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Abstract. We propose four kinds of systems of set - valued quasivariational in-

clusion problems in product spaces, which include many known systems of equilib-

rium problems and systems of variational inequalities as well as inclusion problems.

Su±cient conditions for the solution existence are established. When applied to

special cases these conditions improve many existing results in the literature. To

ensure the generality of our problem setting and results, applications in the ¯xed

point theory and quasioptimization problems are included.
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1. Introduction

For the last several decades variational inequality problems have been devel-

oped rapidly, see e.g. the papers gathered in books devoted to variational inequal-

ities: Refs. 1 - 3, since this theory proved to be very e®ective and powerful tools

for studying a wide class of problems in diverse ¯elds of pure mathematics and

applied sciences like mathematical programming, optimization, engineering, tra±c

equilibrium problems, mathematical economics, game theory, elasticity theory, etc.

An important extension of a variational inequality is an equilibrium problem, see

e.g. recent works: Refs. 4 - 9. This problem setting includes not only variational

inequalities but also complementarity problems, ¯xed point and coincidence point

problems, optimization problems, game theory, etc. Recently variational inclusions

were introduced as extensions of equilibrium problems in Refs. 10 - 13. However,

it should be added here that the term "variational inclusions" is understood in

various ways in the literature. A variational inclusion means a kind of multivalued

variational inequality problems in Refs. 14 - 15. It is used for a problem of ¯nding

zeroes of maximal monotone mappings in Refs. 16 - 18. Ref. 19 extends this

model.

On the other hand, systems of problems of the above kinds began to attract

mathematicans. In Ref. 20 a system of variational inequalites in product spaces

was considered. Systems of equilibrium problems in product spaces were investi-

gated in Refs. 21 - 23 as a direct generalization of the system studied in Ref. 20.

Another concept of a system of equilibrium problems was proposed in Refs. 24
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- 25, where the problem under consideration was to ¯nd common solutions to a

system of two or in¯nite number of equilibrium problems in the same spaces.

Inspired by this line of works, we introduce four kinds of systems of set-valued

quasivariational inclusion problems in product spaces. Our problem setting, which

includes almost all the above problems, is as follows. Let I be any index set. For

each i 2 I, let Xi; Yi and Zi be Hausdor® topological vector spaces, Ai μ Xi

be nonempty convex subsets. Set X =
Q
i2I Xi and A =

Q
i2I Ai, the Tichonov

products. Let the following multifunctions be given with nonempty values: Ki :

A ! 2Xi , Ti : A ! 2Zi , Fi : Ti(A) £ Xi £ A ! 2Yi , Gi : Ti(A) £ Xi £ A ! 2Yi .

Let xi be the canonical projection of x 2 X on Xi. The systems of generalized

quasivariational inclusion problems under our consideration are the following:

(SQIP1) ¯nd ¹x such that, 8i 2 I; ¹xi 2 Ai
T
clKi(¹x) and 8yi 2 Ki(¹x);9¹ti 2 Ti(¹x),

Fi(¹ti; yi; ¹x) μ Gi(¹ti; ¹xi; ¹x); (1)

(SQIP2) ¯nd ¹x such that, 8i 2 I; ¹xi 2 Ai
T
clKi(¹x) and 8yi 2 Ki(¹x);8¹ti 2 Ti(¹x),

one has (1);

(SQIP3) ¯nd ¹x such that, 8i 2 I; ¹xi 2 Ai
T
clKi(¹x) and 8yi 2 Ki(¹x);9¹ti 2 Ti(¹x),

Fi(¹ti; yi; ¹x)
T
Gi(¹ti; ¹xi; ¹x)6= ;; (2)

(SQIP4) ¯nd ¹x such that, 8i 2 I; ¹xi 2 Ai
T
clKi(¹x) and 8yi 2 Ki(¹x);8¹ti 2 Ti(¹x),

one has (2),

where cl(.) means closure of the set (.).

To ensure the generality of the above problem setting we consider some spe-

cial cases in connection with recent papers in the literature.

(a) If Gi(ti; yi; x) = Ci(x) or Yin¡intCi(x), where Ci : X ! 2Yi has the

values Ci(x) being closed cones with nonempty interiors, and Ai = Xi, then our
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four systems collapse to the four systems of generalized vector quasiequilibrium

problems investigated in Ref. 23.

