
First and Second-Order Optimality Conditions

Using Approximations for Nonsmooth

Vector Optimization in Banach Spaces1

P. Q. KHANH2 AND N. D. TUAN3

1This work was partially supported by the National Basic Research Program in Natural Sciences

of Vietnam.

2Professor, Department of Mathematics, International University of Hochiminh City, Hochiminh

City, Vietnam.

3Lecturer, Department of Mathematics, University of Natural Sciences of Hochiminh City, Ho-

chiminh City, Vietnam.

1



Abstract. We use the first and second-order approximations of mappings to es-

tablish both necessary and sufficient optimality conditions for unconstrained and

constrained nonsmooth vector optimization problems. Ideal solutions, efficient so-

lutions and weakly solutions are considered. The data of the problems need not

even be continuous. Some often imposed compactness assumptions are also relaxed.

Examples are provided to compare our results and some recent known ones.
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1. Introduction

Let X and Y be Banach spaces. Let S ⊆ X be nonempty, C be an ordering

cone of Y and f : X → Y be a mapping. Assume that C is closed and convex,

with nonempty interior. The aim of the present paper is to establish both necessary

and sufficient optimality conditions, of both first and second-order, for ideal solu-

tions, Pareto efficient solutions and weakly efficient solutions of the unconstrained

nonsmooth vector problem

(P1) min f(x), s.t. x ∈ X,

as well as the constrained nonsmooth vector problem

(P2) min f(x), s.t. x ∈ S.

Our optimality conditions are in terms of the first-order approximation intro-

duced by Jourani and Thibault in Ref. 1 and of the second-order approximation of

Allali and Amahroq in Ref. 2.

In Ref. 3, Penot describes the situation in the study of optimality conditions

in nonsmooth optimization as follows: ”The number of results and the variety of

concepts introduced make the task of giving a general view on the subject an al-
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most Herculean work”. To motivate our aim we mention only the recent literature.

For problems involving mappings with locally Lipschitzian derivatives, the Clarke

generalized Hessian introduced in Ref. 4 are used to develop various second-order

optimality conditions in Refs. 5-8. The Dini and Hadamard directional derivatives

are exploited to establish first and second-order conditions in Refs. 9-15. The ap-

proximate Jacobian introduced in Ref. 16 and approximate Hessian in Ref. 17

are also effective generalized derivatives for constructing optimality conditions. See

also Refs. 18-22. In Refs. 23-25 optimality conditions are derived for nonsmooth

problems with multi-valued objectives. Observing that the Fréchet Hessian, Clarke

generalized Hessian and approximate Hessian are all particular cases of second-order

approximations and even discontinuous mappings may have approximations, we uti-

lize first and second-order approximations to develop optimality conditions for the

problems (P1) and (P2). Our results contain theorems of Refs. 2, 7, 8 and 18 as

special cases. To the best of our knowledge, Refs. 1, 2 and 26 are the only papers in

the literature to employ approximations to consider optimality conditions. However,

Ref. 1 investigates metric regularity in terms of first-order approximations and uses

another generalized derivative, the approximate subdifferential proposed by Mordu-
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khovich (Refs. 27-28) for finite dimensions and Ioffe (Ref. 29) for Banach spaces,

to formulate optimality conditions. Ref. 2 establishes only second-order necessary

optimality conditions for scalar optimization in terms of compact second-order ap-

proximations. Ref. 26 uses second-order approximations of scalar functions and a

scalarization by support functions to construct second-order optimality conditions

under differentiability and compactness assumptions. In this paper we consider

both necessary and sufficient conditions for vector optimization and we avoid con-

tinuity and differentiability assumptions and relax the compactness assumptions.

In Section 2 we highlight basic facts about first and second-order approximations

and some comparisons with other generalized derivatives. Section 3 is devoted to

optimality conditions for unconstrained optimization and the final section, Section

4, to set-constrained optimization.

