

multivalued vector quasivariational inequality.

The layout of this paper is as follows. In the remaining part of this sec-

tion we recall some definitions and preliminaries needed in the sequel. Section

2 is devoted to the main existence results for our problems. Examples are also

provided here to see that the imposed assumptions are essential, relaxed and not
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hard to be checked, and hence the results are more advantageous than that of

recent works in many situations. In Section 3, applications of the main results in

some typical situations are presented.

Recall first some notions. Let X and Y be topological spaces and G : X →

2Y be a multifunction. G is called upper semicontinuous (usc) at x0 if for each

open set U ⊇ G(x0), there is a neighborhood N of x0 such that U ⊇ G(N). We

say that G satisfies a certain property in a subset A ⊆ X if G satisfies it at every

point of A. If A = X we omit “in X” in the statement.

A multifunction H of a subset A of a topological vector space X into X

is said to be KKM in A if for each {x1, ..., xn} ⊆ A, one has co{x1, ..., xn} ⊆

⋃n
i=1 H(xi), where co{.} stands for the convex hull.

The main machinery for proving existence results in this paper is the fol-

lowing well-known KKM-Fan Theorem.

LEMMA 1.1 (Ky Fan, 1984) Assume that X is a topological vector space, A ⊆ X

is nonempty and H : A → 2X is a KKM mapping with closed values. If there is

a subset A0 contained in a compact convex subset of A such that
⋂

x∈A0
H(x) is

compact, then
⋂

x∈A H(x) 6= ∅.

The following fixed point theorem is a slightly weaker version (suitable for

our use) of Tarafdar’s Theorem, which is equivalent to Lemma 1.1.
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LEMMA 1.2 (Tarafdar, 1987) Assume that X is a Hausdorff topological vector

space, A ⊆ X is nonempty and convex and h : A → 2A is a multifunction with

nonempty convex values. Assume that

(i) h−1(y) is open in A for each y ∈ A;

(ii) there exists a nonempty subset A0 contained in a compact convex subset of

A such that A \
⋃

y∈A0
h−1(y) is compact or empty.

Then, there exists x̄ ∈ A such that x̄ ∈ h(x̄).

2 Main results

The following very relaxed quasiconvexity, will be assumed in our main existence

theorems.

DEFINITION 2.1 Let X and Z be vector spaces, let B ⊆ X and C ⊆ Z be

nonempty and convex, with intC 6= ∅ and let F : X ×B → 2Z .

(i) F is said to be 0−level C−quasiconvex relative to B of type 1 if for any

subset {x1, ..., xn} ⊆ X, any {α1, ..., αn} ⊆ R+ with
∑n

i=1 αi = 1,

[
∃x∗i ∈ B, i = 1, ..., n : F (xi, x

∗
i ) ⊆ −intC

]
=⇒

[
∃x∗ ∈ B : F

( n∑
i=1

αixi, x
∗
)
⊆ −intC

]
. (1)
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(ii) F is called 0−level C−quasiconvex relative to B of type 2 if (1) is replaced

by

[
∃x∗i ∈ B, i = 1, ..., n : F (xi, x

∗
i ) ∩ −intC 6= ∅

]
=⇒

[
∃x∗ ∈ B : F

( n∑
i=1

αixi, x
∗
)
∩ −intC 6= ∅

]
.

To see the nature of the above generalized convexity, let us consider the

simplest case, where B is a singleton, Z = R and F is single-valued depending

only on x ∈ X. Then (i) and (ii) coincide and become: if F (xi) < 0, i = 1, · · · , n,

then ∀αi ≥ 0,
∑n

i=1 αi = 1, F (
∑n

i=1 αixi) < 0. This property is a relaxed 0-level

quasiconvexity, since F is called quasiconvex if F (
∑n

i=1 αixi) ≤ max
1≤i≤n

F (xi).

In the sequel let E(x, y) = {(x, y) ∈ K ×D : x ∈ S(x, y), y ∈ T (x, y)}.