(b) If Yi = Y0; Zi = X; Ti = fxg and clKi(x) = Ai for all i 2 I and x 2 X,
where Y0 is a Hausdor® topological vector space, if Fi(x; yi; x) is single-valued and

if Gi(x; yi; x) ´ Y n¡intC, where C is a convex cone with intC6= ;, then (SQIP1)
and (SQIP2) coincide with the system of vector equilibrium problems studied in

Ref. 21.

(c) If Zi = X;Ti = fxg, and clKi(x) = Ai for all i 2 I and x 2 X and

if Gi(x; y; x) = Yin¡intCi(x), where Ci : X ! 2Yi has the values Ci(x) being

convex cones with intCi(x)6= ;, then (SQIP3) and (SQIP4) become the systems
of generalized vector equilibrium problems considered in Ref. 22.

(d) If Xi = X¤
i ; Yi = R;Ki(x) = Ai and Fi(ti; yi; x) =< Ti(x); yi ¡ xi >

and Gi(ti; yi; x) = R+ for all i 2 I; yi 2 Yi, x 2 X, where Ti is single-valued,

then (SQIP1) and (SQIP2) are reduced to the system of variational inequalities

investigated in Ref. 20.

(e) If I is a singleton, Gi(ti; yi; x) = Fi(ti; xi; x) + Ci(x), where Ci : X ! 2Yi

has the values Ci(x) being convex cones with nonempty interiors, then (SQIP2)

becomes the variational inclusion problems sudied in Ref. 11 and is similar to the

variational inclusion problems considerd in Refs. 10, 12 and 13, while (SQIP1) is

similar to another variational inclusion problem dealt with in Ref. 13.

(f) If I is a singleton, Gi(ti; yi; x) = Yin¡intCi(x), where Ci : X ! 2Yi has

the values Ci(x) being convex cones with intCi(x)6= ;, then (SQIP1) and (SQIP2)
collapse to the quasiequilibrium problems investigated by many authors, see e.g.

Refs. 9 and 26 - 28.
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In Section 4 we will mention other special cases of the systems (SQIP1) -

(SQIP4).

The paper is organized as follows. Section 2 is devoted to de¯nitions, a ¯xed

point theorem and a maximal element theorem needed in the sequel. In Section 3

the main results are established and in Section 4 applications in ¯xed point theory

and quasioptimization problems are presented to see the generality and e®ective-

ness of the main results.

2. Preliminaries

We recall ¯rst some de¯nitions. Let X and Y be topological spaces. A

multifunction F : X ! 2Y is said to be upper semicontinuous (usc, in short) at

x̂ 2 domF := fx 2 X : F (x) 6= ;g if for each open subset U , with F (x̂) μ U ,

there is a neighborhood N of x̂ such that F (N) μ U . F is called usc in S μ X

if F is usc at any x 2 S. If S =domF we delete the term "in S". In the sequel

all properties de¯ned at a point will be extentded to a subset in this way. F is

called lower semicontinuous (lsc) at x̂ 2 domF if, for each open subset U satisfying
U \F (x̂)6= ; there is a neighborhood N of x̂ such that U\F (x)6= ; for all x 2 N .
F is said to be continuous at x̂ if F is both usc and lsc at x̂. F is termed closed at

x 2 domF if 8x® ! x̂; 8y® 2 F (x®): y® ! y, y 2 F (x̂).
The following facts are well known.

(i) F is lsc at x̂ if and only if 8y 2 F (x̂);8x® ! x̂;9y® 2 F (x®), y® ! y.

(ii) If F is usc and has closed values, then F is closed.

(iii) If F is usc, has compact values and A μ X is compact, then F (A) is

compact.
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Recall that a point x 2 X is termed a maximal element of F : X ! 2Y , where

X and Y are topological spaces, if F (x) = ;. The following existence theorem of

maximal elements for a family of multifunctions was established in Ref. 29 in a

slightly stronger form.