2. First and Second-Order Approximations

Throughout the paper, the following notations will be used. Let X and Y

be Banach spaces. Let L(X, Y ) (B(X, X, Y )) stand for the space of the continuous

linear mappings from X into Y (continuous bilinear mappings from X ×X into Y ,

respectively). For L(X, R) we usually use the notation X∗. 〈x∗, x〉 denotes the value
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of x∗ ∈ X∗ at x ∈ X. BX stands for the closed unit ball in X. For A ⊆ L(X, Y )

and x ∈ X (B ⊆ B(X, X, Y ) and x, z ∈ X) denote A(x) := {M(x) : M ∈ A}

(B(x, z) := {N(x, z) : N ∈ B}, respectively). For S ⊆ X, clS means the closure of

S and coS means the convex hull of S. Let us recall generalized derivatives.

Definition 2.1 See Ref. 1. Let x0 ∈ X and g : X → Y . The set Ag(x0) ⊆

L(X,Y ) is said to be a first-order approximation of g at x0 if there exists a neigh-

borhood U of x0 such that, for all x ∈ U ,

g(x)− g(x0) ∈ Ag(x0)(x− x0) + o(‖x− x0‖),

where o(‖x− x0‖)/‖x− x0‖ tends to 0 as x → x0.

Notice that we do not have uniqueness of approximation and for A ∈ L(X, Y ),

{A} is a first-order approximation of g at x0 if and only if A is the Fréchet derivative.

Definition 2.2 See Ref. 2. We say that (Ag(x0), Bg(x0)) ⊆ L(X, Y )×

B(X, X, Y ) is a second-order approximation of g : X → Y at x0 ∈ X if

(i) Ag(x0) is a first-order approximation of g at x0;

(ii) g(x)− g(x0) ∈ Ag(x0)(x− x0) + Bg(x0)(x− x0, x− x0) + o(‖x− x0‖2).

Notice that for A ∈ L(X, Y ) and B ∈ B(X, X, Y ), {(A, B)} is a second-order

approximation of g at x0 if and only if A = g
′
(x0) and B = 1

2
g

′′
(x0), where g

′′
(x0)
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is the second Fréchet derivative of g at x0.

Remark 2.1. The notion of approximations has the advantage over many other

generalized derivatives that an approximation may exist even for a discontinuous

mapping, for instance, let g : R → R be defined by

g(x) =



√
x if x > 0,

0 if x = 0,

x−1 if x < 0.

Then g is discontinuous at 0 and we can take Ag(0) = (α, +∞) for any α > 0 and

Bg(0) = {0}, the zero mapping from R to R.

Definition 2.3

(i) See Ref. 30. Let g : Rn → Rm be a mapping of class C0,1, i.e. g is locally

Lipschitz. The Clarke generalized Jacobian of g at x0 ∈ Rn, denoted by ∂Cg(x0) is

defined by

∂Cg(x0) := clco{lim g
′
(xi) : xi → x0, g

′
(xi) exists }.

(ii) See Ref. 4. Let g : Rn → Rm be a mapping of class C1,1, i.e. g has Fréchet

derivatives which are locally Lipschitz. The Clarke generalized Hessian of g at x0 is

∂C(g
′
)(x0), which is denoted by ∂2

Cg(x0). Clearly,

∂2
Cg(x0) := clco{lim g

′′
(xi) : xi → x0, g

′′
(xi) exists }.
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We call ∂Cg(.) and ∂2
Cg(.) the Clarke generalized Jacobian and Clarke gener-

alized Hessian of g. For other generalized derivatives we adopt a similar distinction

between derivative mappings and their values at points.

Definition 2.4

(i) See Ref. 16. Let g : Rn → Rm be continuous. A closed subset ∂g(x0) ⊆

L(Rn, Rm) is called an approximate Jacobian of g at x0 ∈ Rn if, for each v ∈ Rm

and u ∈ Rn,

(vg)+(x0, u) ≤ sup
M∈∂g(x0)

〈v, Mu〉,

where (.)+ denotes the upper Dini directional derivative of (.), i.e.

(vg)+(x0, u) := lim sup
t↓0

〈v, g(x0 + tu)− g(x0)〉/t.