A sufficient condition for the solution existence of problem (SVQEP1) is

THEOREM 2.1 Assume that

(i) ∀(x, y) ∈ K × D,∀(x∗, y∗) ∈ A(x, y) × B(x, y), F (x, y, x∗) 6⊆ −intC and

G(y, x, y∗) 6⊆ −intC;

(ii) ∀(x, y) ∈ K×D, F (., y, .) and G(., x, .) are 0−level C−quasiconvex relative

to A(x, y) and B(x, y), respectively, of type 1;

(iii) ∀(x, y) ∈ K×D, the set {(x̄, ȳ) ∈ K×D | F (x, ȳ, x∗) 6⊆ −intC and G(y, x̄,

y∗) 6⊆ −intC,∀(x∗, y∗) ∈ A(x̄, ȳ)×B(x̄, ȳ)} is closed in K ×D;
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(iv) S(., .) and T (., .) are usc in K × D and, ∀(x, y) ∈ K × D, S−1(x) and

T−1(y) are open in K ×D;

(v) if K ×D is not compact, there exist a nonempty compact subset K ×D of

K × D and a subset K0 × D0 of a compact convex subset of K × D such

that, ∀(x, y) ∈ (K ×D) \ (K ×D), ∃(x̄, ȳ) ∈ [K0×D0]∩ [S(x, y)×T (x, y)],

∃(x∗, y∗) ∈ A(x, y)×B(x, y), F (x̄, y, x∗) ⊆ −intC or G(ȳ, x, y∗) ⊆ −intC.

Then problem (SVQEP1) is solvable.

Proof. For (x, y) ∈ K ×D, set

P (x, y) = {(x̂, ŷ) ∈ K ×D | ∃(x∗, y∗) ∈ A(x, y)×B(x, y),

F (x̂, y, x∗) ⊆ −intC or G(ŷ, x, y∗) ⊆ −intC},

Φ(x, y) =

{(
S(x, y)× T (x, y)

)
∩ P (x, y) if (x, y) ∈ E,

S(x, y)× T (x, y) otherwise,

Q(x, y) = (K ×D) \ Φ−1(x, y).

We claim that Q(., .) is a KKM mapping in K ×D. Indeed, suppose there

is a convex combination (x̄, ȳ) :=
∑n

j=1 αj(xj, yj) in K × D such that (x̄, ȳ) /∈

⋃n
j=1 Q(xj, yj). Then, (x̄, ȳ) /∈ Q(xj, yj), i.e., (x̄, ȳ) ∈ Φ−1(xj, yj), ∀j = 1, ..., .n.

Thus, (xj, yj) ∈ Φ(x̄, ȳ), ∀j = 1, ..., n. If (x̄, ȳ) ∈ E, one has (xj, yj) ∈ P (x̄, ȳ),

∀j = 1, ..., n, i.e., ∃(x∗j , y∗j ) ∈ A(x̄, ȳ) × B(x̄, ȳ) such that F (xj, ȳ, x∗j) ⊆ −intC

or G(yj, x̄, y∗j ) ⊆ −intC. Due to the fact that F (., ȳ, .) and G(., x̄, .) are 0 - level
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C-quasiconvex relative to A(x̄, ȳ) and B(x̄, ȳ) of type 1, respectively, there is

(x̄∗, ȳ∗) ∈ A(x̄, ȳ)×B(x̄, ȳ) such that F (x̄, ȳ, x̄∗) ⊆ −intC or G(ȳ, x̄, ȳ∗) ⊆ −intC,

contradicting (i). On the other hand, if (x̄, ȳ) ∈ (K×D)\E (i.e., (x̄, ȳ) /∈ S(x̄, ȳ)×

T (x̄, ȳ)), then (xj, yj) ∈ Φ(x̄, ȳ) = S(x̄, ȳ)×T (x̄, ȳ). So (x̄, ȳ) ∈ S(x̄, ȳ)×T (x̄, ȳ),

another contradiction. Thus, Q(., .) must be a KKM mapping.

Next we verify the closedness of Q(x, y), ∀(x, y) ∈ K ×D. One has

Φ−1(x, y) = {(x̄, ȳ) ∈ E | (x, y) ∈ [S(x̄, ȳ)× T (x̄, ȳ)] ∩ P (x̄, ȳ)}

∪ {(x̄, ȳ) ∈ (K ×D) \ E | (x, y) ∈ S(x̄, ȳ)× T (x̄, ȳ)}

= {(x̄, ȳ) ∈ E | (x̄, ȳ) ∈ [S−1(x) ∩ T−1(y)] ∩ P−1(x, y)}

∪ {(x̄, ȳ) ∈ (K ×D) \ E | (x̄, ȳ) ∈ S−1(x) ∩ T−1(y)}

= {E ∩ S−1(x) ∩ T−1(y) ∩ P−1(x, y)}

∪ {[(K ×D) \ E] ∩ [S−1(x) ∩ T−1(y)]}

= {[(K ×D) \ E] ∪ P−1(x, y)} ∩ S−1(x) ∩ T−1(y).

