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1. INTRODUCTION AND PRELIMINARIES

Among various meanings of stability and sensitivity of the solutions of a prob-

lem the semicontinuity has been increasingly interested recently in the literature.

Upper semicontinuity is investigated in [10, 16 − 18]for variational inequalities

and in [1, 3, 6, 22] for equilibrium problems. Lower semicontinuity is studied in

[23] for minimization problems, in [10, 17, 18] for variational inequalities and in

[1, 3] for equilibrium problems. Beside semicontinuity we observe only [2, 6, 21],

which deal with stability of equilibrium problems, where Hölder continuity is in-

vestigated.

On the other hand, in many practical problems, exact solutions do not exist

since the data of the problems are not sufficient “regular”. Moreover, the data

of the problems have often been obtained approximately by measure devices or

by statistical results. Mathematical models of practical problems describe real

situations also approximately and hence the existence of exact solutions of math-

ematical models may become unimportant. That is why approximate solutions

are of real interest. Observing that multivalued quasiequilibrium problems are

rather general problems, which include quasivariational inequalities, complemen-

tarity problems, fixed point and coincidence point problems, optimization, Nash

equilibrium problems, etc as special cases, in this note we consider the semicon-

tinuity properties of the approximate solutions of quasiequilibrium problems. In

particular, many results of [17] are improved and extended to more general set-

tings.

Throughout the paper, unless otherwise stated, let X, M , N and Λ be

Hausdorff topological spaces and Y be a metric vector space with invariant met-

ric d(., .). Let K : X × Λ → 2X , G : X × N → 2X and F : X × X × M → 2Y
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be multifunctions. Let C ⊆ Y be closed with nonempty interior and C 6= Y .

We consider the following general parametric multivalued vector quasiequilib-

rium problems formulated in [3], for each λ ∈ Λ, µ ∈ M , η ∈ N :

(WQEP1) find x̄ ∈ clK(x̄, λ) such that, for each x ∈ K(x̄, λ), there exists

x̄∗ ∈ G(x̄, η),

F (x̄∗, x, µ) ∩ (Y \ − intC) 6= ∅;

(MQEP1) find x̄ ∈ clK(x̄, λ) such that, there exists x̄∗ ∈ G(x̄, η), for all x ∈K(x̄, λ),

F (x̄∗, x, µ) ∩ (Y \ − intC) 6= ∅;

(SQEP1) find x̄ ∈ clK(x̄, λ) such that, for each x ∈ K(x̄, λ) and x̄∗ ∈ G(x̄, η),

F (x̄∗, x, µ) ∩ (Y \ − intC) 6= ∅;

(WQEP2) find x̄ ∈ clK(x̄, λ) such that, for each x ∈ K(x̄, λ), there exists

x̄∗ ∈ G(x̄, η),

F (x̄∗, x, µ) ⊆ Y \ − intC;

(MQEP2) find x̄ ∈ clK(x̄, λ) such that, there exists x̄∗ ∈ G(x̄, η), for all x ∈K(x̄, λ),

F (x̄∗, x, µ) ⊆ Y \ − intC;

(SQEP2) find x̄ ∈ clK(x̄, λ) such that, for each x ∈ K(x̄, λ) and x̄∗ ∈ G(x̄, η),

F (x̄∗, x, µ) ⊆ Y \ − intC;

where cl(.) and int(.) stand for the closure and the interior, respectively, of the set

(.). “W”, “M” and “S” would be “Weak”, “Middle” and “Strong”, respectively.

For λ ∈ Λ, µ ∈ M and η ∈ N we denote the set of the solutions of (WQEP1),

(MQEP1), (SQEP1), (WQEP2), (MQEP2) and (SQEP2) by S1(λ, µ, η), S2(λ, µ, η),
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S3(λ, µ, η) S4(λ, µ, η), S5(λ, µ, η) and S6(λ, µ, η), respectively.

Recall first some notions. Let X and Y be as above and G : X → 2Y be a

multifunction. G is said to be lower semicontinuous (lsc) at x0 if G(x0) ∩ U 6= ∅

for some open set U ⊆ Y implies the existence of a neighborhood N of x0 such

that, for all x ∈ N, G(x)∩U 6= ∅. An equivalent formulation is that: G is lsc at x0

if ∀xα → x0, ∀y ∈ G(x0),∃yα ∈ G(xα), yα → y. G is called upper semicontinuous

(usc) at x0 if for each open set U ⊇ G(x0), there is a neighborhood N of x0 such

that U ⊇ G(N). G is termed Hausdorff upper semicontinuous (H-usc) at x0 if for

each neighborhood B of the origin in Y , there is a neighborhood N of x0 such that

G(N) ⊆ G(x0)+B. G is said to be continuous at x0 if it is both lsc and usc at x0

and to be H-continuous at x0 if it is both lsc and H-usc at x0. G is called closed

at x0 if for each net (xα, yα) ∈ graphG := {(x, y) | y ∈ G(x)}, (xα, yα) → (x0, y0),

y0 must belong to G(x0). The closedness is closely related to the upper (and

Hausdorff upper) semicontinuity (see e.g. [1], Preposition 3.1). We say that G

satisfies a certain property in a subset A ⊆ X if G satisfies it at every points of

A. If A = domG := {x ∈ X : G(x) 6= ∅} we omit “in domG” in the statement.

We propose the following two definitions of ε-solutions. Let us use the

notations

comp(−intC)ε
1 =

{
y ∈ Y : d(y, Y \ −intC) ≤ ε

}
,

comp(−intC)ε
2 = (Y \ −intC) + Bε

Y ,

where Bε
Y =

{
y ∈ Y | d(0, y) ≤ ε

}
and the notation “comp(.)” is related to the

word “complement”.

DEFINITION 1.1

(a) x̄ ∈ X is called an ε−solution of type 1 of problem (WQEP1) if x̄ ∈
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clK(x̄, λ) and ∀y ∈ K(x̄, λ), ∃x̄∗ ∈ G(x̄, η),

F (x̄∗, y, µ) ∩ comp(−intC)ε
1 6= ∅. (1)

(b) If (1) is replaced by

F (x̄∗, y, µ) ∩ comp(−intC)ε
2 6= ∅,

then x̄ is said to be an ε−solution of type 2 of problem (WQEP1).

(c) ε−solutions of the other five problems are defined similarly.

Remark 1.1

(a) If x̄ is an ε−solution of type 2 then x̄ is an ε−solution of type 1. Indeed,

it suffices to show that

comp(−intC)ε
2 ⊆ comp(−intC)ε

1.

We check a more general fact that A+Bε
Y ⊆ Aε := {y ∈ Y | d(y, A) ≤ ε}.