Theorem 2.1. Let for each i 2 I;Xi be a Hausdor® topological vector

space, Ai μ Xi be a nonempty convex subset and let Si : A =
Q
i2I Ai ! 2Ai have

nonempty convex values. Assume that the following conditions hold

(i) S¡1i (xi) is open in A for all xi 2 Ai and i 2 I;
(ii) xi =2 Si(x) for each x 2 A and i 2 I;
(iii) if A is not compact then there exists a nonempty compact subset N of

A and, 8i 2 I, a nonempty compact convex subset Bi of Ai such that, for each
x 2 AnN , there exists i 2 I such that Bi \ Si(x)6= ;.
Then, there exists ¹x 2 A such that Si(¹x) = ; for all i 2 I.

We propose the following generalized convexity de¯nitions. Let D;K and

H be sets, X be a vector space. Let F;G : D £ X ! 2K and T : H ! 2D be

multifunctions. For x 2 H;F is called G-quasiconvex wih respect to T (x) of type
1 if, 8»; ´; z 2 X; 8¸ 2 [0; 1], one has the implication

[F (t; »)6μ G(t; z) and F (t; ´)6μ G(t; z);8t 2 T (x)]
) [F (t; (1¡ ¸)» + ¸´)6μ G(t; z);8t 2 T (x)]. (3)

F is said to be G-quasiconvex with respect to T (x) of type 2 if in (3) we

replace 8t by 9t.
F is said to be G-quasiconvexlike with respect to T (x) of type 1 if 8»; ´; z 2

X;8¸ 2 [0; 1], one has the implication
[F (t; »)

T
G(t; z)6= ; and F (t; ´)TG(t; z)6= ;; 8t 2 T (x)]

7



) [F (t; (1¡ ¸)» + ¸´)TG(t; z)6= ;;8t 2 T (x)]. (4)

If 8t in (4) is replaced by 9t, we say that F is G-quasiconvexlike with respect
to T (x) of type 2.

3. Main Results

In this section we establish su±cient conditions for the solution existence of

four problems (SQIP1) - (SQIP4).

Theorem 3.1. For (SQIP1) assume the following.

(i) 8i 2 I;8x 2 A, considering Fi(ti; yi; x) andGi(ti; xi; x), Fi isGi-quasiconvex,
in the ¯rst two variables with respect to Ti(x) of type 1; moreover,

8ti 2 Ti(x); Fi(ti; xi; x) μ Gi(ti; xi; x);
(ii) 8i 2 I;8yi 2 Ai, fx 2 A : 9ti 2 Ti(x); Fi(ti; yi; x) μ Gi(ti; xi; x)g is
closed;

(iii) 8i 2 I; 8x 2 A, Ai \Ki(x)6= ;, Ki(x) is convex; clK(:) is usc and

K¡1
i (yi) is open in A for all yi 2 Ai ;

(iv) if A is not compact then there exist a nonempty compact subset N of

A and, 8i 2 I, a nonempty compact convex subset Bi of Ai such that,
for each x 2 AnN , there exist i 2 I, and ¹yi 2 Bi\Ki(x) with Fi(ti; ¹yi; x)6μ
Gi(ti; xi; x) for all ti 2 Ti(x).

Then, (SQIP1) has solutions.

Proof. For each i 2 I and x 2 A set
Ei = fx 2 A : xi 2 clKi(x)g,

8



Pi(x) = fzi 2 Ai : Fi(ti; zi; x)6μ Gi(ti; xi; x);8ti 2 Ti(x)g,

Si(x) =

(
Ki(x) \ Pi(x) if x 2 Ei;
Ai \Ki(x) if x 2 AnEi;

For yi 2 Ai one has

S¡1i (yi) = fx 2 Ei : x 2 K¡1
i (yi) \ P¡1i (yi)g [ fx 2 AnEi : x 2 K¡1

i (yi)g

= [Ei \K¡1
i (yi) \ P¡1i (yi)] [ [(AnEi) \K¡1

i (yi)]

= [(AnEi) [ P¡1i (yi)] \K¡1
i (yi):

Hence

AnS¡1i (yi) = [Ei \ (AnP¡1i (yi))] [ [AnK¡1
i (yi)]:

Since clKi(:) is usc, Ei is closed. By (iii), AnK¡1
i (yi) is also closed. By (ii)

the set

AnP¡1i (yi) = fx 2 A : 9ti 2 Ti(x); Fi(ti; yi; x) μ Gi(ti; xi; x)g (5)

is closed too. Thus, (5) shows that S¡1i (yi) is open in A.