Therefore,

Q(x, y) = {K ×D} \ {[((K ×D) \ E) ∪ P−1(x, y)] ∩ S−1(x) ∩ T−1(y)}

= {[K ×D] \ [((K ×D) \ E) ∪ P−1(x, y)]}

∪ {[K ×D] \ [S−1(x) ∩ T−1(y)]}

= {E ∩ [(K ×D) \ P−1(x, y)]} ∪ {[K ×D] \ [S−1(x) ∩ T−1(y)]}. (2)
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Since S(x, y)×T (x, y) 6= ∅, ∀(x, y) ∈ K×D, we have
⋃

(x,y)∈K×D S−1(x) ∩T−1(y) =

K×D. Lemma 1.2 in turn assures that S(., .)×T (., .) has a fixed point in K×D

(hence E 6= ∅). Indeed, only (ii) of Lemma 1.2 is to be checked. By assumption

(v), (K × D) \ (K × D) ⊆
⋃

(x,y)∈K0×D0
S−1(x) ∩ T−1(y) ⊆ K × D and then,

(K × D) \
⋃

(x,y)∈K0×D0
S−1(x) ∩ T−1(y) ⊆ K × D and is compact, i.e., (ii) of

Lemma 1.2 is satisfied. Furthermore, since S(., .) and T (., .) are usc and have

closed values, E is closed. We also have

(K ×D) \ P−1(x, y) = {(x̄, ȳ) ∈ K ×D | ∀(x̄∗, ȳ∗) ∈ A(x̄, ȳ)×B(x̄, ȳ)

F (x, ȳ, x̄∗) 6⊆ −intC, G(y, x̄, ȳ∗) 6⊆ −intC},

which is closed by (iii). It follows from (2) that Q(x, y) is closed.

Because of (v), ∀(x, y) ∈ (K ×D) \ (K ×D), ∃(x̄, ȳ) ∈ K0 ×D0, (x̄, ȳ) ∈

Φ(x, y). Therefore, (K×D)\(K×D) ⊆
⋃

(x,y)∈K0×D0
Φ−1(x, y) ⊆ K×D. Hence,

(K×D)\
⋃

(x,y)∈K0×D0
Φ−1(x, y) ⊆ (K×D), i.e.,

⋂
(x,y)∈K0×D0

(K×D)\ Φ−1(x, y)

⊆ (K ×D) and then
⋂

(x,y)∈K0×D0
Q(x, y) is compact.

Applying Lemma 1.1 one obtains a point (x̄, ȳ) such that

(x̄, ȳ) ∈
⋂

(x,y)∈K×D

Q(x, y) = (K ×D) \
⋃

(x,y)∈K×D

Φ−1(x, y).

So, (x̄, ȳ) /∈ Φ−1(x, y), ∀(x, y) ∈ K × D, i.e., (x, y) /∈ Φ(x̄, ȳ), ∀(x, y) ∈ K × D.

Hence, Φ(x̄, ȳ) = ∅. If (x̄, ȳ) ∈ (K × D) \ E, then Φ(x̄, ȳ) = S(x̄, ȳ) × T (x̄, ȳ),

a contradiction. In the remaining case, (x̄, ȳ) ∈ E, one has ∅ =
(
S(x̄, ȳ) ×
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T (x̄, ȳ)
)
∩ P (x̄, ȳ). Thus, for all (x, y) ∈ S(x̄, ȳ) × T (x̄, ȳ), (x, y) /∈ P (x̄, ȳ), i.e.,

∀(x̄∗, ȳ∗) ∈ A(x̄, ȳ) × B(x̄, ȳ) F (x, ȳ, x̄∗) 6⊆ −intC, G(y, x̄, ȳ∗) 6⊆ −intC, which

means that (x̄, ȳ) is a solution. �

The following examples show that either of assumptions of Theorem 2.1

cannot be dropped.