Let y ∈ A + Bε
Y , i.e. y = a + z for some a ∈ A and z ∈ Bε

Y . Then

d(y, a) = d(y − a, 0) = d(z, 0) ≤ ε, i.e. y ∈ Aε.

(b) If Y is finite dimensional, then the two types of ε−solutions coincide.

Indeed, it suffices to check that Aε ⊆ A+Bε
Y , while A is closed. Let y ∈ Aε

be arbitrary. Then, for each n, there is an ∈ A with d(y, an) ≤ ε + 1
n
. We

have some yn ∈ Bε
Y with d(y − an − yn, 0) = d(y − an, yn) ≤ 2

n
. By the

compactness of Bε
Y we can assume that yn → y0 ∈ Bε

Y . Let a = y − y0,

un = y − an − y0 = a− an and vn = y − an − yn. Then,

0 ≤ d(an, a) = d(un, 0) ≤ d(un − vn, 0) + d(vn, 0) ≤ d(yn − y0, 0) +
2

n
.

Therefore, an → a and hence a ∈ A. Thus y = a + y0 ∈ A + Bε
Y . �
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The following two examples show that if Y is infinite dimensional, then in

general an ε−solution of type 1 is not guaranteed to be an ε−solution type 2.

EXAMPLE 1.1 Let Y = l∞, A = {xk}, where xk
1 = 1 + 1

k
, xk

k+1 = 1 and xk
j = 0,

∀j 6= 1 and j 6= k + 1. Then ‖xk − xl‖ = 1 if k 6= l and hence A is closed. Taking

yk ∈ B1
Y with yk

1 = −1, yk
k+1 = −1 and yk

j = 0 if j 6= 1 and j 6= k + 1, we have

xk + yk = ( 1
k
, 0, 0, ...) ∈ A + B1

Y and xk + yk → 0 /∈ A + B1
Y . Thus, A + B1

Y is not

closed and hence A + B1
Y is included properly in A1.

The next example is more complicated but provides the case where A has

the form Y \ −intC with C 6= Y as in Definition 1.1.

EXAMPLE 1.2 Let Y = l∞. Let

U1 =
{

u ∈ l∞
∣∣∣ 1

2
≤ u1 ≤ 1, 2 ≤ u2 ≤ 3 and 0 ≤ uk ≤ 1 for k ≥ 3

}
,

U2 =
{

u ∈ l∞
∣∣∣ 1

4
≤ u1 ≤

1

2
, 0 ≤ u2 ≤ 1, 2 ≤ u3 ≤ 3 and

0 ≤ uk ≤ 1 for k ≥ 4
}

,

· · ·

Un =
{

u ∈ l∞
∣∣∣ 1

2n
≤ u1 ≤

1

2n−1
, 2 ≤ un+1 ≤ 3 and

0 ≤ uk ≤ 1 for k 6= 1, k 6= n + 1
}

.

Then clearly Un are closed for all n and d(Un, Um) = 1 if n 6= m. Let A =⋃∞
n=1 Un. We claim that A is closed. Indeed, assume that ai ∈ A, ai → a0. Since

d(Un, Um) = 1 for n 6= m, there exist i0 and n0 such that ai ∈ Un0 for all i ≥ i0.

Hence a0 ∈ Un0 ⊆ A. To see that A + B1
Y is not closed take sequences ak ∈ A

and bk ∈ B1
Y with components

ak
1 =

1

2k
, ak

k+1 = 2 and ak
j = 1,∀j 6= 1,∀j 6= k + 1,
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bk
1 = −1, bk

k+1 = −1 and bk
j = 0,∀j 6= 1,∀j 6= k + 1.

Then ak + bk = (−1 + 1
2k , 1, 1, ...) → (−1, 1, 1, ...) /∈ A + B1

Y . Thus A + B1
Y is not

closed and contained properly in A1. Now taking −C = cl(l∞ \A) we get C 6= l∞

and A = l∞ \ −intC as wanted.

DEFINITION 1.2

(a) The set of ε−solutions of type 1 (of type 2) of problem (WQEP1) at

(λ, µ, η) is denoted by Sε1
1 (λ, µ, η)

(
Sε2

1 (λ, µ, η), respectively
)
. The sets

of ε− solutions of the other five problems are denoted by Sε1
2 and Sε2

2 ,

..., Sε1
6 and Sε2

6 , respectively in the given order.

(b) Another kind of ε−solution sets is defined, e.g. for type 1, by

S̃ε1
i (λ, µ, η) =

{
Si(λ0, µ0, η0) if (λ, µ, η) = (λ0, µ0, η0),

Sε1
i (λ, µ, η) otherwise,

where (λ0, µ0, η0) is the point under consideration.

We propose the following weak semicontinuity.

DEFINITION 1.3 Let X be a topological space and Y be a topological vector space,

and C ⊆ Y with intC 6= ∅ and C 6= Y .

(a) A multifunction H : X −→ 2Y is said to be C−quasiupper semicontin-

uous (C−qusc) at x0 if, for any xα → x0, H(x0) ⊆ intC ⇒ ∃ᾱ, H(xᾱ) ⊆

intC.

(b) H is called C−quasilower semicontinuous (C−qlsc) at x0 if, for all xα →

x0, H(x0) ∩ intC 6= ∅ ⇒ ∃ᾱ, H(xᾱ) ∩ intC 6= ∅.

H is said to be C−quasicontinuous at x0, if H is both C−qusc and

C−qlsc at x0.
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(c) H is termed C− Hausdorff quasiupper semicontinuous (C−Hqusc) at x0

if, for any xα → x0 and B (open neighborhood of 0 in Y ), H(x0)+B ⊆

intC ⇒ ∃ᾱ, H(xᾱ) ⊆ intC.

Remark 1.2

(a) C−quasiupper semicontinuity property is strictly stronger than C−Hausdorff

quasiupper semicontinuity property;

(b) H is C−qusc, C−qlsc, C−Hqusc at x0 if and only if H is intC−qusc,

intC−qlsc, intC−Hqusc, respectively;

(c) H is usc at x0, iff H is C−qusc at x0 for all subsets C of Y ;

(d) H is lsc at x0, iff H is C−qlsc at x0 for all subsets C of Y .

Since the solution existence of quasiequilibrium problems has been intensively

investigated, see e.g. [4, 5, 7, 9, 12, 14, 15, 19, 20], we do not study this issue,

and instead always assume the existence.

