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Higher-order variational sets and
higher-order optimality conditions
for proper efficiency in set-valued
nonsmooth vector optimization

Abstract Higher-order variational sets are proposed for set-valued map-
pings, which are shown to be more convenient than generalized derivatives in
approximating mappings at a considered point. Both higher-order necessary
and sufficient conditions for local Henig-proper efficiency, local strong Henig-
proper efficiency and local λ-proper efficiency in set-valued nonsmooth vector
optimization are established using these sets. The technique is simple but
the results help to unify first and higher-order conditions. As consequences
recent existing results are derived. Examples are provided to shown some
advantages of our notions and results.
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1 Introduction

In the last several decades, nonsmooth set-valued vector optimization has
been attracted increasing attentions, since it has a wide range of applications
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in real-world problems. One of the central issues is considering optimality
conditions. In developing the basic idea of the pioneering optimality condi-
tion due to Fermat, which asserts that the derivative of a real function is
equal to zero at a local extremum, to tackle the generality of nonsmooth-
ness and set-valuedness many generalized derivatives have been introduced
with fruitful applications: the contingent derivative (Aubin 1981), the up-
per and lower Dini derivative (Penot 1984), the contingent coderivative (Ioffe
1984), the Clarke and adjacent derivatives (Aubin and Frankowska 1990), the
S-derivative (Shi 1991), the contingent epiderivatives (Jahn and Rauh 1997;
Gong et al. 2003), the radial derivative (Taa 1998), the generalized contingent
epiderivative (Chen and Jahn 1998), the radial epiderivative (Flores-Bazán
2001), the K-epiderivative (Bigi and Castellani 2002). For nonsmooth opti-
mization in general and some other generalized derivatives in particular refer
also to excellent books (Rockafellar and Wets 1998; Bonnans and Shapiro
2000; Mordukhovich 2006).

For many of the mentioned notions, second-order derivatives have also
been proposed and applied in various situations. Furthermore, higher-order
derivatives along with higher-order optimality conditions have also developed,
although at a lower level. Two kinds of higher-order variational derivatives
were introduced in Hoffmann and Kornstaedt (1978) for (single-valued) vec-
tor optimization. The upper and lower higher-order Dini directional deriva-
tives were used to establish higher-order optimality conditions in Studniarski
(1986). In Studniarski (2001) the higher-order Neustadt derivative was em-
ployed to extend the classical Dubovitski-Milyutin scheme (Dubovitski and
Milyutin 1965). The higher-order lower Hadamard directional derivative was
the tool for studying higher-order optimality conditions for single-valued
scalar optimization in Ginchev (2002a) and set-valued vector optimization
in Ginchev (2002b). The generalized contingent epiderivative introduced in
Chen and Jahn (1998) was extended to the higher-order and used together
with the higher-order generalized adjacent epiderivative to establish higher-
order optimality conditions for the Henig-proper efficiency in set-valued vec-
tor optimization in Li and Chen (2006).

The main idea of using generalized derivatives to establish optimality con-
ditions can be highlighted clearly in the first-order case: the intersection of
the cone of directions of decrease of the objective and the cone of feasible
directions at the optimal point must be empty and these cones are expressed
in terms of generalized derivatives of the mappings involved in the problem.
For the higher-order case the sets of such directions are of the corresponding
higher-order, not cones. However, all the encountered first and higher-order
derivatives are defined in directions. The first aim of this note is to pro-
pose notions of higher-order variational sets for approximating the mappings
(involved in the optimization problem) at a point under consideration, to
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replace the role of generalized derivatives. Our variational sets are bigger
than the corresponding sets defined by the mentioned generalized derivatives
and hence the resulting optimality conditions obtained by separations are
stronger than many known ones.

On the other hand, since sets of efficient and weakly efficient solutions of
vector optimization are often too large. To eliminate anomalous solutions, a
number of notions of proper efficiency have been introduced, beginning with
the Kuhn-Tucker one (Kuhn and Tucker 1951): by Hurwicz, Klinger, Geof-
frion, Vogel, Wierzbicki, Hartley, Borwein, Benson, Henig, Borwein-Zhuang,
Zaffaroni, etc. For systematical treatments and comparisons of these notions
the reader is referred to Sawaragi et al. (1985), Khanh (1992), Guerraggio
et al. (1994) and Zaffaroni (2003). Recently many of these kinds of proper-
ness still attracted attentions: supper efficiency (Gong et al. 2003; Zaffaroni
2003; Rong and Wu 1998; Wantao and Yonghong 2001; Mehra 2002), Benson
properness (Sach 2003, 2005), Hartley properness (Lee et al. 2005), Henig
properness (Zheng 2000; Gong 2005; Li and Chen 2006; Liu and Gong 2000;
Gong et al. 2003), Geoffrion properness (Huang and Yang 2002). Most of
these works on properness do not use derivatives. For instance, kinds of (gen-
eralized) convexity were used in characterizing various properness in Rong
and Wu (1998), Sach (2003, 2005) and Lee et al. (2005), scalarization tech-
niques were main tools to investigate different notions of properness in Khanh
(1993), Zheng (2000), Huang and Yang (2002), Mehra (2002) and Zaffaroni
(2003).

Our second aim is to apply higher-order variational sets in establishing
both higher-order necessary and sufficient conditions for several kinds of
proper efficiency. The results help to unify first and higher-order optimality
conditions. There are almost no assumptions on the data of the problem.
Our results imply the corresponding ones in recent papers. In many cases,
the proofs of our results and the deriving known ones together are still shorter
than the original proofs of the latter. Examples are provided to show their
advantages over the recent known results. Higher-order optimality conditions
for efficiency and weak efficiency using higher-order variational sets are the
subject of another works of ours.

The organization of the paper is as follows. In the rest of this section
the notations which are almost standard, are specified. Section 2 is devoted
to higher-order variational sets and comparisons with other approximations
for mappings related to generalized derivatives. Higher-order necessary and
sufficient conditions for proper efficiency, the main results, are established
in Section 3 followed by derivations of and comparisons with recent known
results.