EXAMPLE 2.1 (Assumption (i) is essential). Let X = Y = Z = R,K = D =

[0, 1], C = R+, S(x, y) ≡ T (x, y) ≡ [0, 1], A(x, y) = {x}, B(x, y) = {y}, F (x, ȳ, x∗)

= {x∗ − 2} and G(y, x̄, y∗) = {y∗ − 2}.

We check assumptions (ii) - (v). To see (ii), for given xi, x
∗
i ∈ A(x, y) = {x}

and yi, y
∗
i ∈ B(x, y) = {y}, we simply take x∗ = x∗i , y

∗ = y∗i . Assumption (iii) is

satisfied since the mentioned set is empty. (iv) is clearly fulfilled and (v) is sat-

isfied as K and D are compact. However, problem (SVQEP1) has no solutions,

since ∀(x̄, ȳ) ∈ K ×D,∀(x, x∗) ∈ S(x̄, ȳ)× A(x̄, ȳ),∀(y, y∗) ∈ T (x̄, ȳ)×B(x̄, ȳ),

F (x, ȳ, x∗) = x∗ − 2 < 0,

G(y, x̄, y∗) = y∗ − 2 < 0.

The reason is that assumption (i) is violated.

EXAMPLE 2.2 ((ii) is essential). Let X, Y, Z, C, A(x, y) and B(x, y) be as in Exam-
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ple 2.1. Let K = D = [0, 2], S(x, y) = T (x, y) ≡ [0, 2] and

F (x, ȳ, x∗) =

{
{1} if x∗ = x,

{−1} if x∗ 6= x,

G(y, x̄, y∗) =

{
{1} if y∗ = y,

{−1} if y∗ 6= y.

Then assumptions (i), (iii) - (v) are clearly satisfied. However, ∀(x̄, ȳ) ∈ K ×D,

for x∗ 6= x, y∗ 6= y one has

F (x, ȳ, x∗) = G(y, x̄, y∗) = −1 < 0,

i.e. problem (SVQEP1) is not solvable. To see the reason we check assumption

(ii) by picking x = 1, y = 1, x1 = x2 = y1 = y2 = 1
2
, α1 = α2 = 1

2
, x∗1 = x∗2 = 1 ∈

A(1, y), y∗1 = y∗2 = 1 ∈ B(y, 1). Then, ∀x∗ ∈ A(1, 1), ∀y∗ ∈ B(1, 1) and i = 1, 2,

F (xi, y, x∗i ) = F (
1

2
, 1, 1) = −1 < 0,

G(yi, x, y∗i ) = G(
1

2
, 1, 1) = −1 < 0,

but

F (α1x1 + α2x2, y, x∗) = F (1, 1, 1) = 1 > 0,

G(α1y1 + α2y2, x, y∗) = G(1, 1, 1) = 1 > 0,

i.e. assumption (ii) is not satisfied.

EXAMPLE 2.3 ((iii) is essential). Let X, Y, Z, K, D and C be as in Example 2.1.

Let
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S(x, y) ≡ [0
1

4
] ∪ [

3

4
, 1],

T (x, y) = [0, 1],

A(x, y) =

{
{x} if x 6= 1

2
,

{x
2
} if x = 1

2
,

B(x, y) = {y},

F (x, ȳ, x∗) =

{
{−1} if x + x∗ = 1,

{1} otherwise,

G(y, x, y∗) ≡ {1}.

Then, assumption (i), (iv) and (v) are easy to check. G(., x, .) clearly satisfied

(ii). Let (x, y) ∈ K × D and {x1, ..., xn} ⊆ K be arbitrary. If x 6= 1
2
, then

A(x, y) = {x} and if F (xi, y, x∗i ) = F (xi, y, x) < 0 then xi + x = 1 and for

αi ≥ 0,
∑n

i=1 αi = 1,
∑n

i=1 αixi + x = 1. Hence F
(∑n

i=1 αixi, y, x
)

= −1 < 0.