The organization of the paper is as follows. In Section 2 we give sufficient

conditions for the approximate solution sets of all the problems to be lower semi-

continuous at the point in question. In Section 3 we investigate the sufficient

conditions for the approximate solution sets to be upper semicontinuous in each

of the three senses. Section 4 is devoted to applications in approximate quasivari-

ational inequalities, approximate fixed points and approximate quasioptimization

problems.

2. LOWER SEMICONTINUITY OF THE ε−SOLUTION SETS

Considering the lower semicontinuity of approximate solution sets for our six

quasiequilibrium problems we will see below that the sufficient conditions for
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this lower semicontinuity are the same for the two types of ε−solutions stated

in Definition 1.1. The reason is that an ε−solution of type 1, which is not an

ε−solution of type 2, much lie on the boundary of comp(−int)Cε
1 , since this set

may have more points than comp(−int)Cε
2 only in the boundary (see Remark 1.1

and Example 1.2). This difference does not affect the lower semicontinuity. But

it affects the upper semicontinuity as the next section makes it clear. Moreover,

we will see that under usual assumptions lower semicontinuity holds only for the

ε−solution sets of the second kind S̃ε1
i and S̃ε2

i , i = 1, ..., 6 (see Definition 1.2)

while upper semicontinuity occurs only for the ε−solution sets of the first kind

Sε1
i and Sε2

i , i = 1, ..., 6 (see Definition 1.2).

In the sequel let, for λ ∈ Λ,

E(λ) =
{
x ∈ X | x ∈ clK(x, λ)

}
.

We always assume that Si(λ, µ, η) 6= ∅, i = 1, ..., 6, for all (λ, µ, η) in a

neighborhood of the considered point (λ0, µ0, η0).

THEOREM 2.1 Assume that K(., .) is usc and has compact values in X × {λ0},

E(.) is lsc at λ0 and F (., ., .) is comp(−intC)ε
1− qlsc or comp(−intC)ε

2− qlsc in

X ×X × {µ0}. Then the following assertions hold.

(i) If G(., .) is lsc in X×{η0}, then S̃ε1
1 (., ., .), S̃ε2

1 (., ., .), S̃ε1
2 (., ., .) and S̃ε2

2 (., ., .)

are lsc at (λ0, µ0, η0) for each ε > 0.

(ii) If G(., .) is usc and has compact values in X × {η0}, then S̃ε1
3 (., ., .) and

S̃ε2
3 (., ., .) are lsc at (λ0, µ0, η0) for each ε > 0.

Proof Since the six assertions for the two types of quasilower semicontinuity can

be proved by a similar technique we present a proof only for S̃ε1
1 (., ., .) of problem
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(WQEP1). Let ε > 0 be fixed. Suppose that S̃ε1
1 (., ., .) is not lsc at (λ0, µ0, η0), i.e.,

∃x0 ∈ S̃ε1
1 (λ0, µ0, η0), ∃(λα, µα, ηα) → (λ0, µ0, η0), ∀xα ∈ S̃ε1

1 (λα, µα, ηα), xα 6→ x0.

Since x0 ∈ S̃ε1
1 (λ0, µ0, η0) = S1(λ0, µ0, η0), ∀y0 ∈ K(x0, λ0), ∃x∗0 ∈ G(x0, η0),

F (x∗0, y0, µ0) ∩ (Y \ − intC) 6= ∅. (2)

By the lower semicontinuity of E(.) at λ0, there is a net x̄α ∈ E(λα),

x̄α → x0. By the above contradiction assumption, there must be a subnet x̄β

such that, ∀β, x̄β /∈ S̃ε1
1 (λβ, µβ, ηβ), i.e., ∃yβ ∈ K(x̄β, λβ), ∀x̄∗β ∈ G(x̄β, ηβ),

F (x̄∗β, yβ, µβ) ∩ comp(−intC)ε
1 = ∅. (3)

Since K(., .) is usc and K(x0, λ0) is compact, one can assume that yβ → y0,

for some y0 ∈ K(x0, λ0). By the lower semicontinuity of G(., .) at (x0, η0), there

exists x̄∗β ∈ G(x̄β, ηβ), x̄∗β → x∗0. By the comp(−intC)ε
1− quasilower semicon-

tinuity of F (., ., .) at (x∗0, y0, µ0) and Y \ intC ⊂ int
(
comp(−intC)ε

1

)
, we see a

contradiction between (2) and (3). �

The following example shows that Theorem 2.1 is no longer true if we re-

place the ε−solution sets of the second kind by that of the first kind.

EXAMPLE 2.1 Let X = Y = R,Λ ≡ M ≡ N = [0, 1], C = R+, K(λ) = [0, 1],

G(x, λ) = {x}, λ0 = 0, and F (x, y, λ) = {y − x − ε − λ, x − y}. Since G(., .) is

single-valued, (WQEP1), (MQEP1) and (SQEP1) are equivalent. From now on if

Y is finite dimensional (then the two types of ε−solutions coincide), instead of

writing ε1 or ε2 in the index of ε−solution sets, we write simply ε, e.g. Sε
i , S̃

ε
i . It

is easy to see that the assumptions of Theorem 2.1 are fulfilled and according to

Theorem 2.1, S̃ε
i (.) are lsc at 0 (in fact Si(0) = {1}, Sε

i (λ) = [1−ε, 1], ∀λ ∈ (0, 1]),

∀i = 1, 2, 3. But Sε
i (0) = {0, 1}. So Sε

i (.) are not lsc at 0, i = 1, 2, 3.
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THEOREM 2.2 Assume that K(., .) is usc and has compact values in X × {λ0},

E(.) is lsc at λ0 and F (., ., .) is comp(−int)Cε
1− qusc or comp(−int)Cε

2− qusc in

X ×X × {µ0}.

(i) If G(., .) is lsc in X×{η0}, then S̃ε1
4 (., ., .), S̃ε2

4 (., ., .), S̃ε1
5 (., ., .) and S̃ε2

5 (., ., .)

are lsc at (λ0, µ0, η0) for each ε > 0.

(ii) If G(., .) is usc and has compact values in X × {η0}, then S̃ε1
6 (., ., .) and

S̃ε2
6 (., ., .) are lsc at (λ0, µ0, η0) for each ε > 0.

Proof As an example we demonstrate only for problem (SQEP2). Let ε > 0 be

fixed. Suppose to the contrary that S̃ε2
6 (., ., .) is not lsc at (λ0, µ0, η0), i.e., ∃x0 ∈

S̃ε2
6 (λ0, µ0, η0), ∃λα → λ0,∃µα → µ0,∃ηα → η0, ∀xα ∈ S̃ε2

6 (λα, µα, ηα), xα 6→ x0.