Throughout the paper, if not otherwise stated, let X,Y and Z be real
normed spaces and let C ⊆ Y and D ⊆ Z be closed convex cones with
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nonempty interiors. For H : X → 2Y , the domain, graph and epigraph of H
are

domH = {x ∈ X| H(x) 6= ∅}, grH = {(x, y) ∈ X × Y | y ∈ H(x)},
epiH = {(x, y) ∈ X × Y | y ∈ H(x) + C}.

If domH = Q, we also write H : Q → 2Y instead of saying H : X → 2Y with
domH = Q. For Q ⊆ X, int Q, cl Q, bd Q denote its interior, closure and
boundary, respectively. Furthermore,

cone Q = {λq| λ ≥ 0, q ∈ Q},
cone+Q = {λq| λ > 0, q ∈ Q}.

BX stands for the closed unit ball in X and BX(u, δ) for the ball centered
at u ∈ X and of radius δ. For H : X → 2Y , the so-called profile mapping of
H is H+ defined by H+(x) = H(x)+C, ∀x ∈ X (then clearly grH+ = epiH).
For a cone C ⊆ Y,C∗ is the (positive) polar cone:

C∗ = {y∗ ∈ Y ∗| 〈y∗, c〉 ≥ 0,∀c ∈ C}
and, for u ∈ X,

C(u) = cone (C + u).

A nonempty convex subset Q of a convex cone C is called a base of C if
C = cone Q and 0 6∈ cl Q. U(x0) is used to denote the set of all neighborhoods
of x0 ∈ X.

A subset Q ⊆ X is called star-shaped at x0 if ∀x ∈ Q, ∀α ∈ [0, 1], (1 −
α)x0 + αx ∈ Q. A set-valued mapping H : X → 2Y is said to be C-convex-
along-rays at (x0, y0) ∈ grH on a star-shaped set Q if ∀x ∈ Q, ∀α ∈ [0, 1],

(1− α)H(x0) + αH(x) ⊆ H((1− α)x0 + αx) + C.

H : X → 2Y is called pseudoconvex at (x0, y0) ∈ grH if

epiH ⊆ (x0, y0) + TepiH(x0, y0),

where, for a subset Q ⊆ X, the contingent cone of Q at x̄ ∈ X is

TQ(x̄) = {u ∈ X| ∃tn → 0+,∃un → u,∀n, x̄ + tnun ∈ Q}.
The interior tangent cone of S at x0 is (Dubovitski and Milyutin 1965):

IT (S, x0) = {u ∈ X| ∃δ > 0, ∀t ∈ (0, δ),∀u′ ∈ BX(u, δ), x0 + tu
′ ∈ S}.

The Painlevé-Kuratowski sequential upper limit is defined by

lim sup

x
H−→x0

H(x) = {y ∈ Y | ∃xn ∈ domH : xn → x0,∃yn ∈ H(xn) : yn → y},
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where x
H−→ x0 means that x ∈ domH and x → x0.

2 Higher-order variational sets

Instead of a generalized derivative, to approximate set-valued mapping F :
X → 2Y at (x0, y0) ∈ grF we propose the following two kinds of higher-order
variational sets, where u1, ..., um−1 ∈ X.

Definition 1 The first, second and higher-order variational sets of type 1
defined as follows

V 1(F, x0, y0) = lim sup

x
F−→x0,t→0+

1

t
(F (x)− y0),

V 2(F, x0, y0, u1) = lim sup

x
F−→x0,t→0+

1

t2
(F (x)− y0 − tu1),

V m(F, x0, y0, u1, ..., um−1) = lim sup

x
F−→x0,t→0+

1

tm
(F (x)− y0 − tu1 − ...− tm−1um−1).

Definition 2 The first, second and higher-order variational sets of type 2
are defined as

W 1(F, x0, y0) = lim sup

x
F−→x0

cone+(F (x)− y0),

W 2(F, x0, y0, u1) = lim sup

x
F−→x0,t→0+

1

t
(cone+(F (x)− y0)− u1),

Wm(F, x0, y0, u1, ..., um−1) = lim sup

x
F−→x0,t→0+

1

tm−1
(cone+(F (x)− y0)− u1 − ...−

tm−2um−1).

Remark 1 0 ∈ V 1(F, x0, y0) and, for all m ≥ 1, we have

(a) V m(F, x0, y0, u1, ..., um−1) ⊆ Wm(F, x0, y0, u1, ..., um−1);

(b) V m(F, x0, y0, 0, ..., 0) = V 1(F, x0, y0),

Wm(F, x0, y0, 0, ..., 0) = W 1(F, x0, y0).

(c) If u1 6∈ V 1(F, x0, y0) then V 2(F, x0, y0, u1) = ∅. If one of the conditions
u1 ∈ V 1(F, x0, y0), ..., um−1 ∈ V m−1(F, x0, y0, u1, ..., um−2) is violated, then
V m(F, x0, y0, u1, ..., um−1) = ∅. The variational sets of type 2 have the same
property.

The following example shows that the inclusions in Remark 1(a) may be
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strict and may also become equalities.

Example 1 (a) Let X = R, Y = R2, S = X and, for n = 1, 2, ...,

F (x) =





{(0, 0)} if x = 0,

{(1, 0)} if x =
1

n
,

{(
− 1

n
,
2

n

)}
if x = sin

1

n
,

{(
−1 +

1

n
, 2

)}
if x = tan

1

n
,

∅ otherwise.

Then, for (x0, y0) = (0, (0, 0)) ∈ grF and u1 = (−1, 2) ∈ Y one has

V 1(F, x0, y0) = {(−x, 2x) ∈ Y | x ≥ 0},
W 1(F, x0, y0) = {(x, 0) ∈ Y | x ≥ 0} ∪ {(−x, 2x) ∈ Y | x ≥ 0},

V 2(F, x0, y0, u1) = {(−x, 2x)| x ∈ R},
W 2(F, x0, y0, u1) = {(x, y) ∈ Y | 2x + y ≥ 0}.

(b) Let S = X = R, Y = R2 and F is defined by

F (x) =





{(0, 0)} if x = 0,

{(1, 0)} if x =
1

n
, n = 1, 2, ...,

{(
− 1

n
,
2

n

)}
if x = sin

1

n
, n = 1, 2, ...,

∅ otherwise.