(ii) See Ref. 20. An approximate Jacobian ∂g(x0) is termed a Fréchet approx-

imate Jacobian of g at x0 if there is a neighborhood U of x0 such that, for each

x ∈ U ,

g(x)− g(x0) ∈ ∂g(x0)(x− x0) + o(‖x− x0‖).

(iii) See Refs. 16-17. Let g : Rn → Rm be continuously differentiable. A closed

subset ∂2g(x0) ⊆ B(Rn, Rn, Rm) is said to be an approximate Hessian of g at x0 if

∂2g(x0) is an approximate Jacobian of g
′
(.) at x0.
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It is obvious that any Fréchet approximate Jacobian is a first-order approxi-

mation. If an approximate Jacobian ∂g(.) is upper semicontinuous at x0, then (Ref.

20) clco∂g(x0) is a Fréchet approximate Jacobian and hence is a first-order approx-

imation. To get an improvement of this result and relations between the notions we

need the following lemma.

Lemma 2.1 See Ref. 16, Taylor’s formula.

(i) If g : Rn → Rm is continuous and, for x, y ∈ Rn and z ∈ [x, y], ∂g(z) is an

approximate Jacobian of g at z, then

g(x)− g(y) ∈ clco(∂g[x, y](x− y)).

(ii) If g : Rn → Rm is continuously differentiable and, for x, y ∈ Rn and

z ∈ [x, y], ∂2g(z) is an approximate Hessian of g at z, then

g(x)− g(y) ∈ g
′
(y)(x− y) + 1

2
clco(∂2g[x, y](x− y, x− y)).

Proposition 2.1. Assume that g : Rn → Rm is continuous and admits an

approximate Jacobian ∂g(.) which is upper semicontinuous at x0. Then co∂g(x0) is

a first-order approximation of g at x0.

Proof. The assumption means that ∀ε > 0, ∃δ > 0, ∀x ∈ x0 + δBRn ,
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∂g(x) ⊆ ∂g(x0) + ε
2
BL(Rn,Rm).

Hence

co∂g[x0, x] ⊆ co∂g(x0) + ε
2
BL(Rn,Rm).

By Lemma 2.1(i) one has

g(x)− g(x0) ∈ co∂g(x0)(x− x0) + ε
2
BL(Rn,Rm)(x− x0)

+ ε
2
‖x− x0‖BRm

= co∂g(x0)(x− x0) + ε‖x− x0‖BRm .

That is Ag(x0) = co∂g(x0) is a first-order approximation. �

Proposition 2.2. Let g : Rn → Rm be continuous and x0 ∈ Rn. If Ag(x0) is a

first-order approximation of g at x0 then clAg(x0) is a Fréchet approximate Jacobian

of g at x0.

Proof. By the definition of Ag(x0), for u ∈ Rn and small positive t, one finds

Mt ∈ Ag(x0) such that

g(x0 + tu)− g(x0) = Mt(tu) + o(t).

Then, for v ∈ Rm,

1
t
〈v, g(x0 + tu)− g(x0)〉 ≤ sup

M∈clAg(x0)

〈v, M(u)〉+ 〈v, o(t)/t〉.
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Taking lim sup
t↓0

one sees that

(vg)+(x0, u) ≤ sup
M∈clAg(x0)

〈v, Mu〉. �

Proposition 2.3. Assume that g : Rn → Rm is continuously differentiable

in a neighborhood U of x0 and ∂2g(.) is an approximate Hessian which is upper

semicontinuous at x0. Then, (g
′
(x0),

1
2
co∂2g(x0)) is a second-order approximation

of g at x0.

Proof. For an arbitrarily fixed ε > 0, by the assumed upper semicontinuity,

without loss of generality, we can assume that, for B = BL(Rn,L(Rn,Rm)) and x ∈ U ,

co∂2g(x) ⊆ co∂2g(x0) + ε
2
B.

Hence, by Lemma 2.1(ii),

g(x)− g(x0) ∈ g
′
(x0)(x− x0) + 1

2
clco∂2g[x0, x](x− x0, x− x0)

+ ε
2
‖x− x0‖2BRm

⊆ g
′
(x0)(x− x0) + 1

2
co∂2g(x0)(x− x0, x− x0)

+ ε
2
‖x− x0‖2BRm + ε

2
‖x− x0‖2BRm .