By the G-quasiconvexity of Fi assumed in (i), Pi(x) is convex and hence Si(x)

is convex for all x 2 A.
Furthermore, since Fi(ti; xi; x) μ Gi(ti; xi; x); 8ti 2 Ti(x), one has xi 62 Pi(x).

If x 2 Ei then xi 62 Si(x). If x 2 AnEi, then xi 62clKi(x) and hence xi 62 Si(x).
By assumption (iv), 8x 2 AnN;8i 2 I;9Bi μ Ai(nonempty compact convex) such
that 9i 2 I; 9¹yi 2 Bi \ Ki(x) with ¹yi 2 Pi(x). Therefore, Bi \ Ki(x) 6= ;. Now
that all the assumptions of Theorem 2.1 are satis¯ed, there exists ¹x 2 A such that
Si(¹x)6= ;;8i 2 I. Since Ai\Ki(¹x)6= ;, ¹xmust be in Ei. Then ; = Si(¹x) = Ki(¹x)\
Pi(¹x). Consequently, for any yi 2 Ki(¹x) one has ¹yi 62 Pi(¹x), i.e. Fi(¹ti; yi; ¹x) μ
Gi(¹ti; ¹xi; ¹x) for all i 2 I and for some ¹ti 2 Ti(¹x), which means that ¹x is a solution
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of (SQIP1). ¤

Remark 3.1. If, 8i 2 I;8yi 2 Ai; Ti(:) is a usc multifuntion with compact
values, Fi(:; yi; :) is lsc and Gi(:; :; :) is a usc multifunction with closed values, then

assumption (ii) of Theorem 3.1 is ful¯lled.

Proof. Let

Myi = fx 2 A : 9ti 2 Ti(x); Fi(ti; yi; x) μ Gi(ti; xi; x)g;

x® 2Myi ; x® ! x¤ and L = fx®g [ fx¤g. Then 9ti® 2 Ti(x®) such that

Fi(ti®; yi; x®) μ Gi(ti®; x®i; x®):

Since Ti(L) is compact, by extracting a subnet if necessary we assume ti® ! t¤ for

some t¤i 2 Ti(L). Since Ti(:) is closed, t¤i 2 Ti(x¤).
By the lower semicontinuity of Fi(:; yi; :);8z¤i 2 Fi(t¤i ; yi; x¤); 9zi® 2 Fi(ti®; yi; x®)

such that zi® ! z¤i . Since zi® 2 Gi(ti®; x®i; x®) and Gi is closed, one has z¤i 2
Gi(t

¤
i ; x

¤
i ; x

¤). Thus Myi is closed. ¤

The following example shows that the converse is not true.

Example 3.1. Let I = f1g; X1 = Y1 = Z1 = R; A1 = [0; 1]; K1(x) ´
[0; 1]; G1(t1; y1; x) ´ R+,

T1(x) =

(
[1:5; 2] if x = 0:5;

[0; 1] otherwise;

F1(t1; y1; x) =

(
[0:5; 1] if t1 = x = 0:5;

[1; 2] otherwise:

Then, My1 ´ [0; 1];8y1 2 A1, is closed, but T1(:) is not usc and F1(:; y1; :) is not
lsc.
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Passing to system (SQIP2) we have

Theorem 3.2. Assume (iii) as in Theorem 3.1. Assume further that

(i2) 8i 2 I;8x 2 A, considering Fi(ti; yi; x) andGi(ti; xi; x), Fi isGi-quasiconvex,
in the ¯rst two variables with respect to Ti(x) of type 2; moreover,

9ti 2 Ti(x); Fi(ti; xi; x) μ Gi(ti; xi; x);
(ii2) 8i 2 I;8yi 2 Ai, fx 2 A : 8ti 2 Ti(x); Fi(ti; yi; x) μ Gi(ti; xi; x)g is
closed;

(iv2) if A is not compact then there exists a nonempty compact subset N of

A and, 8i 2 I, a nonempty compact convex subset Bi of Ai such that, for
each x 2 AnN , there are i 2 I, and ¹yi 2 Bi \Ki(x) with Fi(ti; ¹yi; x)6μ
Gi(ti; xi; x) for some ti 2 Ti(x).