For (x0, y0) = (0, (0, 0)) ∈ grF and u1 = (−1, 2) ∈ Y one has

V 1(F, x0, y0) = {(−x, 2x) ∈ Y | x ≥ 0},
W 1(F, x0, y0) = {(x, 0) ∈ Y | x ≥ 0} ∪ {(−x, 2x) ∈ Y | x ≥ 0},

V 2(F, x0, y0, u1) = W 2(F, x0, y0, u1) = {(−x, 2x)| x ∈ R}.
Proposition 1 Let x0 ∈ S ⊆ X and y0 ∈ F (x0). Let one of the following
two conditions hold

(a) S is star-shaped at x0 and F is C-convex-along-rays at (x0, y0);

(b) F is pseudoconvex at (x0, y0).

Then, ∀x ∈ S,

F (x)− y0 ⊆ V 1(F+, x0, y0).
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Proof Let (x, y) ∈ grF be arbitrary and fixed.

(a) Let tn → 0+ with tn ∈ (0, 1),∀n. By the assumed generalized convex-
ity, we have

xn := x0 + tn(x− x0) ∈ S,

yn := y0 + tn(y − y0) ∈ F+(x0 + tn(x− x0)).

From x
F−→ x0 and 1

tn
(yn− y0) = y− y0 it follows that y− y0 ∈ V 1(F+, x0, y0).

(b) Now assume that F is pseudoconvex at (x0, y0). Then

(x− x0, y − y0) ∈ TepiF (x0, y0),

i.e. there exist tn → 0+ and (xn, yn) ∈ epiF such that

1

tn

(
(xn, yn)− (x0, y0)

)
→ (x− x0, y − y0).

Hence, xn → x0, yn ∈ F+(xn) and

1

tn
(yn − y0) → y − y0.

Thus, y − y0 ∈ V 1(F+, x0, y0). ¤

To compare our variational sets with other approximations of set-valued
mappings defined by generalized derivatives we recall some notions.

Definition 3 (Aubin and Frankowska (1990)) Assume that S ⊆ X and
u1, ..., um−1 ∈ X,m ≥ 1.

(a) The mth-order contingent set of S at (x, u1, ..., um−1) is

Tm
S (x, u1, ..., um−1) = lim sup

t→0+

1

tm
(S − x− tu1 − ...− tm−1um−1).

(b) The mth-order adjacent set of S at (x, u1, ..., um−1) is

T bm
S (x, u1, ..., um−1) = lim inf

t→0+

1

tm
(S − x− tu1 − ...− tm−1um−1).

(c) The mth-order Clarke (or circatangent) set of S at (x, u1, ..., um−1) is

Cm
S (x, u1, ..., um−1) = lim inf

t→0+,z
S−→x

1

tm
(S − z − tu1 − ...− tm−1um−1).

(d) (Penot (2000)) The asymptotic second-order tangent cone of S at
(x0, v) is

T
′′
(S, x0, v) = {w ∈ X| ∃(tn, rn) → (0+, 0+) :

tn
rn

→ 0,∃wn → w,
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∀n ∈ N, x0 + tnv + 1
2
tnrnwn ∈ S}.

Definition 4 (Aubin and Frankowska (1990)) Let F : S → 2Y , (x0, y0) ∈
grF and (u1, v1), ..., (um−1, vm−1) ∈ X × Y, m ≥ 1.

(a) The mth-order contingent derivative of F at (x0, y0) with respect to
(wrt) (u1, v1), ..., (um−1, vm−1) is the set-valued mapping DmF (x0, y0, u1, v1, ...,
um−1, vm−1) whose graph is

grDmF (x0, y0, u1, v1, ..., um−1, vm−1) = Tm
grF (x0, y0, u1, v1, ..., um−1, vm−1).

(b) The mth-order adjacent derivative of F at (x0, y0) wrt (u1, v1), ..., (um−1,
vm−1) is the set-valued mapping DbmF (x0, y0, u1, v1, ..., um−1, vm−1) defined by
the following graph

grDbmF (x0, y0, u1, v1, ..., um−1, vm−1) = T bm
grF (x0, y0, u1, v1, ..., um−1, vm−1).

(c) The mth-order Clarke (or circatangent) derivative of F at (x0, y0) wrt
(u1, v1), ..., (um−1, vm−1) is the set-valued mapping CmF (x0, y0, u1, v1, ..., um−1,
vm−1) with the graph

grCmF (x0, y0, u1, v1, ..., um−1, vm−1) = Cm
grF (x0, y0, u1, v1, ..., um−1, vm−1).

Definition 5 Let F : S → 2Y , (x0, y0) ∈ grF and (u1, v1), ..., (um−1, vm−1)
∈ X × Y,m ≥ 1.

(a) The mth-order contingent epiderivative of F at (x0, y0) wrt (u1, v1), ...,
(um−1, vm−1) is the single-valued mapping EDmF (x0, y0, u1, v1, ..., um−1, vm−1)
whose epigraph is

epiEDmF (x0, y0, u1, v1, ..., um−1, vm−1) = Tm
epiF (x0, y0, u1, v1, ..., um−1, vm−1).

(b) The mth-order adjacent epiderivative EDbmF (x0, y0, u1, v1, ..., um−1,
vm−1) and mth-order Clarke epiderivative are defined similarly from the cor-
responding tangent sets.

The 1st-order contingent epiderivative was introduced in Jahn and Rauh
(1997) and the 2nd-order one in Jahn et al. (2005). We define the other and
higher-order epiderivatives in a natural way.

Definition 6 (Li and Chen (2006)) Let F : S → 2Y , (x0, y0) ∈ grF and
(u1, v1), ..., (um−1, vm−1) ∈ X × Y, m ≥ 1.

(a) The mth-order generalized contingent epiderivative of F at (x0, y0) wrt
(u1, v1), ..., (um−1, vm−1) is the set-valued mapping EDm

g F (x0, y0, u1, v1, ...,
um−1, vm−1) defined by, for x ∈ X,

EDm
g F (x0, y0, u1, v1, ..., um−1, vm−1)(x)

= MinC{y ∈ Y | y ∈ DmF+(x0, y0, u1, v1, ..., um−1, vm−1)(x)}.
(b) The mth-order generalized adjacent epiderivative of F at (x0, y0) wrt



Higher-order conditions in set-valued optimization 9

(u1, v1), ..., (um−1, vm−1) is the set-valued mapping EDbm
g F (x0, y0, u1, v1, ...,

um−1, vm−1) defined by, for x ∈ X,

EDbm
g F (x0, y0, u1, v1, ..., um−1, vm−1)(x)
= MinC{y ∈ Y | y ∈ DbmF+(x0, y0, u1, v1, ..., um−1, vm−1)(x)}.