If x = 1
2
, then A(x, y) = {x

2
}. From F (xi, y, x∗i ) = F (xi, y, x

2
) < 0 it follows

that xi + x
2

= 1 and, for αi ≥ 0,
∑n

i=1 αi = 1,
∑n

i=1 αixi + x
2

= 1. Therefore,

F
(∑n

i=1 αixi, y, x
2

)
= −1 < 0. Thus F (., y, .) satisfied (ii). However, assumption

(iii) is violated, since for (0, 0) ∈ K ×D, the set

{(x̄, ȳ) ∈ K × D | F (0, ȳ, x∗) ≥ 0, G(0, x̄, y∗) ≥ 0,∀(x∗, y∗) ∈

A(x̄, ȳ)×B(x̄, ȳ)} = [0, 1)×D

is not closed in K ×D.

We verify that problem (SVQEP1) is not solvable. Indeed, ∀(x̄, ȳ) ∈

S(x̄, ȳ)×T (x̄, ȳ) =
(
[0, 1

4
]∪ [3

4
, 1]
)
× [0, 1], ∃x ∈ S(x̄, ȳ),∃x∗ ∈ A(x̄, ȳ) = {x̄}, such
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that x + x∗ = 1 and hence F (x, ȳ, x∗) = −1 < 0.

EXAMPLE 2.4 ((iv) cannot be dropped). Let X, Y, Z, C, K and D be as in Example

2.2. Let, for x, x̄, x∗ ∈ K and y, ȳ, y∗ ∈ D,

S(x, y) = [0, x + 3
2
] ∩K,

T (x, y) = B(x, y) ≡ D,

A(x, y) = [x− 1, x] ∩K,

F (x, ȳ, x∗) =

{
{1} if |x− x∗| ≤ 1,

{−1} if |x− x∗| > 1,

G(y, x̄, y∗) ≡ {1}.

Then, (i) is satisfied since ∀(x, y) ∈ K × D, ∀(x∗, y∗) ∈ A(x, y) × B(x, y),

F (x, y, x∗) = G(y, x, y∗) = {1}. Assumption (ii) is clearly satisfied for G(., x, .).

Now assume that, for {x1, ..., xn} ⊆ K and x∗i ∈ A(x, y), F (xi, y, x∗i ) < 0,

i = 1, ..., n. Then |xi − x∗i | > 1. For any αi ≥ 0,
∑n

i=1 αi = 1, choose x∗ =

∑n
i=1 αix

∗
i ∈ A(x, y) we see that

∣∣∑n
i=1 αixi − x∗

∣∣ =
∑n

i=1 αi|xi − x∗i | > 1.

Hence, F
(∑n

i=1 αixi, y, x∗
)

< 0, i.e. F (., y, .) satisfied (ii). To check (iii) we

have, ∀(x, y) ∈ K ×D,

U := {(x̄, ȳ) ∈ K × D | F (x, ȳ, x∗) ≥ 0, G(y, x̄, y∗) ≥ 0,∀(x∗, y∗) ∈

A(x̄, ȳ)×B(x̄, ȳ)}

= {(x̄, ȳ) ∈ K ×D
∣∣|x− x∗| ≤ 1,∀(x∗, y∗) ∈

(
[x̄− 1, x̄] ∩K

)
×D}

= {(x̄, ȳ) ∈ K ×D
∣∣max{x̄− 1, 0} ≥ x− 1, x̄ ≤ x + 1}.
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If x < 1, then max{x̄−1, 0} ≥ x−1,∀x̄ ∈ K. Therefore, U =
(
(−∞, x+1]×K

)
×

D is closed in K×D. If x = 1, then max{x̄−1, 0} ≥ x−1 and x̄ ≤ x+1,∀x̄ ∈ K

and hence U = K ×D is closed in K ×D. If x > 1 then x̄ ≤ x + 1,∀x̄ ∈ K and

max{x̄− 1, 0} ≥ x− 1 means that x̄ ≥ x. Therefore U =
(
[x, +∞) ∩K

)
×D is

closed in K ×D. Finally, as K and D are compact, assumption (v) is obviously

fulfilled. However, problem (SVQEP1) has no solution, since ∀(x̄, ȳ) ∈ K ×D we

can choose x ∈ S(x̄, ȳ), x∗ ∈ A(x̄, ȳ) such that F (x, ȳ, x∗) < 0 as follows: if x̄ < 1,

pick x∗ = x̄ and x = min{x̄ + 3
2
, 2}; if x̄ = 1, pick x∗ = 0, x = 2 and if 1 < x̄ ≤ 2,

take x∗ = x̄ and x = 0, then in all cases F (x, ȳ, x∗) = −1. The reason is that

assumption (iv) is violated, since (although S(., .) and T (., .) are continuous and

T−1(y) = K ×D is open in K ×D for ∀y ∈ D)

S−1

(
7

4

)
=

{
(x, y) ∈ K ×D | x +

3

2
≥ 7

4

}
=

[
1

4
, 2

]
×D0

is not open in K ×D.

