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Abstract
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1. Introduction

Many e®orts have been made for the last decade to propose general setting

problems related to optimization, beginning with [5] where an equilibrum problem

has been considered, see e.g. [2-4,6,10,16].

Very recently inclusion problems were investigated as a generalization of equi-

librium problems, in order to include a wide class of problems in diverse ¯elds such

as variational inequalities, vector optimization, game theory, ¯xed point and coin-

cidence point problems, the Nash equilibrium problem, complementarity problems,

tra±c equilibria, etc. [18-20]. It should be noted here that the term "variational

inclusion" is understood in di®erent ways in several recent papers. In [9,13] it

means simply multivalued variational inequalities. Variational inclusion problems

in [1,7,8] are problems of ¯nding zeroes of maximal monotone mappings. In this

note the terminology is similar to [18-20]. Observing that such inclusion problems,

although rather general, do not include some general equilibrium problems or are

not convenient for studying solution existence (see (c) below), we propose in this

note four variants of general inclusion problems to amend existing problem settings

and establish su±cient conditions for the solutions existence.

In the sequel, if not otherwise stated, let X, Y and Z be real topological

vector spaces, X be Hausdor® and A μ X be a nonempty closed convex subset.

Let C : A! 2Y , S1 : A! 2X , S2 : A! 2Xand T : A£X ! 2Z be multifunctions

such that C(x) is a closed convex cone with int C(x) 6= ; for each x 2 A. Let
F : T (A £X) £X £ A ! 2Y and G : T (A £X) £X £ A ! 2Y be multivalued
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mappings. We consider the following four problems.

(IP1) Find ¹x 2 S1(¹x), such that, 8y 2 S2(¹x), 8¹t 2 T (¹x; y),
F (¹t; y; ¹x) μ G(¹t; ¹x; ¹x):

(IP2) Find ¹x 2 S1(¹x), such that, 8y 2 S2(¹x), 9¹t 2 T (¹x; y),
F (¹t; y; ¹x) μ G(¹t; ¹x; ¹x):

(IP3) Find ¹x 2 S1(¹x), such that, 8y 2 S2(¹x), 8¹t 2 T (¹x; y),
F (¹t; y; ¹x) \G(¹t; ¹x; ¹x)6= ;:

(IP4) Find ¹x 2 S1(¹x), such that, 8y 2 S2(¹x), 9¹t 2 T (¹x; y),
F (¹t; y; ¹x) \G(¹t; ¹x; ¹x)6= ;:

To motivate the problem setting let us look at several special cases.

(a) If C(¹x) ´ C, G(t; x; x) = F (t; x; x) + C, where C μ Y is a closed cone,

(IP1) becomes the variational inclusion problem with constraints considered in

[18]:

(IP) Find ¹x 2 S1(¹x) such that, 8y 2 S2(¹x), 8¹t 2 T (¹x; y),
F (¹t; y; ¹x) μ F (¹t; ¹x; ¹x) + C:

If we replace T by the mapping (x; y)7! T (x; x) we get a variational inclusion

problem of Minty type. If T is replaced by the mapping (x; y)7! T (y; y) one has

a variational inclusion problem of Stampacchia type.

(b) If T (x; y) is replaced by (x; y)7! T (x; x) := T (x), S1(x) = S2(x) := S(x)

and C(¹x) ´ C, a closed cone, then (IP1) coincides with the upper variational

inclusion problem investigated in [19]:
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(UIP) Find ¹x 2 S(¹x) such that, 8y 2 S(¹x), 8¹t 2 T (¹x),
F (¹t; y; ¹x) μ F (¹t; ¹x; ¹x) + C:

(c) Note that (IP) and (UIP) do not include the following general equilibrium

problem (without severe assumptions on F ):

(EP) Find ¹x 2 S1(¹x) such that, 8y 2 S1(¹x), 8¹t 2 T (¹x),
F (¹t; y; ¹x) μ C.

But our problem (IP1) clearly does.

(d) If S1(x) = S2(x) ´ A, T is replaced by (x; y) 7! T (x; x) := T (x),

Z = L(X; Y ) (the space of linear continuous mappings of X into Y ), F is single-

valued and G(t; x; x) = Y n¡intC(x), then (IP4) collapses to the implicit vector
variational inequality studied in [14,15]:

(IVI) Find ¹x 2 A such that, 8y 2 A, 9¹t 2 T (¹x),
F (¹t; y; ¹x)62 ¡int C(¹x).