Since x0 ∈ S̃ε2
6 (λ0, µ0, η0) = S6(λ0, µ0, η0), ∀y0 ∈ K(x0, λ0), ∀x∗0 ∈ G(x0, η0),

F (x∗0, y0, µ0) ⊆ Y \ − intC. (4)

By the lower semicontinuity of E(.) at λ0, there is a net x̄α ∈ E(λα),

x̄α → x0. By the above contradiction assumption, there must be a subnet x̄β

such that, ∀β, x̄β /∈ S̃ε2
6 (λβ, µβ, ηβ), i.e., ∃yβ ∈ K(x̄β, λβ), ∃x̄∗β ∈ G(x̄β, ηβ),

F (x̄∗β, yβ, µβ) 6⊆ comp(−intC)ε
2. (5)

Since K(., .) is usc and K(x0, λ0) is compact, one can assume that yβ → y0,

for some y0 ∈ K(x0, λ0). By the upper semicontinuity and the compactness of

G(., .) at (x0, η0), one can assume that x̄∗β → x∗0 for some x∗0 ∈ G(x0, η0). By (4)

and the comp(−intC)ε
2− quasiupper semicontinuity of F (., ., .) at (x∗0, y0, µ0), one

has an index β̄ such that

F (x̄∗β̄, yβ̄, µβ̄) ⊆ comp(−intC)ε
2,

which contradicts (5). �
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The following two examples ensure that Theorem 2.2 is no longer true if we

replace S̃εk
4 (., ., .), S̃εk

5 (., ., .) and S̃εk
6 (., ., .) by Sεk

4 (., ., .), Sεk
5 (., ., .) and Sεk

6 (., ., .),

k = 1, 2, respectively.

EXAMPLE 2.2 Let ε > 0 be fixed and small. Let X = Y = R, Λ ≡ M ≡ N =

[0, 1], C = R+, K(x, λ) = [λ, λ + 1], G(x, λ) = {−x + 1 − ε, x}, F (x, y, λ) =

{x − 1 − λ} and λ0 = 0. Then, it is clear that the assumptions of Theorem

2.2, (i) hold. Direct calculations yield S4(0) = S5(0) = {1}, Sε
4(0) = Sε

5(0) =

{0} ∪ [1− ε, 1] and Sε
4(λ) = Sε

5(λ) = [1 + λ− ε, 1 + λ], ∀λ ∈ (0, 1]. So, S̃ε
4(.) and

S̃ε
5(.) are lsc at 0, while Sε

4(.) and Sε
5(.) are not lsc at 0.

EXAMPLE 2.3 Let ε > 0 be fixed and small. Let X = Y = R, Λ ≡ M ≡

N = [0, 1], C = R+, K(x, λ) =

[
0,

1+ε+
√

(1+ε)2+4λ

2

]
, G(x, λ) = {x}, F (x, y, λ) =

{x2 − (1 − ε)x − ε − λ} and λ0 = 0. Then, it is not hard to see that the

assumptions of Theorem 2.2, (ii) hold and S6(0) = {1 + ε}, Sε
6(0) = {0, 1 + ε}

and Sε
6(λ) =

{
1+ε+

√
(1+ε)2+4λ

2

}
, ∀λ ∈ (0, 1]. Hence, S̃ε

6(.) is lsc at 0, while Sε
6(.)

is not lsc at 0.

3. UPPER SEMICONTINUITY OF THE ε−SOLUTION SETS

In this section we consider upper semicontinuity properties in three senses: upper

semicontinuity, Hausdorff upper semicontinuity and closedness. We will establish

sufficient conditions for the ε−solutions of type 1 of the six problems under our

consideration to have these upper semicontinuity properties. We will also see that

these results hold only for the ε−solution sets of the first kind.

THEOREM 3.1 Assume that K(., .) is lsc in X×{λ0}, E(.) is usc, E(λ0) is compact

and F (., ., .) is Y \comp(−intC)ε
1−qusc in X ×X × {µ0}.

12



(i) If G(., .) is usc and has compact values in X × {η0}, then Sε1
1 (., ., .) and

Sε1
2 (., ., .) are both usc and closed at (λ0, µ0, η0) for each ε ≥ 0.

(ii) If G(., .) is lsc in X×{η0}, then Sε1
3 (., ., .) is both usc and closed at (λ0, µ0, η0)

for each ε ≥ 0.

Proof Similar arguments can be applied to prove the three assertions. We

present only the proof for problem (SQEP1). Let ε ≥ 0 be fixed. Reasoning “ad

absurdum” suppose the existence of an open neighborhood U of Sε1
3 (λ0, µ0, η0), of

nets λα → λ0, µα → µ0, ηα → η0, and xα ∈ Sε1
3 (λα, µα, ηα) such that xα /∈ U,∀α.

By the upper semicontinuity of E(.) and the compactness of E(λ0), we can assume

that xα → x0 for some x0 ∈ E(λ0). If x0 /∈ Sε1
3 (λ0, µ0, η0), then there are

y0 ∈ K(x0, λ0) and x∗0 ∈ G(x0, η0),

F (x∗0, y0, µ0) ∩ comp(−intC)ε
1 = ∅. (6)

Since K(., .) and G(., .) are lsc at (x0, λ0) and (x0, η0), respectively, there

are nets yα ∈ K(xα, λα) and x∗α ∈ G(xα, ηα) such that yα → y0 and x∗α → x∗0.

Since xα ∈ Sε1
3 (λα, µα, ηα), one has

F (x∗α, yα, µα) ∩ comp(−intC)ε
1 6= ∅. (7)

By the closedness of comp(−intC)ε
1 and the Y \ comp(−intC)ε

1−quasiupper

semicontinuity of F (., ., .) at (x∗0, y0, µ0) one has a contradiction between (6) and

(7). Thus, x0 ∈ Sε1
3 (λ0, µ0, η0), which is again a contradiction, since xβ /∈ U,∀β.

The closedness of Sε1
3 (., ., .) can be proved similarly. �

Theorem 3.1 is no longer true if we replace Sε1
1 (., ., .), Sε1

2 (., ., .) and Sε1
3 (., ., .)

by S̃ε1
1 (., ., .), S̃ε1

2 (., ., .) and S̃ε1
3 (., ., .) as shown by the example below.

EXAMPLE 3.1 Let ε > 0 be fixed and small. Let X = Y = R, Λ ≡ M ≡ N =
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[0, 1], C = R+, K(x, λ) = [0, 1], G(x, λ) = {x}, F (x, y, λ) = {y − x + λ} and

λ0 = 0. Since G is single-valued, (WQEP1), (MQEP1) and (SQEP1) coincide. It is

easy to see that the conditions of Theorem 3.1 hold and accordingly, Sε1
i (.) are usc

at 0 (for all i = 1, 2, 3).
(
In fact Si(0) = {0}, Sε1

i (0) = [0, ε], Sε1
i (λ) = [0, ε + λ].