Of course we can define similarly the mth-order generalized Clarke epideriva-
tive. Here MinC{.} denotes the set of efficient points of the set {.} with
respect to the ordering cone C.

The following immediate consequence of the definitions constitutes a base
for the coming comparisons showing the generality of our simple results.

Proposition 2 Let F : S → 2Y , (x0, y0) ∈ grF , (u1, v1), ..., (um−1, vm−1) ∈
X × Y,m ≥ 1, and x ∈ X.

(a) EDmF (x0, y0, u1, v1, ..., um−1, vm−1)(x)

⊆ DmF+(x0, y0, u1, v1, ..., um−1, vm−1)(x) ⊆ V m(F+, x0, y0, v1, ..., vm−1).

(b) EDbmF (x0, y0, u1, v1, ..., um−1, vm−1)(x)

⊆ DbmF+(x0, y0, u1, v1, ..., um−1, vm−1)(x) ⊆ V m(F+, x0, y0, v1, ..., vm−1).

(c) EDm
g F (x0, y0, u1, v1, ..., um−1, vm−1)(x)

⊆ DmF+(x0, y0, u1, v1, ..., um−1, vm−1)(x) ⊆ V m(F+, x0, y0, v1, ..., vm−1).

(d) EDbm
g F (x0, y0, u1, v1, ..., um−1, vm−1)(x)

⊆ DbmF+(x0, y0, u1, v1, ..., um−1, vm−1)(x) ⊆ V m(F+, x0, y0, v1, ..., vm−1).

The inclusions in Proposition 2 may be strict as indicated by the following
examples.

Example 2 Let X = Y = R, S = X, C = R+, F (x) = {y ∈ R| y ≥
x3} ∀x ∈ R, (x0, y0) = (0, 0) and (u, v) = (1, 0). Then T 1

epiF (x0, y0) =
T 2

epiF (x0, y0, u, v) = R× R+. Hence, ∀x ∈ R,

D1F+(x0, y0)(x) = R+,

ED1F (x0, y0)(x) = 0, ED1
gF (x0, y0)(x) = {0},

D2F+(x0, y0, u, v)(x) = R+,

ED2F (x0, y0, u, v)(x) = 0, ED2
gF (x0, y0, u, v)(x) = {0}.

On the other hand

V 1(F+, x0, y0) = W 1(F+, x0, y0) = R,

V 2(F+, x0, y0, v) = W 2(F+, x0, y0, v) = R.

Example 3 Let X,Y, S, C, (x0, y0) and (u, v) be as in Example 2. Let F (x) =
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{y ∈ R| y ≥ |x| 54},∀x ∈ R. Then

T 2
epiF (x0, y0, u, v) = ∅.

Therefore all D2F+(x0, y0, u, v), ED2
gF (x0, y0, u, v) and ED2F (x0, y0, u, v) do

not exist. On the other hand

V 2(F+, x0, y0, v) = W 2(F+, x0, y0, v) = R+.

In general the calculation of the upper limit to evaluate our variational
sets is not so difficult. To compute several existing generalized derivatives or
the corresponding approximating sets, we need to find sets of efficient points,
i.e. to solve a vector optimization problem, which is more difficult.

3 Higher-order optimality conditions for local proper efficiency

In this section we restrict ourselves to dealing with three kinds of properly
efficient points, leaving other properness to possible further considerations.
For each kind of proper efficiency we establish necessary conditions using
both types of our variational sets and also sufficient conditions. These main
results are shown to include recent known results by corollaries. The set-
valued vector problem under our consideration is

(P) min F (x), s.t. x ∈ S, G(x) ∩ −D 6= ∅,
where S ⊆ X, F : S → 2Y and G : S → 2Z .

Let A := {x ∈ S| G(x) ∩ −D 6= ∅} and F (A) :=
⋃

x∈A

F (x).

Definition 7 Consider problem (P). Let x0 ∈ A and y0 ∈ F (x0).

(a) (Henig (1982)) A pair (x0, y0) is called a local Henig-properly efficient
pair if there is U ∈ U(x0) and a pointed convex cone H ⊆ Y with C \ {0} ⊆
int H such that

(F (A∩U)−y0)∩−H = {0}. (1)

(b) (e.g. Khanh (1992)) Let λ ∈ C∗ \ {0}. A pair (x0, y0) is said to be
a local λ-properly efficient pair if there is U ∈ U(x0) such that, ∀x ∈ A ∩ U ,

〈λ, F (x)− y0〉 ≥ 0. (2)

Of course if U = X in (a) or (b), then the word ”local” is omitted.

3.1 Henig-proper efficiency

To prove Lemma 1 below, which is needed for the main results, we use the
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following fact.

Proposition 3 (Jiménez and Novo (2003)) If S ⊆ X is convex, x0 ∈ clS
and int S 6= ∅, then

IT (int S, x0) = int cone(S − x0).

Lemma 1 If K ⊆ X is a closed convex cone with nonempty interior, z0 ∈
−K, z ∈ −int cone(K + z0) and 1

tn
(zn − z0) → z and tn → 0+ then zn ∈

−int K for large n.

Proof By Proposition 3, −z ∈ IT ( int K,−z0). The definition of IT ( int
K,−z0) implies that ∃δ > 0,∀t ∈ (0, δ), ∀u′ ∈ BX(−z, δ),−z0 + tu

′ ∈ int K.
Hence, for n large enough,

−z0 + tn

(
− 1

tn
(zn − z0)

)
∈ int K,

i.e. zn ∈ − int K. ¤

Using the two types of variational sets we can establish the following two
necessary conditions for the Henig properness.