(e) If S1(x) = S2(x) := K(x), Z = L(X;Y ), F (t; y; x) = (t; x ¡ y) and
G(t; x; x) = Y n¡intC(x), where (t; x) denotes the value of a linear mapping t at
x, then (IP4) is reduced to the vector quasivariational inequality problem (inves-

tigated by many authors):

(QVI) Find ¹x 2 K(¹x) such that, 8y 2 K(¹x), 9¹t 2 T (¹x),
(¹t; y ¡ ¹x)62 ¡intC(¹x).
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2. Preliminaries

We recall ¯rst some de¯nitions needed in the sequel. Let X and Y be topo-

logical spaces. A multifunction H : X ! 2Y is said to be upper semicontinuous

(usc) at x0 2 domH := fx 2 X : H(x)6= ;g if for each neighborhood U of H(x0),
there is a neighborhood N of x0 such that H(N) μ U . H is called usc if H is usc at

each point of domH. In the sequel all properties de¯ned at a point will be extended

to domains in this way. H is called lower semicontinuous (lsc) at x0 2 domH if for

each open subset U satisfying U \ H(x0)6= ; there exists a neighborhood N of

x0 such that, for all x 2 N; U \H(x)6= ;. An equivelent statement is: H is lsc at

x0 2 X if and only if for any y0 2 H(x0) and for any net fx®g in X converging to

x0, there is a net fy®g such that y® 2 H(x®) for every ® and y® ! y0. H is said

to be continuous at x 2 domH if H is both usc and lsc at x. H is termed closed

at x 2 domH if 8x® ! x; 8y® 2 H(x®) such that y® ! y, then y 2 H(x). It is
known that if H is usc and has closed values, then H is closed.

Now let Y is a topological vector space. A multivalued mapping H : X ! 2Y

is said to be upper C-continuous at x0 2 X if for any neighborhood V of the origin

in Y there is a neighborhood U of x0 such that H(x) μ H(x0) + V + C, 8x 2 U .
H is said to be lower C-continuous at x0 2 X if for any neighborhood V of the

origin in Y there is a neighborhood U of x0 such that H(x0) μ H(x) + V ¡ C
holds for all x 2 U . H is C-continuous if H is both upper C-continuous and lower

C-continuous.

A multifunctionH of a subset A of a topological vector spaceX intoX is said
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to be a KKM mapping in A if for each fx1; :::; xng μ A, one has cofx1; :::; xng μSn
i=1H(xi), where cof.g stands for the convex hull.

The main tool for proving our results is the following well-known KKM-Fan

theorem.

Theorem 2.1. Assume that X is a topological vector space, A μ X is nonempty

convex and H : A ! 2X is a KKM mapping with closed values. If A is compact,

then
T
x2AH(x)6= ;.

We propose the following generalized convexity de¯nitions. LetD;K be sets,

X be a vector space, A μ X be a convex subset. Let F;G : D£A£A! 2K and

T : X £ A ! 2D be multifunctions. F is called G-quasiconvex with respect to T

of type 1 if, for any subset fx1; :::; xng μ A and for any x 2 cofx1; :::; xng one can
¯nd some i 2 f1; :::; ng such that

F (t; xi; x) μ G(t; x; x); 8t 2 T (x; xi). (1)

F is said to be G-quasiconvex with respect to T of type 2 if in (1) we replace

8t by 9t.
F is said to be G-quasiconvexlike with respect to T of type 1 if for any subset

fx1; :::; xng μ A and for any x 2 cofx1; :::; xng one can ¯nd some i 2 f1; :::; ng such
that

F (t; xi; x)\G(t; x; x)6= ;; 8t 2 T (x; xi). (2)

If 8t in (2) is replaced by 9t, we say that F is G-quasiconvexlike with respect
to T (x) of type 2.
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If T (x; y) = fxg and G(t; x; y) = C(y), G-quasiconvexity with respect to T of
types 1 and 2 collapse to the strong type 1 C-diagonally quasiconvexity in the ¯rst

argument and G-quasiconvexlikeness with respect to T of types 1 and 2 collapse

to the strong type 2 one in [17].

3. Main results

Theorem 3.1. For problem (IP1) assume that the following conditions hold

(i) A is nonempty and compact;

(ii) S1(:) is closed, S2(x) is nonempty with co(S2(x)) μ S1(x), A\ S2(x)6= ;
and S¡12 (y) is open in A, for all x; y 2 A;

(iii) F is G-quasiconvex with respect to T of type 1;

(iv) for each y 2 A, fx 2 A : 8t 2 T (x; y); F (t; y; x) μ G(t; x; x)g is closed.
Then, (IP1) has a solution.