Then, (SQIP2) has a solution.

Proof. The argument is similar to that of the proof of Theorem 3.1, but

now the de¯nition of Pi is

Pi(x) = fzi 2 Ai : 9ti 2 Ti(x); Fi(ti; zi; x)6μ Gi(ti; xi; x)g: ¤

Similarly as in Remark 3.1 it is not hard to prove that if 8i 2 I; 8yi 2
Ai; Fi(:; yi; :) and Ti(:) are lsc andGi(:; :; :) is a usc multifunction with closed values,

then condition (ii2) is satis¯ed.

As a typical example we give a consequence of Theorem 3.2 for one of the

special case, which is a system of generalized vector quasiequilibrium problems

studied in Ref. 23 and mentioned in (a) of Section 1:

(SQEP2) Find ¹x such that, 8i 2 I; ¹xi 2 Ai
T
clKi(¹x) and, 8yi 2 Ki(¹x);8¹ti 2

Ti(¹x),
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Fi(¹ti; yi; ¹x) μ Ci(¹x):

Corollary 3.1. For (SQEP2) assume that

(a) 8i 2 I; 8x 2 A, considering Fi(ti; yi; x) and Ci(x), Fi is Ci-quasiconvex,
in the ¯rst two variables, with respect to Ti(x) of type 2; moreover, 9ti 2
Ti(x); Fi(ti; xi; x) μ Ci(x);

(b) 8i 2 I;8yi 2 Ai, fx 2 A : 8ti 2 Ti(x); Fi(ti; yi; x) μ Ci(x)g is closed in A;
(c) 8i 2 I; 8x 2 A;8yi 2 Ai,Ai \Ki(x)6= ;, Ki(x) is convex, clK(:) is usc

and K¡1
i (yi) is open in A;

(d) there exist a nonempty compact subset N of A and, 8i 2 I, a nonempty
compact convex subset Bi of Ai such that, for each x 2 AnN , there are
i 2 I, and ¹yi 2 Bi \Ki(x) with Fi(ti; ¹yi; x)6μ Ci(x) for some ti 2 Ti(x).

Then, (SQEP2) has solutions.

Remark 3.2. Corollary 3.1 improves Theorem 3.1 of Ref. 23. Assumptions

(a) and (b) are weaker than the corresponding ones in Ref. 23. Namely (b) is

weaker than the semicontinuity assumptions as discussed in Remark 3.1. The

quasiconvexity assumed in (a) is weaker than the following Ci(x)-quasiconvexity

assumed in Ref. 23: 8»; ´ 2 Xi; 8¸ 2 [0; 1]; 8ti 2 Ti(x), one has either
Fi(ti; »; x) μ Fi(ti; (1¡ ¸)» + ¸´; x) + Ci(x)

or (6)

Fi(ti; ´; x) μ Fi(ti; (1¡ ¸)» + ¸´; x) + Ci(x).
Indeed, assume (6). Checking that Fi is Ci-quasiconvex (in the ¯rst two variables)

with respect to Ti(x) of type 2, we suppose to the contrary that Fi(ti; »; x)6μ Ci(x)
and Fi(ti; ´; x)6μ Ci(x), for some ti 2 Ti(x) but, for all ti 2 Ti(x), Fi(ti; (1¡ ¸)» +
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¸´; x) μ Ci(x). Then, by (6) either
Fi(ti; »; x) μ Ci(x) + Ci(x) = Ci(x)

or

Fi(ti; ´; x) μ Ci(x) + Ci(x) = Ci(x),
for all ti 2 Ti(x), a contracdition.

The following example indicates that the converse is not true, i.e. our Ci-

quasiconvexity of type 2 is strictly weaker than (6). It gives also a case where

Corollary 3.1 can be applied but Theorem 3.1 of Ref. 23 does not work.