)
Thus, S̃ε1

i (.) is not usc at 0.

THEOREM 3.2

(i) Assume that K(., .) is lsc in X ×{λ0}, E(.) and G(., .) are H-usc and have

compact values at λ0 and in X × {η0}, respectively, and that F (., ., .) is

Y \ comp(−intC)ε
1− Hqusc in X ×X × {µ0}.

(a) If ∀BX (open neighborhood of 0 in X), ∀x /∈ Sε1
1 (λ0, µ0, η0)+BX , ∃ρ >

0, ∃y ∈ K(x, λ0), ∀x∗ ∈ G(x, η0), [F (x∗, y, µ0)+intBρ
Y ]∩comp(−intC)ε

1 =

∅, then Sε1
1 (., ., .) is H-usc at (λ0, µ0, η0) for each ε ≥ 0.

(b) If ∀BX as above, ∀x /∈ Sε1
2 (λ0, µ0, η0) + BX , ∃ρ > 0, ∀x∗ ∈ G(x, η0),

∃y ∈ K(x, λ0), [F (x∗, y, µ0)+intBρ
Y ]∩comp(−intC)ε

1 = ∅, then Sε1
2 (., ., .)

is H-usc at (λ0, µ0, η0) for each ε ≥ 0.

(ii) Assume that K and E are as in (i), G(., .) is lsc in X × {η0} and F (., ., .)

is H-usc in X ×X × {µ0}.

(c) If ∀BX as above, ∀x /∈ Sε1
3 (λ0, µ0, η0) + BX , ∃ρ > 0, ∃y ∈ K(x, λ0),

∀x∗ ∈ G(x, η0), [F (x∗, y, µ0)+intBρ
Y ]∩comp(−intC)ε

1 = ∅, then Sε1
3 (., ., .)

is H-usc at (λ0, µ0, η0) for each ε ≥ 0.

Proof We demonstrate only (a). Let ε ≥ 0 be fixed. Suppose that Sε1
1 (., ., .) is

not H-usc at (λ0, µ0, η0), i.e., ∃BX (open neighborhood of 0 in X), ∃(λα, µα, ηα) →

(λ0, µ0, η0), ∃xα ∈ Sε1
1 (λα, µα, ηα) such that xα /∈ Sε1

1 (λ0, µ0, η0)+BX ,∀α. By the

Hausdorff upper semicontinuity of E(.) and the compactness of E(λ0), we can
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assume that xα → x0 for some x0 ∈ E(λ0). If x0 /∈ Sε1
1 (λ0, µ0, η0) + BX , then

the assumption in (a) yields some ρ > 0 and some y0 ∈ K(x0, λ0) such that,

∀x∗0 ∈ G(x0, η0),

[F (x∗0, y0, µ0) + intBρ
Y ] ∩ comp(−intC)ε

1 = ∅. (8)

Since K(., .) is lsc at (x0, λ0), there is a net yα ∈ K(xα, λα), yα → y0. As

xα ∈ Sε1
1 (λα, µα, ηα), ∃x∗α ∈ G(xα, ηα),

F (x∗α, yα, µα) ∩ comp(−intC)ε
1 6= ∅. (9)

As G(., .) is H-usc and G(x0, η0) is compact, one has a subnet x∗β such that

x∗β → x∗0 for some x∗0 ∈ G(x0, η0). By the Y \ comp(−intC)ε
1− Hausdorff quasiup-

per semicontinuity of F (., ., .) at (x∗0, y0, µ0), we see a contradiction between (8)

and (9). Hence, x0 ∈ Sε1
1 (λ0, µ0, η0) + BX , which is again a contradiction, since

xβ /∈ Sε1
1 (λ0, µ0, η0) + BX ,∀β. �

We see that to ensure the Hausdorff upper semicontinuity of Sε
i (., ., .),

∀i = 1, 2, 3, the upper semicontinuity assumed in Theorem 3.2 is reduced to

Hausdorff upper semicontinuity. However, we have to add the assumption in (a).

The following example shows that this additional assumption is essential.

EXAMPLE 3.2 Let ε = 0, X = Y = R, Λ ≡ M ≡ N = [0, 1], C = R+, K(x, λ) =

[0, 1], G(x, λ) = {x}, F (x, y, λ) = (−∞, λx) and λ0 = 0. As G is single-valued

mapping, problems (WQEP1), (MQEP1) and (SQEP1) coincide. It is clear that

S01
i (0) = {0}, S01

i (λ) = [0, 1], ∀i = 1, 2, 3, ∀λ ∈ (0, 1]. So, S01
i (.) is not H-usc at 0.

The reason is that assumptions (a) - (c) are violated. Indeed, take BX = (−1, 1)

and x = 1. Then, for each ρ > 0 and each y ∈ [0, 1], one has F (1, y, 0)+ intBρ
X =

(−∞, 0)+ (−ρ, ρ) = (−∞, ρ). So, [F (1, y, 0) + intBρ
X ] ∩ [−ε, +∞) 6= ∅.
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THEOREM 3.3 Assume that K(., .) is lsc in X × {λ0}, E(.) is usc, E(λ0) is

compact and F (., ., .) is Y \comp(−intC)ε
1−qlsc in X ×X × {µ0}.

(i) If G(., .) is usc and has compact values in X × {η0}, then Sε1
4 (., ., .) and

Sε1
5 (., ., .) are both usc and closed at (λ0, µ0, η0) for each ε ≥ 0.

(ii) If G(., .) is lsc in X×{η0}, then Sε1
6 (., ., .) is both usc and closed at (λ0, µ0, η0)

for each ε ≥ 0.

We omit the proof since it is similar to the previous ones.

Example 3.1 ensures also that Theorem 3.3 is no longer true if we replace

Sε1
4 (., ., .), Sε1

5 (., ., .) and Sε1
6 (., ., .) by S̃ε1

4 , S̃ε1
4 and S̃ε1

6 , respectively, since F and

G are single-valued functions.

4. APPLICATIONS

Quasiequilibrium problems include as special cases many important problems

such as quasivariational inequalities, complementarity problems, fixed point and

coincidence point problems, optimization problems, etc. Therefore, applying the

results presented in the preceding sections we obviously obtain sufficient condi-

tions for semicontinuity of approximate solution sets of these particular cases. In

this section we derive some interesting consequences of the theorems in Section 2

and 3 as examples.