Proof. For x; y 2 A set
E := fx 2 A : x 2 S1(x)g,
P (x) := f z 2 A : 9t 2 T (x; z); F (t; z; x)6μ G(t; x; x)g;

©(x) :=

(
S2(x) \ P (x) ifx 2 E;
A \ S2(x) ifx 2 AnE;

Q(y) := An©¡1(y):
We show ¯rst that Q(:) is a KKM mapping in A. Indeed, suppose there

is a convex combination x̂ :=
Pn

j=1 ®jyj in A such that x̂ 62
Sn
j=1Q(yj). Then,
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x̂ 62 Q(yj), i.e., yj 2 ©(x̂) for j = 1; :::; n. If x̂ 2 E, one has yj 2 P (x̂), i.e.,
9t 2 T (x̂; yj), F (t; yj; x̂) 6μ G(t; x̂; x̂) for j = 1; :::; n, contradicting (iii). On the

other hand, if x̂ 2 AnE, then yj 2 ©(x̂) = A \ S2(x̂), j = 1; :::; n. So yj 2
co(S2(x̂)) and x̂ :=

Pn
j=1 ®jyj 2 co(S2(x̂)) μ S1(x̂), another contradiction. Thus,

Q(:) must be KKM.

Next we verify the closedness of Q(y), 8y 2 A. One has

©¡1(y) = [E \ S¡12 (y) \ P¡1(y)] [ [(AnE) \ S¡12 (y)]

= [(AnE) [ P¡1(y)] \ S¡12 (y):

Therefore,

Q(y) = Anf[(AnE) [ P¡1(y)] \ S¡12 (y)g

= fAn[(AnE) [ P¡1(y)]g [ (AnS¡12 (y)]

= [E \ (AnP¡1(y))] [ (AnS¡12 (y)): (3)

As S1(:) is closed, so is E. We have

AnP¡1(y) = fx 2 A : y62 P (x)g
= fx 2 A : 8t 2 T (x; y); F (t; y; x) μ G(t; x; x)g,

which is closed by (iv). It follows from (3) that Q(y) is closed.

Applying Theorem 2.1 one obtains a point ¹x such that

¹x 2
\
y2A

Q(y) = An
[
y2A

©¡1(y):

So, ¹x 62 ©¡1(y), 8y 2 A, i.e., ©(¹x) = ;. If ¹x 2 AnE, then, ©(¹x) = A \ S2(¹x),
contradicting (ii). If ¹x 2 E, one has ; = ©(¹x) = S2(¹x) \ P (¹x). Thus, for all
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y 2 S2(¹x); y62 P (¹x), i.e., 8t 2 T (¹x; y),F (t; y; ¹x) μ G(t; ¹x; ¹x), which means that ¹x is
a solution of (IP1). ¤

Theorem 3.2. For problem (IP2) assume (i) and (ii) of Theorem 3.1. Assume

further that

(iii2) F is G-quasiconvex with respect to T of type 2;

(iv2) for each y 2 A, fx 2 A : 9t 2 T (x; y); F (t; y; x) μ G(t; x; x)g is closed.
Then, (IP2) is solvable.

Proof. Using the same argument as in the proof of Theorem 3.1, with

P (x) := f z 2 A : 8t 2 T (x; z); F (t; z; x)6μ G(t; x; x)g: ¤

Theorem 3.3. For problem (IP3) assume (i) and (ii) of Theorem 3.1 and

(iii3) F is G-quasiconvexlike with respect to T of type 1;

(iv3) for each y 2 A, fx 2 A : 8t 2 T (x; y); F (t; y; x) \G(t; x; x)6= ;g is
closed.

Then, (IP3) has solutions.

Proof. By using another set P (x) de¯ned by

P (x) := f z 2 A : 8t 2 T (x; z); F (t; z; x) \G(t; x; x)6= ;g:
and similar reasoning as that of the proof of Theorem 3.1 one gets the conclusion.¤

Passing ¯nally to (IP4) we have

Theorem 3.4. For problem (IP4) assume (i) and (ii) as in Theorem 3.1 and
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(iii4) F is G-quasiconvexlike with respect to T of type 2;

(iv4) for each y 2 A, fx 2 A : 9t 2 T (x; y); F (t; y; x) \G(t; x; x)6= ;g is
closed.

Then, (IP4) has solutions.

4. Special cases and applications

In this section we deal with some particular cases in order to derive direct

consequences of our main results and show that these consequences improve several

recent results in the literature. So the applications presented here are by no means

typical or complete.