Example 3.2. Let I = f1g and X1; Y1; Z1; A1;K1 be as in Example 3.1. Let

C1(x) = R+,

T1(x) =

(
[0:5; 2] if x = 0:5;

[0; 1] otherwise;

F1(t; y; x) =

(
[0:5; 1] if t = y = x = 0:5;

[0; 0:5] otherwise:

To see that F1 is not Ci(x)-quasiconvex stated in (6) we take x = 0:5; t = 0:5; » =

0; ´ = 1 and ¸ = 0:5. Then,

F1(t; »; x) = F1(0:5; 0; 0:5) = [0; 0:5]6μ F1(t; (1¡ ¸)» + ¸´; x) + C1(x) = [0:5; 1] +R+;

F1(t; ´; x) = F1(0:5; 1; 0:5) = [0; 0:5]6μ F1(t; (1¡ ¸)» + ¸´; x) + C1(x) = [0:5; 1] +R+:

Moreover, both T1(:) and F1(:; y; :) are not lsc as required in Theorem 3.1 of Ref.

23. It is not hard to see that all assumptions of Corollary 3.1 are satis¯ed. So by

this corollary the considered problem has solutions. By direct checking one sees

that the solution set is [0,1].
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Theorem 3.2 can be modi¯ed as follows to get a solution existence for (SQIP3).

Theorem 3.3. For (SQIP3) assume (iii) as in Theorem 3.1 and

(i3) 8i 2 I;8x 2 A, considering Fi(ti; yi; x) andGi(ti; xi; x), Fi isGi-quasicon-
vexlike, in the ¯rst two variables, with respect to Ti(x) of type 1; moreover,

Fi(ti; xi; x) μ Gi(ti; xi; x);8ti 2 Ti(x);
(ii3) 8i 2 I;8yi 2 Ai, fx 2 A : 9ti 2 Ti(x); Fi(ti; yi; x) \Gi(ti; xi; x)6= ;g is
closed in A;

(iv3) if A is not compact, then there are a nonempty compact subset N of

A and, 8i 2 I, a nonempty compact convex subset Bi of Ai such that, for
each x 2 AnN , there are i 2 I and ¹yi 2 Bi \Ki(x) with Fi(ti; ¹yi; x) \
Gi(ti; xi; x)6= ; for all ti 2 Ti(x).

Then, (SQIP3) has a solution.

Proof. By using another set Pi(x) de¯ned by

Pi(x) = fzi 2 Ai : Fi(ti; zi; x) \Gi(ti; xi; x)6= ;;8ti 2 Ti(x)g
and similar argument as that of the proof of Theorem 3.1 one gets the conclusion.¤

Remark 3.3. Assumption (ii3) is weaker than the following semicontinuity

assumption: 8i 2 I;8yi 2 Ai; Fi(:; yi; :) and Ti(:) are usc and have nonempty

compact values and Gi(:; :; :) is usc and has nonempty closed values. Also our Gi-

quasiconvexlikeness assumed in (i3) is weaker than the C(x)-quasiconvexlikeness

assumed in Theorem 3.2 of Ref. 23. The proof is similar as that in Remark 3.2.

So while applied to the special case considerd in Ref. 23, Theorem 3.3 improves

Theorem 3.2 of Ref. 23.
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To see the generality of our problem setting we will derive below Corollary 3.2

of Theorem 3.3 for the following system of generalized vector equilibrium problems

considered in Ref. 22 and mentioned in (c) of Section 1 :

(SGEP) Find ¹x such that, 8i 2 I and 8yi 2 Ai,
Fi(yi; ¹x)6μ ¡intCi(¹x):

For the sake of comparison, recall the quasiconvexlikeness introduced in Ref.

20. Let X and Y be vector spaces, D be a set, F : X £D ! 2Y and C : D ! 2Y

be multifunctions with C(x) being closed convex cone with nonempty interior for

each x 2 D. Then for x 2 D;F (:; x) is called C(x)-quasiconvexlike if 8»; ´ 2
X;8¸ 2 [0; 1], either

F ((1¡ ¸)» + ¸´; x) μ F (»; x)¡ C(x)
or

F ((1¡ ¸)» + ¸´; x) μ F (´; x)¡ C(x).