EXAMPLE 2.5 ((v) cannot be omitted). Let X = Y = Z = K = D = R,C =

R+, S(x, y) = T (x, y) ≡ R,A(x, y) = {x}, B(x, y) = {y} and

F (x, ȳ, x∗) = {x− x∗},

G(y, x̄, y∗) = {y − y∗}.

Then it is easy to see that assumptions (i)-(iv) are fulfilled. However, prob-
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lem (SVQEP1) has no solutions, since ∀(x̄, ȳ) ∈ K × D,∃(x, y) ∈ S(x̄, ȳ) ×

T (x̄, ȳ),∃(x∗, y∗) ∈ A(x̄, ȳ)×B(x̄, ȳ) = {(x̄, ȳ)},

F (x, ȳ, x∗) = x− x∗ < 0,

G(y, x̄, y∗) = y − y∗ < 0.

To see that assumption (v) is violated let K×D ⊆ K×D and K0×D0 ⊆ K×D

be compact. Then, there is (x, y) ∈ R2 \ K × D such that ∀(x̄, ȳ) ∈ K0 ×

D0,∀(x∗, y∗) ∈ A(x, y)×B(x, y) = {(x, y)},

F (x̄, y, x∗) = x̄− x∗ = x̄− x ≥ 0,

G(ȳ, x, y∗) = ȳ − y∗ = ȳ − y ≥ 0.

i.e. (v) is not fulfilled.

Passing to problem (SVQEP2) we have

THEOREM 2.2 Assume five conditions corresponding to that of Theorem 2.1: in

(i) and (iii) “ 6⊆ −intC ” is replaced by “ ⊆ Y \ −intC ”; in (ii) “ type 1 ” is

replaced by “ type 2 ”; (iv) remains the same; and in (v) “ ⊆ −intC ” is replaced

by “ 6⊆ Y \ −intC ”.

Then problem (SVQEP2) has solutions.

Proof. We can adopt the same lines of the proof of Theorem 2.1 with a new
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multifunction P (x, y) defined as

P (x, y) = {(x̂, ŷ) ∈ K ×D : ∃(x∗, y∗) ∈ A(x, y)×B(x, y),

F (x̂, y, x∗) 6⊆ Y \ −intC or G(ŷ, x, y∗) 6⊆ Y \ −intC}. �

REMARK 2.1 Since our two problems coincide if F and G are single-valued, Ex-

amples 2.1 - 2.5 indicate also that each of the five assumptions of Theorem 2.2 is

essential. They explain also that in general it is not hard to check the assump-

tions. The following example shows that our assumptions are very relaxed by

proving a case of the problem considered in Fu (2003) and Farajzadeh (in press)

but the results there cannot be applied while ours can.

EXAMPLE 2.6 Let X,Y, Z, C, K, D, S, T,A and B be as in Example 2.1. Let

F (x, ȳ, x∗) = f(x, ȳ)− f(x∗, ȳ),

G(y, x̄, y∗) = g(x̄, y)− g(x̄, y∗),

where

f(x, y) =

{
1 if x < 1

2
,

−1 if x ≥ 1
2
,

g(x, y) =

{
1 if y < 1

2
,

−1 if y ≥ 1
2
.

Then assumptions (i), (iv) and (v) are clearly fulfilled (Theorems 2.1 and 2.2
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coincide in this case). To check (ii), we have

F (x, ȳ, x∗) =


2 if x < 1

2
, x∗ ≥ 1

2
;

0 if x,∗ x < 1
2

or x, x∗ ≥ 1
2
;

−2 if x ≥ 1
2
, x∗ < 1

2
.

For x, y ∈ [0, 1], {x1, · · · , xn} ⊆ R and {x∗1, · · · , x∗n} ⊆ A(x, y) = {x}, if F (xi, y,

x∗i ) < 0, then xi ≥ 1
2

and x∗i = x < 1
2
. Hence, for αi ≥ 0,

∑n
i=1 αi = 1, taking

x∗ = x we have

F

(
n∑

i=1

αixi, y, x∗

)
= −2 < 0

as
∑n

i=1 αixi ≥ 1
2
, the same argument is valid for G. Therefore (ii) is satisfied.