Thus, (g
′
(x0),

1
2
co∂2g(x0)) is a second-order approximation of g at x0. �

The following result is a direct consequence of Propositions 2.1 and 2.3.
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Proposition 2.4 See Refs. 1-2.

(i) If g : Rn → Rm is locally Lipschitz at x0 then ∂Cg(x0) is a first-order

approximation of g at x0.

(ii) If g : Rn → Rm is of class C1,1 at x0 then (g
′
(x0),

1
2
∂2

Cg(x0)) is a second-

order approximation of g at x0.

The examples below show that the above generalized derivatives may be equal

to or different from each other.

Example 2.1. Let g : R2 → R be defined by

g(x, y) =


x2 sin(1/x) + |y| if x 6= 0,

|y| if x = 0.

Then g is locally Lipschitz at (0, 0) and we have an approximate Jacobian

∂g(0, 0) = Ag(0, 0) = {(0, β) : β ∈ {−1, 1}},

which is also a Fréchet approximate Jacobian. However,

∂gC(0, 0) = {(α, β) : α, β ∈ [−1, 1]}.

Example 2.2. Let g : R2 → R2 be given as

g(x, y) = (|x| − |y|, |y| − |x|).

Then g is locally Lipschitz at (0, 0) and
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∂g(0, 0) =


 1 −1

−1 1

 ,

−1 1

1 −1




is an approximate Jacobian but not a Fréchet approximate Jacobian. Moreover a

first-order approximation is

Ag(0, 0) = ∂g(0, 0)
⋃


 1 1

−1 −1

 ,

−1 −1

1 1




which is also a Fréchet approximate Jacobian. We have also ∂Cg(0, 0) =coAg(0, 0).

Example 2.3. Let g : R2 → R2 be

g(x, y) = (|x|1/2sign(x), y1/3 + |x|).

Then g is continuous but g 6∈ C0,1 at (0, 0) and a first-order approximation

Ag(0, 0) =


α 0

β γ

 : α > 0, β = ±1, γ > 0


is different from the Fréchet approximate Jacobian

∂F g(0, 0) =


α 0

β γ

 : α ≥ 0, β ∈ [−1, 1], γ ∈ R

.

Second-order generalized derivatives have similar situations as shown by the

following two examples.

Example 2.4. Let g : R2 → R be defined by

g(x, y) = 1
2
x2sign(x) + 1

2
y2sign(y).
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Then g ∈ C1,1 at (0, 0). We have f
′
(x, y) = (|x|, |y|) and the three second-order

derivatives are different:

∂2
Cg(0, 0) =


α 0

0 β

 : α, β ∈ [−1, 1]

,

∂2g(0, 0) =


1 0

0 1

 ,

1 0

0 −1

 ,

−1 0

0 1

 ,

−1 0

0 −1


,

Bg(0, 0) =


1/2 0

0 1/2

 ,

1/2 0

0 −1/2

 ,

−1/2 0

0 1/2

 ,

−1/2 0

0 −1/2


.

Example 2.5. The mapping g : R2 → R given by

g(x, y) = 2
3
|x|3/2 + 1

2
y2

is in C1 but not in C1,1. So ∂2
Cg does not exist and the other two second-order

derivatives can be taken as

∂2g(0, 0) =


α 0

0 1

 : α ≥ 0

,

Bg(0, 0) =


α 0

0 1/2

 : α > 0

.

3. Optimality Conditions for Unconstrained Optimization

Consider problem (P1) stated in Section 1:
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(P1) min f(x), s.t. x ∈ X.

Here by min we mean the minimization in one of following three classical notions of

local solutions in vector optimization.

Definition 3.1

(i) x0 ∈ X is called a local ideal solution of (P1) if there exists a neighborhood

U of x0 such that, ∀x ∈ U ,

f(x)− f(x0) ∈ C.