First, from Theorem 3.1, we get the following solution existence result for (IP).

Corollary 4.1. Assume that (i) and (ii) of Theorem 3.1 hold and

(iii) C(x) ´ C and F is (F + C)-quasiconvex with respect to T of type 1;
(iv) for each y 2 A, fx 2 A : 8t 2 T (x; y); F (t; y; x) μ F (t; x; x) + Cg is

closed.

Then, (IP) has solutions.

Proof. We simply apply Theorem 3.1 withG(t; x; x) = F (t; x; x)+C. ¤

Remark 4.1. The assumption (iv) in Corollary 4.1 is satis¯ed provided that

(a) Y is a locally convex space;

(b) C(x) ´ C is a nonempty closed cone;
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(c) for each y 2 A; T (:; y) is lsc;
(d) for each y 2 A, F(.,y,.) is lower (¡C)-continuous; F (t; x; x) is upper

C-continuous in (t; x) and has compact values.

Indeed, for every ¯xed y 2 A, set

My := fx 2 A : 8t 2 T (x; y); F (t; y; x) μ F (t; x; x) + Cg:

Assume that fx®g μ My, x® ! x¤. By (c), for every t¤ 2 T (x¤; y), there exists a
net t® 2 T (x®; y) such that t® ! t¤. We have

F (t®; y; x®) μ F (t®; x®; x®)+C: (4)

As F (:; y; :) is lower (¡C)-continuous, for every neighborhood V1 of the origin,
there is a subnet ft¯; x¯g of ft®; x®g such that

F (t¤; y; x¤) μ F (t¯; y; x¯)+V1+C: (5)

Since F (t; x; x) is upper C-continuous in (t; x), for every neighborhood V2 of

the origin, we can assume that

F (t¯; x¯; x¯) μ F (t¤; x¤; x¤)+V2+C: (6)

From (4), (5) and (6) one has, for all neighborhoods V1 and V2,

F (t¤; y; x¤) μ F (t¤; x¤; x¤)+V1+V2+C. (7)

We claim that F (t¤; y; x¤) μ F (t¤; x¤; x¤)+C. Indeed, suppose there is some
v 2 F (t¤; y; x¤) and v 62 F (t¤; x¤; x¤) + C. Then F (t¤; x¤; x¤) + C ¡ v := S does
not meet 0. Because F (t¤; x¤; x¤) is compact, so S is closed. Thus, Sc is open and

0 2 Sc. Since Y is a locally convex space, there exists a neighborhood V of the

origin such that V = ¡V , V is convex and V ½ Sc, i.e., V \ S = ;. Then, it's
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easy to check that 0 62 (S + 1
2
V + 1

2
V ), i.e., v 62 F (t¤; x¤; x¤) + C + 1

2
V + 1

2
V ,

contracdicting (7). Thus, F (t¤; y; x¤) μ F (t¤; x¤; x¤) + C, i.e., x¤ 2 My and hence

My is closed.

Corollary 4.1 improves Thorem 3.3 in [18] since the assumptions are strictly

weaker as shown by the following example.

Example 4.1. Let X = Y = Z = R; A = [0; 1]; S1(x) = S2(x) = [0; 1]; C(x) ´
R+ and

T (x; y) =

(
[¡2;¡1:5] if x = 0:5;
[¡1;¡0:5] otherwise;

F (t; y; x) =

8>>><>>>:
¡1 if y = x = 0:5;

0 if y = x6= 0:5;
0:5 if y = 0:5; x6= 0:5;
1 if y6= 0:5; y6= x:

It is clear that T (:; y) is not lsc, F (:; y; :) is not lower (¡C)-continuous and (t; x)7!
F (t; x; x) is not upper C-continuous. Hence Theorem 3.3 of [18] does not work. But

My ´ [0; 1] is closed. So, it is not hard to see that all assumptions of Corollary 4.1
are satis¯ed. So by this corollary the considered problem has solution. By direct

checking one sees that the solution set is [0,1].

We now consider the following quasioptimization problem, see e.g. [11],

(QOP) ¯nd ¹x 2 S(¹x) such that, 8¹t 2 K(¹x),
F (¹t; ¹x; ¹x)

T
MinfF (¹t; S(¹x); ¹x)=Cg 6= ;,

where A and F are as in Section 1, C μ Y is a closed cone, S : A! 2X ; K : A! 2Z
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and MinfH=Cg denotes the set of the Pareto e±cient points of set H μ Y (with

respect to the ordering cone C).