To see (iii) being fulfilled consider any x, y ∈ [0, 1]. If x ≥ 1
2
, then

F (x, ȳ, x∗) ≥ 0,∀ȳ ∈ [0, 1] and for x∗ ≥ 1
2
. If x < 1

2
, then F (x, ȳ, x∗) ≥ 0,∀ȳ, x∗ ∈

[0, 1]. The argument for G is similar. Hence, setting

U = {(x̄, ȳ) ∈ K ×D | F (x, ȳ, x∗) ≥ 0, G(y, x̄, y∗) ≥ 0, for (x∗, y∗) = (x̄, ȳ)}

we see that

U = [1
2
, 1]× [1

2
, 1], if x ≥ 1

2
, y ≥ 1

2
,

U = [1
2
, 1]×D, if x ≥ 1

2
, y < 1

2
,

U = K × [1
2
, 1], if x < 1

2
, y ≥ 1

2
,

U = K ×D, if x < 1
2
, y < 1

2
.

Thus, ∀(x, y) ∈ K × D, U is closed in K × D. By Theorem 2.1 (or, the same,
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Theorem 2.2) problem (SVQEP1) has solutions. However, since

f−1
(
[0, +∞)

)
= (−∞,

1

2
)×R,

g−1
(
[0, +∞)

)
= R× (−∞,

1

2
)

are not closed in R2. Hence f and g are not demicontinuous and the results

in Fu (2003) and Farajzadeh (in press) cannot be employed. Recall here that a

mapping f : X → Z is said to be demicontinuous if f−1(M) is closed in X for

each closed half space M in Z. Checking directly we see that the solution set is

[1
2
, 1]× [1

2
, 1].

3 Applications

Since our symmetric quasiequilibrium problems include many rather general prob-

lems as particular cases as mentioned in Section 1, Theorem 2.1 and 2.2 imply

directly new results for these problems. In this section we present only several

typical applications showing clearly advantages of the symmetric structure of the

problem setting.

3.1 A lower and upper bounded quasiequilibrium problem

Let X and K be as in Section 1. Let S : K → 2K , f : K × K → R,α, β ∈ R.

The lower and upper bounded quasiequilibrium problem consists of
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(BQEP) finding x̄ ∈ K such that x̄ ∈ S(x̄),∀x ∈ S(x̄),

α ≤ f(x̄, x) ≤ β.

COROLLARY 3.1 Assume that

(i) ∀x ∈ K, α ≤ f(x, x) ≤ β;

(ii) f(., .)
(
and −f(., .)

)
is α−level (β−level, respectively) R+−quasiconvex rel-

ative to K of type 1;

(iii) ∀(x, y) ∈ K ×K, {(x̄, ȳ) ∈ K ×K | f(x̄, x) ≥ α, f(ȳ, y) ≤ β} is closed in

K ×K;

(iv) S(.) is usc in K and, ∀x ∈ K, S−1(x) is open in K;

(v) if K is not compact, there exist a nonempty compact subset K of K and a

subset K0 of a compact convex subset of K such that ∀x ∈ K \K,∃x̄, ȳ ∈

K0 ∩ S(x),

f(x, x̄) < α,

f(x, ȳ) > β.

Then (BQEP) has solutions.

Proof. Setting Y = X,D = K,Z = R,C = R+, S(x, y) = T (x, y) = S(x), A(x,
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y) = {x}, B(x, y) = {y}, F (x, ȳ, x∗) = f(x∗, x)− α and G(y, x̄, y∗) = β − f(x̄, y),

problem (BQEP) becomes a particular case of (SVQEP1) and the corollary is a

direct consequence of Theorem 2.1. �

3.2 A coincidence point problem

Let X, Y, K and D be as in Section 1. Let U : D → 2K and V : K → 2D be mul-

tifunctions with nonempty convex images. We consider the following coincidence

point problem

(CP) find (x̄, ȳ) ∈ K ×D such that x̄ ∈ U(ȳ), ȳ ∈ V (x̄).