(ii) x0 ∈ X is said to be a local efficient solution of (P1) if there exists a

neighborhood U of x0 such that, ∀x ∈ U ,

f(x)− f(x0) 6∈ (−C) \ C.

(iii) x0 ∈ X is termed a local weakly efficient solution of (P1) if there exists a

neighborhood U of x0 such that, ∀x ∈ U ,

f(x)− f(x0) 6∈ −int C.

We propose the following relaxed compactness which will be needed for estab-

lishing optimality conditions in the sequel.

Definition 3.2
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(i) Let fα and f belong to L(X, Y ). We say that the net fα pointwisely

converges to f and write fα
p−→ f or f = p-lim fα if lim fα(x) = f(x) for all x ∈ X.

A similar definition is adopted for fα, f ∈ B(X, X, Y ).

(ii) A subset A ⊆ L(X, Y ) (B ⊆ B(X, X, Y ), respectively) is said to be

relatively p-compact if each net (fα) ⊆ A (⊆ B, respectively) with a bounded

image
⋃
α

fα(x) for each x ∈ X (
⋃
α

fα(x, y) for each (x, y) ∈ X × Y , respectively)

has a subnet (fβ) and f ∈ L(X, Y ) (f ∈ B(X, X, Y ), respectively) such that f =

p-lim fβ.

(iii) A subset A ⊆ L(X, Y ) is called asymptotically p-compact if for each net

(fα) ⊆ A with lim ‖fα‖ = ∞, the net (fα/‖fα‖) has a subnet which pointwisely

converges to some f ∈ L(X, Y ) \ {0}. For B ⊆ B(X, X, Y ) a similar definition

is adopted. If A ⊆ L(X, Y ) and B ⊆ B(X, X, Y ) are both relatively p-compact

(or asymptotically p-compact, respectively) we call (A, B) relatively p-compact (or

asymptotically p-compact, respectively).

For A ⊆ L(X, Y ) and B ⊆ B(X, X, Y ) we adopt the notations:

p-clA = {f ∈ L(X, Y ) : ∃(fα) ⊆ A, f = p-lim fα},

p-clB = {g ∈ B(X, X, Y ) : ∃(gα) ⊆ B, g = p-lim gα},

16



p-A∞ = {f ∈ L(X,Y ) : ∃(fα) ⊆ A,∃tα → 0+, f = p-lim tαfα},

p-B∞ = {g ∈ B(X,X, Y ) : ∃(gα) ⊆ B, ∃tα → 0+, g = p-lim tαgα}.

p-A∞ and p-B∞ are called p-recession cone of A and B, respectively.

Remark 3.1

(i) The pointwise convergence in L(X, R) = X∗ coincides with the ∗-weak

convergence and for A ⊆ X∗, p-clA coincides with ∗-clA (the ∗-weak closure of A).

(ii) If fα → f in L(X, Y ) or in B(X, X, Y ), then fα
p−→ f . If X and Y are

finite dimensional then the converse does hold. However, the converse is no longer

true for the infinite dimensional case, see Example 3.1 below.

(iii) If A ⊆ L(X,Y ) (B ⊆ B(X, X, Y )) is relatively compact, then it is rel-

atively p-compact but the converse is not valid following Example 3.1 below. If

X and Y are finite dimensional then every subset of L(X, Y ) and B(X, X, Y ) are

relatively p-compact.

(iv) If A is asymptotically compact in L(X, Y ) or in B(X,X, Y ), then it is

asymptotically p-compact. If X and Y are finite dimensional then these two notions

coincide and every subset of L(X, Y ) and B(X, X, Y ) are asymptotically compact.

However, for general spaces this is no longer true as shown by Example 3.2 below.
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(v) It is obvious that A∞ ⊆ p-A∞, where A∞ is the recession cone of A ⊆

L(X,Y ) (or A ⊆ B(X, X, Y )) defined by A∞ = {f ∈ L(X, Y ) : ∃(fα) ⊆ A,∃tα →

0+, f = lim tαfα} (or by A∞ = {f ∈ B(X, X, Y ) : ∃(fα) ⊆ A,∃tα → 0+, f =

lim tαfα}, respectively).