Corollary 3.2. For (SGEP) assume that

(a) 8i 2 I; 8x 2 A, Fi(:; x) is Yin¡intCi(x)-quasiconvexlike with respect to
T (x) = fxg in the sense of (4) , i.e. , 8»; ´ 2 Xi;8¸ 2 [0; 1], one has
[Fi(»; x) μ ¡intCi(x) and Fi(´; x) μ ¡intCi(x)]
) [Fi((1¡ ¸)» + ¸´; x) μ ¡intCi(x)];

moreover, Fi(xi; x)6μ ¡intCi(x);8x 2 A;
(b) 8yi 2 Ai; fx 2 A : Fi(yi; x)6μ ¡intCi(x)g is closed;
(c) if A is not compact, then there are a nonempty compact subset N of A

and, 8i 2 I, a nonempty compact convex subset Bi of Ai such that,
8x 2 AnN , 9i 2 I, 9¹yi 2 Bi with Fi(¹yi; x) μ ¡intCi(x).

Then, (SGEP) has solutions.
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Observe that similarly as in Remark 3.2 forGi-quasiconvexity, we can see that

the above Ci(x)-quasiconvexlikeness, de¯ned in Ref. 20, implies the Yin¡intCi(x)-
quasiconvexlikeness assumed in (a). The following example shows that the converse

does not hold and that Corollary 3.2 improves Theorem 3 of Ref. 22 (and also

Theorem 3 of Ref. 20).

Example 3.3. Let I = f1g, X1 = Y1 = Z1 = R;A1 = [0; 1], C1(x) ´ R+

and F1(y; x) = 1 ¡ (y ¡ 1
2
)2. Then all assumptions of Corollary 3.2 are satis¯ed

and hence (SGEP) in this case has solutions. In fact, it is clear that the solution

set is the whole A1 = [0; 1]. However, F1 is not Ci(x)-quasiconvexlike and then

Theorem 3 of Ref. 22 cannot be applied.

Passing ¯nally to (SQIP4) we have

Theorem 3.4. For (SQIP4) assume (iii) as in Theorem 3.1 and

(i4) this is (i3) with "type 1" and "8ti" replaced by "type 2" and "9ti",
respectively;

(ii4) 8i 2 I;8yi 2 Ai, fx 2 A : 8ti 2 Ti(x); Fi(ti; yi; x) \Gi(ti; xi; x)6= ;g is
closed in A;

(iv4) if A is not compact, then there exist a nonempty compact subset N of

A and, 8i 2 I, a nonempty compact convex subset Bi of Ai such that, for
each x 2 AnN , there exist i 2 I and ¹yi 2 Bi \Ki(x) with Fi(ti; ¹yi; x) \
Gi(ti; xi; x)6= ;, for some ti 2 Ti(x).

Then, (SQIP4) has solutions.

Remark 3.4. Similarly as for the previous three problems (SQIP1) - (SQIP3),
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(ii4) is satis¯ed if 8i 2 I;8yi 2 Ai, Ti(:) is lsc, Fi(:; yi; :) and Gi(:; :; :) are usc,
Fi(:; yi; :) has nonempty compact values and Gi(:; :; :) has nonempty closed values.

The converse is not true.

4. Applications

To see a variety of applications of the main results in Section 3 let us derive

some consequences for the ¯xed point theory and quasioptimization theory. These

topics are seemingly not very close to inclusion and equilibrium problems.

The following ¯xed point result is Theorem 4.1 of Ref. 23 and is proved by

invoking to Theorem 3.4.

Corollary 4.1. Let, 8i 2 I;Xi is a Hilbert space, Ai μ Xi is a closed convex
subset. Let A =

Q
i2I Ai. Assume that

(i) 8i 2 I; Ti : A! 2Ai is lsc and has nonempty values;

(ii) if A is not compact, then there are a nonempty compact subset N of

A and, 8i 2 I, a nonempty compact convex subset Bi of Ai such that, for
each x 2 AnN , 9i 2 I, 9¹yi 2 Bi with < xi ¡ ti; ¹yi ¡ xi >< 0, for some
ti 2 Ti(x).

Then there is ¹x 2 A such that ¹x 2Qi2I Ti(¹x) .

Proof. Set

Ki(x) = Ai;8x 2 A,
Fi(ti; yi; x) = f< xi ¡ ti; yi ¡ xi >g,
Gi(ti; yi; x) ´ [0;+1).
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It is not hard to see that all the assumptions of Theorem 3.4 are satis¯ed. There-

fore, there exists ¹x 2 A such that, 8i 2 I; 8yi 2 Ai, 8ti 2 Ti(¹x),
< ¹xi ¡ ti; yi ¡ ¹xi >¸ 0.