Theorem 1 Assume that (x0, y0) is a local Henig-properly efficient pair (sat-
isfying (1)) of problem (P) and z0 ∈ G(x0) ∩ −D. Then

(a) V 1((F,G)+, x0, (y0, z0))
⋂− int ((cl H)×D(z0)) = ∅;

(b) if (u1, v1) ∈ V 1((F, G)+, x0, (y0, z0))
⋂−bd ((cl H)×D(z0)), (u2, v2) ∈

V 2((F, G)+, x0, (y0, z0), (u1, v1))
⋂−bd ((cl H)(u1)×D(z0)),..., (um−1, vm−1)

∈ V m−1((F, G)+, x0, (y0, z0), (u1, v1), ..., (um−2, vm−2))
⋂−bd ((cl H)(u1)×

D(z0)),m ≥ 2, then

V m((F, G)+, x0, (y0, z0), (u1, v1), ..., (um−1, vm−1))⋂−int ((cl H)(u1)×D(z0)) = ∅. (3)

Proof By Remark 1(b), with (u2, v2) = ... = (um−1, vm−1) = (0, 0), as-
sertion (b) becomes (a). Hence, it suffices to demonstrate (b). Suppose,
with (ui, vi), i = 1, ..., m − 1, as given in (b), there exists (y, z) in the in-

tersection in (3). By Definition 1, there are xn
(F, G)−−−→ x0, tn → 0+ and

(yn, zn) ∈ (F, G)(xn) + C ×D such that

1

tn

(
(yn, zn)− (y0, z0)− tn(u1, v1)− ...− tm−1

n (um−1, vm−1)
)
→ (y, z),

where y ∈ −int [(clH)(u1)] and z ∈ −int D(z0). For i = 2, ..., m − 1,
ui ∈ −cone [(clH) + u1]. Hence there are αi ≥ 0 and hi ∈ clH such that
ui = −αi(hi + u1). Therefore,
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1

tmn
(yn−y0−tnu1−...−tm−1

n um−1) =
1

tmn

(
yn−y0−tnu1+

∑m−1
i=2 αit

i
n(hi+u1)

)

=

(
yn − y0 +

∑m−1
i=2 αit

i
nhi

tn(1−∑m−1
i=2 αiti−1

n )
− u1

)
1−∑m−1

i=2 αit
i−1
n

tm−1
n

→ y.

By virtue of Lemma 1, for n large enough we have

yn − y0 +
∑m−1

i=2 αit
i
nhi ∈ −int (clH).

Then

yn−y0 ∈ −int cl(H) = − int H. (4)

Similarly, for i = 1, ...,m − 1, as vi ∈ −cone (D + z0) there are βi ≥ 0 and
di ∈ D with vi = −βi(di + z0). Consequently,

1

tmn
(zn − z0 − tnv1 − ...− tm−1

n vm−1)

=

(
zn +

∑m−1
i=1 βit

i
ndi

1−∑m−1
i=1 βitin

− z0

)
1−∑m−1

i=1 βit
i
n

tmn
→ z.

Again Lemma 1 implies that

zn ∈ −int D. (5)

On the other hand, there exist (ȳn, z̄n) ∈ (F,G)(xn) and (c̄n, d̄n) ∈ C × D
such that

(yn, zn) = (ȳn, z̄n) + (c̄n, d̄n).

Hence, (4) and (5) together imply, for sufficiently large n, that

ȳn + c̄n − y0 ∈ −int H, z̄n + d̄n ∈ −int D.

Therefore,

ȳn − y0 ∈ −int H, z̄n ∈ −int D,

contradicting the fact that (x0, y0) is a local Henig-properly efficient pair. ¤

By a similar proof we have

Theorem 2 Assume the same as for Theorem 1. Then

(a) W 1((F,G)+, x0, (y0, z0))
⋂− int ((cl H)×D) = ∅;

(b) if (u1, v1) ∈ W 1((F, G)+, x0, (y0, z0))
⋂−bd ((cl H)×D), (u2, v2) ∈

W 2((F, G)+, x0, (y0, z0), (u1, v1))
⋂−bd ((cl H)(u1)×D(v1)),..., (um−1, vm−1)
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∈ Wm−1((F, G)+, x0, (y0, z0), (u1, v1), ..., (um−2, vm−2))
⋂−bd ((cl H)(u1)×

D(v1)),m ≥ 2, then

Wm((F,G)+, x0, (y0, z0), (u1, v1), ..., (um−1, vm−1))⋂−int ((cl H)(u1)×D(v1)) = ∅.
With relaxed convexity assumptions we establish the following sufficient

condition

Theorem 3 For problem (P) assume that x0 ∈ A, y0 ∈ F (x0), z0 ∈ G(x0) ∩
−D and S ⊆ domF∩domG. Assume either S is star-shaped at x0, F is
C-convex-along-rays at (x0, y0) and G is D-convex-along-rays at (x0, z0) or
(F,G) is pseudoconvex at (x0, (y0, z0)). Assume further that H is a pointed
convex cone in Y with C \ {0} ⊆ int H. Then (x0, y0) is a Henig-properly
efficient pair if one of the following conditions is satisfied

(a) V 1((F,G)+, x0, (y0, z0))
⋂−(H ×D(z0)) = {(0, 0)};

(b) if (u1, v1) ∈ V 1((F, G)+, x0, (y0, z0))
⋂−bd (H ×D(z0)), (u2, v2) ∈

V 2((F, G)+, x0, (y0, z0), (u1, v1))
⋂−bd (H(u1)×D(z0)),..., (um−1, vm−1) ∈

V m−1((F,G)+, x0, (y0, z0), (u1, v1), ..., (um−2, vm−2))
⋂−bd (H(u1)×D(z0)),

m ≥ 2, then

V m((F, G)+, x0, (y0, z0), (u1, v1), ..., (um−1, vm−1))⋂−(H(u1)×D(z0)) ⊆ {(0, 0)}.
Proof Similarly as above we need to prove only (a). By Proposition 1 we
have, ∀x ∈ S,

(F, G)(x)− (y0, z0) ⊆ V 1((F,G)+, x0, (y0, z0)).