4.1. Quasivariational inequalities

If Y = R, F (x, y, µ) = 〈T (x, µ), y − g(x, µ)〉 and G(x, η) = {x}, where T :

X × M → 2X∗
and g : X × M → X is a continuous mapping, then (WQEP1),
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(MQEP1) and (SQEP1) coincide with (QVI) in [16, 17], and (WQEP2), (MQEP2)

and (SQEP2) all become (SQVI) in [16, 17]. The following two corollaries about

lower semicontinuity are direct consequences of Theorems 2.1 and 2.2.

COROLLARY 4.1 Assume that K(., .) is usc and has compact values in X ×{λ0},

E(.) is lsc at λ0 and (x, y, µ) 7→ 〈T (x, µ), y − g(x, µ)〉 is [−ε, +∞)−qlsc in

X × X × {µ0}. Then the ε−solution set S̃ε
1(., .) of (QVI) is lsc at (λ0, µ0) for

each ε > 0.

COROLLARY 4.2 Assume that K(., .) and E(.) are as in Corollary 4.1 and (x, y,

µ) 7→ 〈T (x, µ), y − g(x, µ)〉 is [−ε, +∞)−qusc in X × X × {µ0}. Then the

ε−solution set S̃ε
2(., .) of (SQVI) is lsc at (λ0, µ0) for each ε > 0.

The next two corollaries about upper semicontinuity are directly derived

from Theorems 3.1 and 3.3.

COROLLARY 4.3 Let K(., .) be lsc in X × {λ0} and let E(.) be usc and have com-

pact values at λ0. Let (x, y, µ) 7→ 〈T (x, µ), y − g(x, µ)〉 be (−∞,−ε)−qusc in

X ×X × {µ0}. Then the ε−solution set Sε
1(., .) of (QVI) is both usc and closed

at (λ0, µ0) for each ε ≥ 0.

COROLLARY 4.4 Let K(., .) and E(.) be as in Corollary 4.3. Let (x, y, µ) 7→

〈T (x, µ), y − g(x, µ)〉 be (−∞,−ε)−qlsc in X ×X × {µ0}. Then the ε−solution

set Sε
2(., .) of (SQVI) is both usc and closed at (λ0, µ0) for each ε ≥ 0.

These four corollaries improve Theorems 5.1, 5.3 and Theorems 6.1, 6.3,

respectively, in [17]. The following example ensures that the assumptions of the

corollaries are strictly weaker than the corresponding ones imposed in the men-
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tioned theorems.

EXAMPLE 4.1 Let ε > 0 be fixed. Let X = Y = R, Λ ≡ M = [0, 1], C = R+,

K(x, λ) = [0, 1], λ0 = 0 and

T (x, λ) =

{
{ε} if λ = 0,

[ ε
4
, ε

2
] otherwise.

Then 〈T (x, 0), y−g(x, 0)〉 = [−ε, ε] and 〈T (x, λ), y−g(x, λ)〉 = [− ε
2
, ε

2
],∀λ ∈ (0, 1].

Hence all the assumptions of Corollaries 4.1 and 4.3 are satisfied. Applying these

corollaries we know that S̃ε
1(.) is lsc at 0 and Sε

1 is both usc and closed at 0. In

fact, direct calculation gives S̃ε
1(λ) = Sε

1(λ) = [0, 1],∀λ ∈ Λ. However, 〈T (., .), .〉

is not lsc and T (., .) is not usc in X ×X × {0} as required in assumption (ii) of

Theorems 5.1 and 6.1 of [17]. So these theorems do not work in this case.

Now we pass to quasivariational inequalities with operator solutions intro-

duced in [13]. Let X, M, N,Λ and Y be as above (defined in Section 1). Let C ⊆ Y

be closed convex cone with intC 6= ∅ and C 6= Y . Let K : L(X, Y )×Λ → 2L(X,Y ),

T : L(X,Y ) × L(X,Y ) × M → 2X be multifunctions. Our quasivariational in-

equalities with operator solutions are

(OVI) find f̄ ∈ clK(f̄ , λ) such that, for each f ∈ K(f̄ , λ),

(
f − f̄ , T (f̄ , µ)

)
∩ (Y \ −intC) 6= ∅;

(SOVI) find f̄ ∈ clK(f̄ , λ) such that, for each f ∈ K(f̄ , λ),

(
f − f̄ , T (f̄ , µ)

)
⊆ Y \ −intC.

From Theorems 2.1 and 2.2 we derive the following

COROLLARY 4.5 Assume that K(., .) is usc and has compact values in L(X, Y )×

{λ0}, E(.) is lsc at λ0 and (f, g, µ) 7→
(
f − g, T (g, µ)

)
is comp(−intC)ε

1−qlsc
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or comp(−intC)ε
2−qlsc in L(X, Y ) × L(X, Y ) × {µ0}. Then the ε−solution set

S̃ε
1(., .) of (OVI) is lsc at (λ0, µ0) for each ε > 0.

COROLLARY 4.6 Assume that K(., .) and E(.) are as in Corollary 4.5 and (f, g, µ)

7→
(
f − g, T (g, µ)

)
is comp(−intC)ε

1−qusc or comp(−intC)ε
2−qusc in L(X, Y )×

L(X, Y )× {µ0}. Then the ε−solution set S̃ε
2(., .) of (SOVI) is lsc at (λ0, µ0) for

each ε > 0.

Similarly, for upper semicontinuity, but of the other kind of ε−solution

sets, Theorems 3.1− 3.3 yield the following consequences.

COROLLARY 4.7 Assume that K(., .) is lsc in L(X, Y )×{λ0}, E(.) is usc and has

compact values at λ0 and (f, g, µ) 7→
(
f − g, T (g, µ)

)
is Y \ comp(−intC)ε

1−qusc

in L(X, Y ) × L(X, Y ) × {µ0}. Then the ε−solution set Sε
1(., .) of (OVI) is usc

and closed at (λ0, µ0) for each ε ≥ 0.

COROLLARY 4.8 Let K(., .) be lsc in L(X, Y )×{λ0}, E(.) be H-usc and have com-

pact values at λ0 and (f, g, µ) 7→
(
f − g, T (g, µ)

)
be Y \ comp(−intC)ε

1−Hqusc

in L(X, Y ) × L(X, Y ) × {µ0}. If ∀B (open neighborhood of 0 in L(X, Y )),

∀f0 /∈ Sε
1(λ0, µ0) + B, ∃BY (open neighborhood of 0 in Y ), ∃f ∈ K(f0, λ0),(

(f − f0, T (f0, µ0)) + BY

)
∩ comp(−intC)ε

1 = ∅, then Sε
1(., .) is H-usc at (λ0, µ0)

for each ε ≥ 0.