As a consequence of Corollary 4.1 we obtain the following result.

Corollary 4.2. Assume that Y is locally convex, C is pointed, there is a bounded

set M μ Y 0
with C

0
= coneM and F (t; x; x) is compact for all (t; x) 2 T (A)£ A.

Assume also the following conditions:

(i) A is nonempty and compact;

(ii) S(:) is closed, S(x) is nonempty and convex, A\ S(x)6= ; and S¡1(y) is
open in A, for all x; y 2 A;

(iii) F is (F + C)-quasiconvex with respect to K of type 1;

(iv) for each y 2 A, fx 2 A : 8t 2 K(x); F (t; y; x) μ F (t; x; x) + Cg is
closed.

Then, (QOP) has a solution.

Proof. Applying Corollary 4.1 with S1(x) = S2(x) = S(x); T (x; y) = K(x) one

has ¹x 2 S(¹x) such that, 8y 2 S(¹x); 8¹t 2 K(¹x),
F (¹t; y; ¹x) μ F (¹t; ¹x; ¹x) + C. (8)

By the compactness of F (¹t; ¹x; ¹x), MinF (¹t; ¹x; ¹x)=C 6= ;. Suppose that ¹v 2 Min
fF (¹t; ¹x; ¹x)=Cg but ¹v 62 MinfF (¹t;K(¹x); ¹x)=Cg. One has then y 2 F (¹t;K(¹x); ¹x)
such that

¹v ¡ y 2 Cn((¡C) \ C):

By virture of (8) y 2 F (¹t; ¹x; ¹x)+C, i.e. y = v̂+c for some v̂ 2 F (¹t; ¹x; ¹x) and c 2 C.
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Therefore ¹v¡ v̂ 2 c+Cn((¡C)\C) = Cn((¡C)\C), contradicting the fact that
¹v 2 MinfF (¹t; ¹x; ¹x)=Cg. ¤

Corollary 4.2 has strictly weaker assumptions than Proposition 4.1 in [18].

As the next example of applications consider the following vector equilibrium

problem. Let F : A£A! 2Y ; C : A! 2Y .

(EP1) Find ¹x 2 A such that, 8y 2 A,
F (y; ¹x) μ C(¹x):

Corollary 4.3. For (EP1) assume that

(i) A is nonempty and compact;

(ii) F is C-quasiconvex with respect to T , where T (x) = fxg;
(iii) for each y 2 A, fx 2 A : F (y; x) μ C(x)g is closed.

Then, (EP1) has a solution.

Proof. Applying Theorem 3.1 with S1(x) = S2(x) = A; T (x; y) = fxg; G(t; x; x) =
C(x), we have the conclusion. ¤

Remark 4.2. If A is not compact, then Corollary 4.3 still holds true under the

following additional coersivity condition:

(iv) there exists a nonempty compact subset D μ A such that for each ¯nite
subset M μ A, there is a compact convex subset LM of A, containing

M , such that 8x 2 LMnD;9y 2 LM , F (y; x)6μ C(x).

14



Therefore Corollary 4.3 has weaker assumptions than Theorem 4.2 of [17].

Finally we apply Theorem 3.4 to problem (IVI) stated in Section 1.

Corollary 4.4. For (IVI) assume that

(i) A is nonempty and compact;

(ii) F is (Y n¡intC)-quasiconvexlike with respect to T of type 2;
(iii) for each y 2 A, fx 2 A : 9t 2 T (x); F (t; y; x)62 ¡ intC(x)g is closed.

Then, (IVI) has a solution.

Proof. Apply Theorem 3.4 with S1(x) = S2(x) = A; T (x; y) = fxg andG(t; y; x) =
Y n¡intC(x). ¤

Remark 4.3. Corollary 4.4 is di®erent from the results in [14,15] since assumption

(ii) on generalized convexity is di®erent from the corresponding assumptions in

[14,15]. However, the other assumptions of Corollary 4.4 are weaker than the

corresponding ones in [14,15]. The following example gives a case where Corollary

4.4 is easily applied, but the theorems in [14,15] do not work.

Example 4.2. Let X = Y = Z = R; A = [0; 1]; C(x) = R+;

T (x) =

(
[0:5; 1] if x = 0:5;

[0; 2] otherwise;

F (t; y; x) =

(
1¡ y2 if y · 0:5;
xy if y > 0:5:

It is clear that all assumptions of Corollary 4.4 are ful¯lled. But the theorems
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in [14,15] cannot be applied, since F (:; y; :) is not continuous and F (t; :; x) is not

C-convex.
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