Taking yi = ti = ¹ti for any ¯xed ti 2 Ti(¹x) one gets < ¹xi¡¹ti; ¹ti¡¹xi >¸ 0, and hence
k ¹xi ¡ ¹ti k= 0. So ¹xi = ¹ti 2 Ti(¹x); 8i 2 I. ¤

Applying Theorem 3.1 we can modify Corollary 4.1 to get a new ¯xed point

result as follows.

Corollary 4.2. Assume (ii) of Corollary 4.1 and replace (i) by

(i') 8i 2 I; Ti : A! 2Ai is usc and has nonempty compact values.

Then there exists ¹x 2 A such that ¹xi 2 Ti(¹x); 8i 2 I.

Proof. Setting Ki; Fi and Gi as for Corollary 4.1 and applying Theorem 3.1

and Remark 3.1 one obtains the conclusion. ¤

Passing to quasi-optimization we ¯rst state a solution existence for the fol-

lowing quasivariational inclusion problem, which is special case of (SQIP2). Let

X;Y and Z be Hausdor® topological vector spaces, A 2 X be a nonempty closed

convex subset and K : A ! 2X ; T : A ! 2Z and F : T (A) £ X £ A ! 2Y be

multifunctions. Let Y be ordered by a closed convex cone C with intC 6= ;. The
quasivariational inclusion problem is

(QIP) Find ¹x 2 K(¹x), such that, 8y 2 K(¹x) and 8¹t 2 T (¹x),
F (¹t; y; ¹x) μ F (¹t; ¹x; ¹x) + C.

The proof of the following consequence of Theorem 3.2, is easy and omitted.

Corollary 4.3. Assume for (QIP) that
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(i) A is compact;

(ii) 8x 2 A, considering F (t; y; x) and G(t; x; x) := F (t; x; x) + C, F is
G-quasiconvex, in the ¯rst two variables, with respect to T (x) of type 1;

(iii) 8y 2 A, fx 2 A : 8t 2 T (x); F (t; y; x) μ F (t; x; x) + Cg is closed in A;
(iv) 8x 2 A;K(x) is nonempty, closed and convex and A\K(x)6= ;; K¡1(y)

is open in A for all y 2 A.
Then, problem (QIP) has solutions.

We now investigate the following quasi-optimization problem (studied in

Refs. 10 and 30)

(QOP) Find ¹x 2 K(¹x) and ¹t 2 T (¹x) such that
F (¹t; ¹x; ¹x)

T
MinfF (¹t;K(¹x); ¹x)=Cg 6= ;,

where MinfH=Cg denotes the set of Pareto e±cient points of set H μ Y (with

respect to the ordering cone C).

As a consequence of Corollary 4.3 we obtain the following su±cient condition

for the solution existence of (QOP).

Corollary 4.4. For (QOP) assume (ii) - (iv) of Corollary 4.3 and replace

(i) by

(i') A is compact; the conjugate cone C¤ of C has a weak¤ compact base;

F (t; x; x) is compact for all (t; x) 2 T (A)£A.
Then (QOP) has solutions.

Proof. Following Corollary 4.3 one has (¹x; ¹t) 2 K(¹x) £ T (¹x) such that,
8y 2 K(¹x),

F (¹t; y; ¹x) μ F (¹t; ¹x; ¹x) + C. (7)
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By (i'), MinF (¹t; ¹x; ¹x)=C 6= ;. Suppose that ¹v 2 MinfF (¹t; ¹x; ¹x)=Cg but ¹v 62
MinfF (¹t;K(¹x); ¹x)=Cg. Then one has y 2 F (¹t;K(¹x); ¹x) such that

¹v ¡ y 2 Cn((¡C) \ C):

By virture of (7) y 2 F (¹t; ¹x; ¹x)+C, i.e. y = v̂+c for some v̂ 2 F (¹t; ¹x; ¹x) and c 2 C.
Therefore ¹v¡ v̂ 2 c+Cn((¡C)\C) = Cn((¡C)\C), contradicting the fact that
¹v 2 MinfF (¹t; ¹x; ¹x)=Cg. ¤

Corollary 4.4 is new. It is similar to the corresponding results in Ref. 10 and

30 but di®erent.
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