COROLLARY 4.9 Let K(., .) and E(.) be as in Corollary 4.7 and (f, g, µ) 7→(
f − g, T (g, µ)

)
is Y \ comp(−intC)ε

1−qlsc in L(X, Y )× L(X, Y )× {µ0}. Then

the ε−solution set Sε
2(., .) of (SOVI) is usc at (λ0, µ0) for each ε ≥ 0.
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4.2. Approximate fixed points

Let X be a Hilbert space, Λ and M be as in Section 1, ε > 0, K : Λ → 2X and

T : X ×M → 2X . The set of approximate fixed points of T at (λ, µ) is defined

as (see, e.g. a resent paper [8])

(Pε) Pε(λ, µ) =
{
x ∈ K(λ)

∣∣ d
(
x, T (x, µ)

)
≤ ε

}
.

Assume that for each λ ∈ Λ, K(λ) is closed and contains 0 ∈ X. The

problem of finding ε−fixed points is related to the following problem of finding

ε−solutions of a quasiequilibrium problem:

(QEPε) Find x̄ ∈ K(λ) such that there exists t̄ ∈ clT (x̄, µ) with, ∀y ∈ K(λ),

〈x̄− t̄, y + t̄− x̄〉 ≥ −ε. (10)

PROPOSITION 4.1 If x̄ is a solution of (QEPε) then x̄ is a solution of (P
√

ε).

Proof By the assumption we have (10). Taking y = 0 we get ‖x̄− t̄‖2 ≤ ε and

hence d
(
x̄, T (x̄, µ)

)
≤
√

ε. �

COROLLARY 4.10 If K(.) is lsc at λ0 and T (., .) is lsc in X × {µ0}, then the

ε−solution set S̃ε(., .) of (QEPε) is lsc at µ0 for each ε > 0.

Proof By the lower semicontinuity of T (., .), (x, y, µ) 7→ 〈x − clT (x, µ), y +

clT (x, µ)− x〉 is lsc too. Applying Theorem 2.1 yields the corollary. �

COROLLARY 4.11 If K(.) is usc, K(λ0) is compact and T (., .) is usc and has

compact values in X ×{µ0}, then the ε−solution set Sε(., .) of (QEPε)is usc and

closed at (λ0, µ0) for each ε ≥ 0.

Proof (x, y, µ) 7→ 〈x−clT (x, µ), y+clT (x, µ)−x〉 is usc and has compact values

in X × {µ0}. So the conclusion follows directly from Theorem 3.1. �
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By Proposition 4.1, Corollaries 4.10 − 4.11 yield the semicontinuity of a

part of the
√

ε−fixed points of T (x, µ) with respect to (λ, µ). To deal with the

whole set of approximate fixed points we modify problem (QEPε) as follows.

(QEPε
1) Find x̄ ∈ K(λ) such that there exists t̄ ∈ T ε(x̄, µ) with, ∀y ∈ K(λ),

〈x̄− t̄, y + t̄− x̄〉 ≥ 0, (11)

where T ε(x, µ) =
{
y ∈ X

∣∣ d
(
y, T (x, µ)

)
≤ ε

}
.

PROPOSITION 4.2 x̄ is a solution of (Pε) if and only if x̄ is a solution of (QEPε
1).

Proof Being a solution of (QEPε
1), x̄ yields t̄ ∈ T ε(x̄, µ) satisfying (11). Taking

y = 0 we see that ‖x̄ − t̄‖ = 0, and hence x̄ ∈ T ε(x̄, µ). Conversely, if x̄ is an

ε−fixed point of T (., µ), i.e. x̄ ∈ T ε(x̄, µ). Taking t̄ = x̄ we see that x̄ satisfies

(11). �

Let us denote the fixed point set and the ε−fixed point set of T at (λ, µ)

by P (λ, µ) and P ε(λ, µ), respectively. Similarly as for quasiequilibrium problems

we consider also the following second kind of ε−fixed point set

P̃ ε(λ, µ) =

{
P (λ0, µ0) if (λ, µ) = (λ0, µ0),

P ε(λ, µ) otherwise.

PROPOSITION 4.3 If K(.) is lsc at λ0 and T (., .)is lsc in X × {µ0}, then P̃ ε(., .)is

lsc at (λ0, µ0) for each ε > 0.

Proof Suppose to the contrary that there are λα → λ0, µα → µ0 and x0 ∈

P̃ ε(λ0, µ0) such that, ∀xα ∈ P̃ ε(λα, µα), xα 6→ x0. As K(.) is lsc at λ0, there

exists x̄α ∈ K(λα) such that x̄α → x0. Then there must be a subnet x̄β with

x̄β /∈ P̃ ε(λβ, µβ) for all β. Since x0 ∈ P̃ ε(λ0, µ0), x0 ∈ T (x0, µ0). By the lower

semicontinuity of T (., .) at (x0, µ0), there is tβ ∈ T (x̄β, µβ) such that tβ → x0.
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Since, for all µβ 6= µ0, x̄β /∈ P̃ ε(λβ, µβ), x̄β /∈ T ε(x̄β, µ), i.e. ‖x̄β − tβ‖ ≥ ε. This

is impossible since x̄β → x0 and tβ → x0. �

PROPOSITION 4.4 If K(.) is usc, K(λ0) is compact and T (., .)is usc and has com-

pact values in X ×{µ0}, then P ε(., .) is usc and closed at (λ0, µ0) for each ε ≥ 0.

Proof Arguing by contradiction suppose the existence of a neighborhood U of

P ε(λ0, µ0), of nets (λα, µα) → (λ0, µ0) and xα ∈ P ε(λα, µα), xα /∈ U,∀λ. By the

assumption on K(.) we have a point x0 ∈ K(λ0) and subnet xβ → x0. Since

xβ ∈ P ε(λβ, µβ), there is tβ ∈ clT (xβ, µβ), ‖tβ − xβ‖ ≤ ε. By the assumption on

T (., .) we can assume that tβ → t0, for some t0 ∈ clT (x0, µ0) = T (x0, µ0). Hence

‖x0 − t0‖ ≤ ε and then x0 ∈ P ε(λ0, µ0), a contradiction, since xβ /∈ U,∀β.