Then

((F,G)(x)−(y0, z0))
⋂−(H×D(z0)) = ∅. (6)

Suppose to the contrary that x ∈ A and y ∈ F (x) exist such that y − y0 ∈
−H \ {0}. Since x ∈ A, there is z ∈ G(x) ∩ −D. Then z − z0 ∈ −D − z0 ⊆
−D(z0). Thus,

(y, z)− (y0, z0) ∈ −(H ×D(z0)) \ {(0, 0)},
contradicting (6). ¤

Remark 2 Using Proposition 2, we can easily derive Theorem 8 of Liu and
Gong (2000) and Theorem 2.1 of Jahn and Khan (2002) from Theorem 1(a).
Theorem 8 of Liu and Gong (2000) can be deduced also from Theorem 2(a).

Theorem 1 and 2 are more effective than Theorems 8 of Liu and Gong
(2000) and 2.1 of Jahn and Khan (2002) in the following example.
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Example 4 Let X = Y = R, C = R+, (x0, y0) = (0, 0) and F (x) = {−x4}.
Then, ∀x ∈ R,

T 1
epiF (x0, y0) = R× R+,

ED1F (x0, y0)(x) = 0.

If H is a pointed convex cone with C \ {0} ⊆ int H, then H = R+ and,
∀x ∈ R,

ED1F (x0, y0)(x) ∩ −int H = ∅,
i.e. the necessary condition stated in Theorems 8 of Liu and Gong (2000)
and 2.1 of Jahn and Khan (2002) are fulfilled and these theorems cannot be
employed. However, since V 1(F+, x0, y0) = R intersects−int H, our Theorem
1 says that (x0, y0) is not a local Henig-properly efficient pair.

If C has a base B, then there is a slightly stronger notion than the Henig-
proper efficiency.

Definition 8 (Borwein and Zhuang (1993)) Let C have a base B and
δ = inf{‖b‖| b ∈ B} > 0. A pair (x0, y0) with x0 ∈ A and y0 ∈ F (x0) is said
to be a local strong Henig-properly efficient pair of problem (P) if there are
U ∈ U(x0) and ε ∈ (0, δ) such that

(F (A∩U)− y0)∩−int Cε(B) = ∅, (7)

where Cε(B) = cone (B + εBX) with BX being the unit ball in X.

It is known (Borwein and Zhuang (1993)) that cl (int Cε(B)) is a pointed
convex cone and C \ {0} ⊆ int Cε(B). Then taking H = cl C ε

2
(B) we have

from (7)

(F (A ∩ U)− y0) ∩ −H = {0},
i.e. the above notion is indeed stronger than the local Henig-proper efficiency.
If B is compact, then the two notions coincide.

Theorems 1 and 2 are evidently still valid for the local strong Henig-proper
efficiency. Moreover, by proofs similar to that of Theorems 1 and 2 we have
the following modifications.

Theorem 4 Assume that C has a base and (x0, y0) is a local strong Henig-
properly efficient pair of problem (P) satisfying (7). Then, ∀z0 ∈ G(x0)∩−D,

(a) V 1((F,G)+, x0, (y0, z0))
⋂− int (Cε(B)×D(z0)) = ∅;

(b) if (u1, v1) ∈ V 1((F, G)+, x0, (y0, z0))
⋂−bd (Cε(B)×D(z0)),..., (um−1,

vm−1) ∈ V m−1((F,G)+, x0, (y0, z0), (u1, v1), ..., (um−2, vm−2))
⋂−bd (Cε(B)×
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D(z0)),m ≥ 2, then

V m((F, G)+, x0, (y0, z0), (u1, v1), ..., (um−1, vm−1))⋂−int (Cε(B)×D(z0)) = ∅.
Theorem 5 With the assumptions of Theorem 4 we have

(a) W 1((F,G)+, x0, (y0, z0))
⋂− int (Cε(B)×D) = ∅;

(b) if (u1, v1) ∈ W 1((F, G)+, x0, (y0, z0))
⋂−bd (Cε(B)×D), (u2, v2) ∈

W 2((F, G)+, x0, (y0, z0), (u1, v1))
⋂−bd (Cε(B)×D(v1)),..., (um−1, vm−1) ∈

Wm−1((F,G)+, x0, (y0, z0), (u1, v1), ..., (um−2, vm−2))
⋂−bd (Cε(B)×D(v1)),

m ≥ 2, then

Wm((F,G)+, x0, (y0, z0), (u1, v1), ..., (um−1, vm−1))⋂−int (Cε(B)×D(v1)) = ∅.
Proving similarly as for Theorem 3 we get the following sufficient condi-

tion.

Theorem 6 Let x0, y0, z0 and the generalized convexity condition be as in
Theorem 3. Assume that C has a base B, δ = inf{‖b‖| b ∈ B} and ε ∈ (0, δ).
Then (x0, y0) is a strong Henig-properly efficient pair if one of the following
condition holds

(a) V 1((F,G)+, x0, (y0, z0))
⋂− ((int Cε(B))×D(z0)) = ∅;

(b) if (u1, v1) ∈ V 1((F, G)+, x0, (y0, z0))
⋂−bd (Cε(B)×D(z0)),..., (um−1,

vm−1) ∈ V m−1((F,G)+, x0, (y0, z0), (u1, v1), ..., (um−2, vm−2))
⋂−bd (Cε(B)×

D(z0)),m ≥ 2, then

V m((F, G)+, x0, (y0, z0), (u1, v1), ..., (um−1, vm−1))⋂−((int Cε(B))×D(z0)) = ∅.
Remark 3 We can prove the modifications of Theorems 4-6, where in all
formulae with (uk, vk), k = 2, ..., m − 1, involved, Cε(B) is replaced by (cl
Cε(B))(u1), similarly as for the other theorems of Section 3. Then the con-
clusions are stronger since Cε(B) ⊆ (cl Cε(B))(u1). The present forms of
Theorems 4-6 are more convenient to derive the following Theorem 4.1 of Li
and Chen (2006).

Corollary 1 (Li and Chen (2006)) Suppose that C has a base B with
δ = inf{‖b‖| b ∈ B}, (x0, y0) ∈ grF, z0 ∈ G(x0) ∩ −D and (ui, vi − y0, wi) ∈
X × (−C) × (−D), i = 1, ..., m − 1. If (x0, y0) is a strong Henig-properly
efficient pair satisfying (7). Then

(
EDbm

g (F,G)(x0, y0, z0, u1 − x0, v1 − y0, w1 − z0, ..., um−1 − x0, vm−1 − y0,
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wm−1−z0)(x)+C×D+(0, z0)
)⋂−int (Cε(B)×D) = ∅, (8)

for all x ∈ Ω := domEDbm
g (F, G)(x0, y0, z0, u1−x0, v1−y0, w1−z0, ..., um−1−

x0, vm−1 − y0, wm−1 − z0).