COROLLARY 3.2 Assume that

(a) U(.) and V (.) are usc and, ∀(x, y) ∈ K ×D, V −1(y) and U−1(x) are open

in K and D, respectively;

(b) K and D are compact.

Then problem (CP) has solutions.

Proof. We set Z = R,C = R+, S(x, y) = U(y), T (x, y) = V (x), A(x, y) = {x},

B(x, y) = {y}, F (x, ȳ, x∗) ≡ G(y, x̄, y∗) ≡ {1}. Then (CP) becomes a special case

of (SVQEP1).

To apply Theorem 2.1 we see that assumptions (i)-(iii) are obviously sat-

isfied. Assumption (iv) is fulfilled by (a) and (v) - by (b). Hence Theorem 2.1
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yields the solvability of (CP). �

References

ANSARI, Q.H., KONNOV, I.V. and YAO, J.C. (2001) Existence of a Solution and

Variational Principles for Vector Equilibrium Problems. Journal of Oppti-

mization Theory and Applications, 110, 481 - 492.

ANSARI, Q.H., SCHAIBLE, S. and YAO, J.C. (2000) The System of Vector Equilib-

rium Problems and Its Applications. Journal of Optimization Theory and

Applications, 107, 547 - 557.

ANSARI, Q.H., SCHAIBLE, S. and YAO, J.C. (2002) The System of Generalized Vec-

tor Equilibrium Problems with Applications. Journal of Global Optimiza-

tion, 22, 3 - 16.

BIANCHI,M., HADJISAVVAS, N. and SCHAIBLE, S. (1997) Vector Equilibrium Prob-

lems with Generalized Monotone Bifunctions. Journal of Optimization The-

ory and Applications, 92, 527 - 542.

BLUM, E. and OETTLI, W. (1994) From Optimization and Variational Inequalities

to Equilibrium Problems. Mathematics Student, 63, 123 - 145.

FAN, K. (1984) Some Properties of Convex Sets Related to Fixed Point Theorems.

Mathematische Annalen, 266, 519 - 537.

FARAJZADEH, A.P. On the Symmetric Vector Quasiequilibrium Problems. Journal

23



of Mathematical Analysis and Applications, in press (online: November 4,

2005).

FU, J.Y. (2003) Symmetric Vector Quasiequilibrium Problems. Journal of Mathe-

matical Analysis and Applications, 285, 708 - 713.

HAI, N.X. and KHANH, P.Q. (2006) Systems of Multivalued Quasiequilibrium

Problems. Advances in Nonlinear Variational Inequalities, 9, 97 - 108.

HAI, N.X. and KHANH, P.Q. (2006) The Solution Existence of General Variational

Inclusion Problems. Journal of Mathematical Analysis and Applications, in

press, (online: July 13, 2006).

HAI, N.X. and KHANH, P.Q. Existence of Solutions to General Quasiequilibrium

Problems and Applications. Journal of Optimization Theory and Applica-

tions, in press.

HAI, N.X. and KHANH, P.Q. Systems of Set-Valued Quasivariational Inclusion

Problems. Journal of Optimization Theory and Applications, in press.

LIN, L.J. (2006) Systems of Generalized Vector Quasiequilibrium Problems with

Applications to Fixed Point Theorems for a Family of Nonexpansive Mul-

tivalued Mappings. Journal of Global Optimization, 34, 15 - 32.

LIN, L.J. and CHEN, H.L. (2005) The Study of KKM Theorems with Applica-

tions to Vector Equilibrium Problems and Implicit Vector Variational In-

24



equalities Problems. Journal of Global Optimization, 32, 135 -157.

LUC, D.T. and TAN, N.X. (2004) Existence Conditions in Variational Inclusions

with Constraints. Optimization, 53, 505 - 515.

NOOR, M.A. and OETTLI, W. (1994) On General Nonlinear Complementarity

Problems and Quasiequilibria. Le Matematiche, 49, 313 - 331.

TAN, N.X. (2004) On the Existence of Solutions of Quasivariational Inclusion

Problem. Journal of Optimization Theory and Applications, 123, 619 -

638.

TARAFDAR, E. (1987) A Fixed Point Theorem Equivalent to the Fan-Knaster-

Kuratowski-Mazurkiewicz Theorem. Journal of Mathematical Analysis and

Applications, 128, 475 - 479.

25