The closedness of P ε(., .) at (λ0, µ0) is similarly verified. �

4.3. Approximate quasioptimization problems

Let X, Y, M, Λ, K and C be as in Section 1. Let T : X×M → 2Y be a multifunc-

tion. We consider the following quasioptimization problem, for (λ, µ) ∈ Λ×M ,

(QOP) find x̄ ∈ clK(x̄, λ) such that

T (x̄, µ) ∩ wMin
{
T

(
K(x̄, λ), µ

) ∣∣ C
}
6= ∅,

where wMin
{
H

∣∣ C
}

denotes the set of all weakly efficient points y∗ of the set

H ⊆ Y , with respect to the ordering set C, i.e. points y∗ ∈ H such that, ∀y ∈ H,

y − y∗ ∈ Y \ −intC. Note that here C needs not be a cone as in a usual weak

efficiency.

We will show now that (QOP) can be expressed as a case of problem

(MQEP2). Set X1 = X × Y and define K1 : X1 × Λ → 2X1 , G1 : X1 ×M → 2X1
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and F1 : X1 ×X1 ×M → 2Y by, for x1 = (x1, y1), x2 = (x2, y2) in X1,

K1(x1, λ) = K1

(
(x1, y1), λ

)
= K(x, λ)× {0Y },

G1(x2, µ) = G1

(
(x2, y2), µ

)
= {0X} × T (x2, µ),

F1(x1, x2, µ) = F
(
(x1, y1), (x2, y2), µ

)
= T (x2, µ)− y2.

We consider the following problem (MQEP2):

(MQEP) find x̄ ∈ clK(x̄, λ) such that ∃ȳ ∈ T (x̄, µ), ∀x ∈ K(x̄, λ),

F1

(
(0, ȳ), (x, 0), µ

)
≡ T (x, µ)− ȳ ⊆ Y \ −intC.

PROPOSITION 4.5 x̄ is a solution of (QOP) if and only if x̄ is a solution of

(MQEP).

The proof is direct and so is omitted. The following two approximate prob-

lems of (QOP) and (MQEP) are also equivalent

(QOPε) find x̄ ∈ clK(x̄, λ) such that

T (x̄, µ) ∩ wMin
{
T

(
K(x̄, λ), µ

)∣∣comp(−intC)ε
1

}
6= ∅;

(MQEPε) find x̄ ∈ clK(x̄, λ) such that ∃ȳ ∈ T (x̄, µ), ∀x ∈ K(x̄, λ),

T (x, µ)− ȳ ⊆ comp(−intC)ε
1.

The following corollaries are direct consequences of Theorems 2.2 and 3.3,

respectively.

COROLLERY 4.12 Assume that K(., .) is usc and has compact values in X×{λ0},

E(.) is lsc at λ0 and T (., .) is lsc and comp(−intC)ε
1−qusc in X × {µ0}. Then

the approximate solution set S̃ε(., .) of (QOP) is lsc at (λ0, µ0) for each ε > 0.

COROLLERY 4.13 Assume that K(., .) is lsc in X × {λ0}, E(.) is usc at λ0 and
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E(λ0) is compact, T (., .) is usc, Y \ comp(−intC)ε
1−qlsc and has compact values

in X × {µ0}. Then the approximate solution set Sε(., .) of (QOP) is usc and

closed at (λ0, µ0) for each ε ≥ 0.
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parametric multivalued vector equilibrium problems, J. Math. Anal. Appl.,

in press.

[3] L.Q. Anh and P.Q. Khanh. On the stability of the solution sets of general

multivalued vector quasiequilibrium problems, submitted for publication.

[4] Q.H. Ansari and F.F. Bazán (2003). Generalized vector quasiequilibrium

problems with applications, J. Math. Anal. Appl., 277, 246-256.

[5] Q.H. Ansari, I.V. Konnov and J.C. Yao (2001). Existence of a solution and

variational principles for vector equilibrium problems, J. of Optim. Theory

and Appl., 110, 481-492.

[6] M. Bianchi and R. Pini (2003). A note on stability for parametric equilibrium

problems, Oper. Res. Lett., 31, 445-450.

[7] E. Blum and W. Oettli (1994). From optimization and variational inequalities

to equilibrium problems, Math. Student, 63, 123-145.

24



[8] R. Brânzei, J. Morgan, V. Scalzo and S. Tijs (2003). Approximate fixed point

theorems in Banach spaces with applications in game theory, J. Math. Anal.

Appl., 285, 619-628.

[9] O. Chadli and H. Riahi (2000). On generalized vector equilibrium problems,

J. of Global Optim., 16, 33-41.

[10] Y.H. Cheng and D.L. Zhu (2005). Global stability results for the weak vector

variational inequality, J. of Global Optim., 32, 543-550.

[11] S. Dafermos (1988). Sensitivity analysis in variational inequalities, Math.

Oper. Res., 13, 421-434.

[12] X.P. Ding (2000). Existence of solutions for quasiequilibrium problems in

noncompact topological spaces, Comput. Math. Appl., 39, 13-21.

[13] A. Domokos and J. Kolumbán (2002). Variational inequalities with operator

solutions, J. of Global Optim., 23, 99-110.

[14] J.Y. Fu and A.H. Wan (2002). generalized vector equilibrium problems with

set-valued mappings, Math. Methods Oper. Res., 56, 259-268.

[15] N.X. Hai and P.Q. Khanh. Existence of solution to general quasiequilibrium

problems and application, J. of Optim. Theory and Appl., in press.

[16] P.Q. Khanh and L.M. Luu (2005). Upper semicontinuity of the solution set of

parametric multivalued vector quasivariational inequalities and applications,

J. of Global Optim., 32, 569-580.

[17] P.Q. Khanh and L.M. Luu (2005). Lower and upper semicontinuity of the

solution sets and approximate solution sets to parametric multivalued qua-

sivariational inequalities, J. of Optim. Theory and Appl., in press.

25



[18] S.J. Li, G.Y. Chen and K.L. Teo (2002). On the stability of generalized

vector quasivariational inequality problems, J. of Optim. Theory and Appl.,

113, 283-295.

[19] J.L. Lin, Q.H. Ansari and J.Y. Wu. Geometric properties and coincidence

theorems with applications to generalized vector equilibrium problems, J. of

Optim. Theory and Appl., in press.

[20] L.J.Lin, Z.T. Yu and G. Kassay (2002). Existence of equilibria for multival-

ued mappings and its applications to vector equilibria, J. of Optim. Theory

and Appl., 114, 189-208.

[21] M.A. Mansour and H. Riahi (2005). Sensitivity analysis for abstract equilib-

rium problems, J. Math. Anal. Appl., 306, 684-691.

[22] L.D. Muu (1984). Stability property of a class of variational inequalities,

Math. Operationsforsch. u. Statist., ser: Optim., 15, 347-351.

[23] J. Zhao (1977). The lower semicontinuity of optimal solution sets, J. Math.

Anal. Appl., 207, 240-254.

26