Proof By the definition of EDbm
g , x ∈ Ω and

(y, z) ∈ EDbm
g (F,G)(x0, y0, z0, u1 − x0, v1 − y0, w1 − z0,

..., um−1 − x0, vm−1 − y0, wm−1 − z0)(x) (9)

mean that

(x, y, z) ∈ T bm
epi(F,G)(x0, y0, z0, u1 − x0, v1 − y0, w1 − z0,

..., um−1 − x0, vm−1 − y0, wm−1 − z0).

Therefore,

(u1 − x0, v1 − y0, w1 − z0) ∈ T b1
epi(F,G)(x0, y0, z0),

...

(um−1 − x0, vm−1 − y0, wm−1 − z0) ∈ T
b(m−1)
epi(F,G)(x0, y0, z0,

w1 − z0, ..., um−2 − x0, vm−2 − y0, wm−2 − z0).

By Proposition 2,

(v1 − y0, w1 − z0) ∈ V 1((F,G)+, x0, (y0, z0)),

...

(vm−1 − y0, wm−1 − z0) ∈ V m−1((F, G)+, x0, (y0, z0),

(v1 − y0, w1 − z0), ..., (vm−2 − y0, wm−2 − z0)).

On the other hand, by the assumptions of the corollary,

(v1 − y0, w1 − z0) ∈ −C × (D + z0) ⊆ − cl (Cε(B)×D(z0)).

Theorem 4(a) then implies that

(v1 − y0, w1 − z0) ∈ −bd (Cε(B)×D(z0)).

Similarly, by Theorem 4, for k = 3, ..., m,

(vk−1 − y0, wk−1 − z0) ∈ −bd (Cε(B)×D(z0)).

Hence, it follows from Proposition 2, (9) and Theorem 4(b) that

(y, z) 6∈ −int (Cε(B)×D),

i.e. one gets (8). ¤

Remark 4 (i) Similarly as for Corollary 1 (i.e. Theorem 4.1 of Li and Chen
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(2006)), Theorem 4 implies also Theorem 4.2 of Li and Chen (2006) and
Theorem 1 of Liu and Gong (2000).

(ii) By Proposition 2, from Theorem 4 we derive also Theorems 4.1 and 4.2
of Li and Chen (2006) with EDbm

g replaced by EDm
g , which are new results.

The following example explains that Theorem 4 is more advantageous than
Theorems 4.1 and 4.2 of Li and Chen (2006) and Theorem 1 of Liu and Gong
(2000) in some cases.

Example 5 Let X = Y = Z = R, S = X, C = R+, D = R, (x0, y0) =
(0, 0), G(x) = {0},∀x ∈ R and

F (x) = {y ∈ R| y ≥ −xm+1},
where m is a positive integer. Choose B = {1} as a base of C then δ = 1
and Cε(B) = R+, ∀ε ∈ (0, δ). Let z0 = 0, (ui, vi, wi) ∈ X × (−C)× (−D), i =
1, ..., m− 1. Then,

epi(F, G) = {(x, y, z) ∈ R3| y ≥ −xm+1},
Tm

epi(F,G)(x0, y0, z0, u1, v1, w1, ..., um−1, vm−1, wm−1) ⊆ R× R+ × R,

Dm(F,G)+(x0, y0, z0, u1, v1, w1, ..., um−1, vm−1, wm−1)(x) ⊆ R+ × R,∀x ∈ R.

Then, ∀x ∈ R,∀ε ∈ (0, 1),

Dm(F, G)+(x0, y0, z0, u1, v1, w1, ..., um−1, vm−1, wm−1)(x)⋂−int (Cε(B)×D) = ∅.
Consequently, the necessary optimality conditions stated in three theorems
of Li and Chen (2006) and Liu and Gong (2000) cannot be applied. How-
ever, our Theorem 4 rejects (x0, y0) from candidates for local Henig-proper
efficiency, since

V 1((F, G)+, x0, (y0, z0)) = R2

intersects −int (Cε(B)×D) for all ε ∈ (0, 1).

3.2 λ-proper efficiency

Theorem 7 Assume that (x0, y0) is a local λ-properly efficient pair of problem
(P) and z0 ∈ G(x0) ∩ −D. Then

(a) (λ, I)
(
V 1((F,G)+, x0, (y0, z0))

)⋂−int (R+ ×D(z0)) = ∅;

(b) if (u1, v1) ∈ V 1((F, G)+, x0, (y0, z0))
⋂−(C ×D(z0)), (u2, v2) ∈

V 2((F, G)+, x0, (y0, z0), (u1, v1))
⋂−(C(u1)×D(z0)),..., (um−1, vm−1) ∈

V m−1((F,G)+, x0, (y0, z0), (u1, v1), ..., (um−2, vm−2))
⋂−(C(u1)×D(z0)),m ≥
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2, then

(λ, I)
(
V m((F,G)+, x0, (y0, z0), (u1, v1), ..., (um−1, vm−1))

)

⋂−int (R+ ×D(z0)) = ∅.

Proof It suffices to prove (b). Suppose to the contrary that we have (2) but
with (u1, v1), ..., (um−1, vm−1) as in (b) we have

(λ, I)(y, z) ∈ (λ, I)
(
V m((F, G)+, x0, (y0, z0), (u1, v1), ..., (um−1, vm−1))

)

⋂−int (R+ ×D(z0)).

By Definition 1, there are xn
(F, G)−−−→ x0, tn → 0+, (yn, zn) ∈ (F, G)(xn) +

C ×D such that

1

tmn
(yn − y0 − tnu1 − ...− tm−1

n um−1) → y with λ(y) < 0, (10)

1

tmn
(zn−z0−tnv1−...−tm−1

n vm−1) → z ∈ −int D(z0). (11)

∀i = 2, ...,m − 1, since ui ∈ −cone (C + u1), ui = −αi(ci + u1) for some
αi ≥ 0 and ci ∈ C. Hence (10) implies that

1

tmn

(
yn − y0 +

∑m−1
i=2 αit

i
nci − tn(1−∑m−1

i=2 αit
i−1
n )u1

)

:=
1

tmn
(yn − y0 + c0) → y.

For large n, since c0 ∈ C and λ ∈ C∗, we have

1

tmn
λ(yn − y0 + c0) → λ(y) < 0.

Hence

λ(yn − y0) < 0.

Similarly, for large n, from (11) we have zn ∈ −int D.

On the other hand, there are (ȳn, z̄n) ∈ (F, G)(xn) and (c̄n, d̄n) ∈ C × D
such that

(yn, zn) = (ȳn, z̄n) + (c̄n, d̄n).

Therefore, for large n, λ(ȳn − y0) < 0 and z̄n ∈ −int D, a contradiction with
the assumed local efficiency. ¤
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By a similar proof we get

Theorem 8 Assume the same as for Theorem 7. Then

(a) (λ, I)
(
W 1((F,G)+, x0, (y0, z0))

)⋂−int (R+ ×D) = ∅;

(b) if (u1, v1) ∈ W 1((F, G)+, x0, (y0, z0))
⋂−(C ×D), (u2, v2) ∈

W 2((F, G)+, x0, (y0, z0), (u1, v1))
⋂−(C(u1)×D(v1)),..., (um−1, vm−1) ∈

Wm−1((F,G)+, x0, (y0, z0), (u1, v1), ..., (um−2, vm−2))
⋂−(C(u1)×D(v1)),m ≥

2, then

(λ, I)
(
Wm((F, G)+, x0, (y0, z0), (u1, v1), ..., (um−1, vm−1))

)
⋂−int (R+ ×D(v1)) = ∅.

For a sufficient condition we have

Theorem 9 Let the generalized convexity assumption of Theorem 3 be sat-
isfied. Then (x0, y0) is a λ-properly efficient pair if one of the following
conditions is fulfilled

(a) (λ, I)
(
V 1((F,G)+, x0, (y0, z0))

)⋂−int (R+ ×D(z0)) = ∅;

(b) if (u1, v1) ∈ W 1((F, G)+, x0, (y0, z0))
⋂−(C ×D(z0)), (u2, v2) ∈

W 2((F, G)+, x0, (y0, z0), (u1, v1))
⋂−(C(u1)×D(z0)),..., (um−1, vm−1) ∈

Wm−1((F,G)+, x0, (y0, z0), (u1, v1), ..., (um−2, vm−2))
⋂−(C(u1)×D(z0)), m ≥

2, then

(λ, I)
(
Wm((F, G)+, x0, (y0, z0), (u1, v1), ..., (um−1, vm−1))

)
⋂−int (R+ ×D(z0)) = ∅.

Proof It is similar to that of Theorem 3. ¤

The following corollary is an immediate consequence of Theorem 7 (or
Theorem 8) and Proposition 2.

Corollary 2 (Liu and Gong (2000)) If (x0, y0) is a λ-properly efficient pair
of (P), ED1F (x0, y0) exists and S − x0 ⊆ domED1F (x0, y0), then, ∀x ∈ S,

〈λ,ED1F (x0, y0)(x− x0)〉 ≥ 0.

The example below gives a case where our Theorems 8 and 9 can be used
but Corollary 2 (i.e. Theorem 3 of Liu and Gong (2000)) cannot.

Example 6 Let X = Y = R, S = R, C = R+, (x0, y0) = (0, 0), F (x) = {y ∈ R|
y ≥ −x2} and λ = 1. Then
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T 1
epiF (x0, y0) = R× R+,

ED1F (x0, y0)(x) = 0,∀x ∈ R.

Therefore 〈λ,ED1F (x0, y0)(R)〉 ≥ 0 and Corollary 2 cannot be used. On the
other hand, V 1(F+, x0, y0) = R and (x0, y0) is not a local λ-properly efficient
pair, according to Theorem 8 (or Theorem 9).

3.3 Lagrange multiplier forms

We can formulate dual forms of the above optimality conditions by using
Lagrange multipliers depending on the points of variational sets as follows.
The core of the (simple) proof is the clear observation: y 6∈ − intC is equiv-
alent to the existence of a Lagrange multiplier c∗ ∈ C∗ such that 〈c∗, y〉 ≥ 0
and y 6∈ − clC is equivalent to 〈c∗, y〉 > 0. Since the proof of the Lagrange
multiplier forms of our optimality conditions are straightforward and the
formulations of the theorems are similar, we state, without proof, only the
theorem corresponding to Theorem 1.

Theorem 10 Assume that (x0, y0) is a local Henig-properly efficient pair of
problem (P) and z0 ∈ G(x0) ∩ −D. Then

(a) ∀(y, z) ∈ V 1((F,G)+, x0, (y0, z0)), ∃(h∗, d∗) ∈ H∗ ×D∗ \ {(0, 0)} such
that 〈d∗, z0〉 = 0 and 〈h∗, y〉+ 〈d∗, z〉 ≥ 0;

(b) if (u1, v1) ∈ V 1((F, G)+, x0, (y0, z0))
⋂−bd ((cl H)×D(z0)), (u2, v2) ∈

V 2((F, G)+, x0, (y0, z0), (u1, v1))
⋂−bd ((cl H)(u1)×D(z0)),..., (um−1, vm−1)

∈ V m−1((F, G)+, x0, (y0, z0), (u1, v1), ..., (um−2, vm−2))
⋂−bd ((cl H)(u1)×

D(z0)),m ≥ 2, then ∀(y, z) ∈ V m((F, G)+, x0, (y0, z0), (u1, v1), ..., (um−1,
vm−1)), ∃(h∗, d∗) ∈ H∗ × D∗ \ {(0, 0)} such that 〈h∗, u1〉 = 〈d∗, z0〉 = 0 and
〈h∗, y〉+ 〈d∗, z〉 ≥ 0.

From the Lagrange multiplier forms we see that the gaps between our
necessary and sufficient conditions are rather ”minimal”: strict positiveness
replaces nonnegativeness. In the primal forms, correspondingly, the gaps are
only the boundary of −C.
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