(vi) If xα → x in X and Aα
p−→ A in L(X,Y ), then Aαxα → Ax in Y . Similarly,

if xα → x, yα → y in X and Bα
p−→ B in B(X, X, Y ), then Bα(xα, yα) → B(x, y) in

Y .

Recall that g : X → Y is called C-convex at x0 ∈ X if there is a convex

neighborhood U of x0 such that, ∀x ∈ U , ∀α ∈ [0, 1],

(1− α)f(x0) + αf(x)− f((1− α)x0 + αx) ∈ C.

We propose the following relaxed property. g : X → Y is said to be generalized

C-quasiconvex at x0 ∈ X if there exists a convex neighborhood U of x0 such that,

∀x ∈ U \ {x0}, ∃α0 ∈ (0, 1), ∀α ∈ (0, α0),

[g(x)− g(x0) ∈ Y \int C] =⇒ [g((1− α)x0 + αx)− g(x0) ∈ Y \int C].

3.1 Optimality Conditions for Ideal Solutions

Theorem 3.1. Assume that (Af (x0), Bf (x0)) is a second-order approxima-
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tion of f at x0, which is both relatively p-compact and asymptotically p-compact.

Assume further that x0 is a local ideal solution of (P1). Then

(i) ∀h ∈ X, ∃M ∈ p-clAf (x0)
⋃

(p-Af (x0)∞ \ {0}), Mh ∈ C;

(ii) ∀h ∈ KerAf (x0) := {v ∈ X : Mv = 0,∀M ∈ Af (x0)}, ∃N ∈p- clBf (x0)

⋃
(p-Bf (x0)∞ \ {0}), N(h, h) ∈ C.

Proof. (i) Let h ∈ X and xi = x0 + h/i, i = 1, 2, .... By the two assumptions,

for sufficiently large i one has, for some Mi ∈ Af (x0),

f(xi)−f(x0) ∈ C, (1)

f(xi)−f(x0) = Mi(xi−x0)+o(‖xi−x0‖). (2)

Consequently,

Mi(xi − x0) + o(‖xi − x0‖) ∈ C. (3)

If the sequence (Mi) is bounded, by the relative p-compactness of Af (x0) we

can assume, by taking a subsequence if necessary, the existence of M ∈ p-clAf (x0)

such that Mi
p−→ M . Dividing (3) by 1/i and letting i →∞ one obtains Mh ∈ C.

If (Mi) is unbounded, by the asymptotic p-compactness of Af (x0) we can

assume that ‖Mi‖ → ∞ and Mi/‖Mi‖
p−→ M for some M ∈ p-Af (x0)∞ \ {0}.

Dividing (3) by ‖Mi‖/i and letting i →∞ one gets also Mh ∈ C.
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(ii) Let h ∈ KerAf (x0) and xi = x0 + h/i, i = 1, 2, .... By the definition of

(Af (x0), Bf (x0)), for each i large enough there is (Mi, Ni) in this set such that

f(xi)−f(x0) = Mi(xi−x0)+Ni(xi−x0, xi−x0)+o(‖xi−x0‖2). (4)

Hence, by (1) and the fact that h ∈ KerAf (x0),

Ni(xi−x0, xi−x0) + o(‖xi−x0‖2) ∈ C. (5)

Arguing with (Ni) similarly as with (Mi) above, dividing (5) by 1/i2 if (Ni) is

bounded and by ‖Ni‖/i2 otherwise, one gets N as stated in the theorem. �

Remark 3.2

(i) Assume that X = Rn and Y = Rm. If f ∈ C0,1 and Af (x0) = ∂Cf(x0),

then Theorem 3.1(i) collapses to Theorem 4.1(i) of Ref. 7. If f ∈ C1,1 and

(Af (x0), Bf (x0)) = (f
′
(x0),

1
2
∂2

Cf(x0)), then Theorem 3.1(ii) becomes Theorem 4.1(ii)

of Ref. 7.

(ii) If Y = R, C = [0, +∞) and (Af (x0), Bf (x0)) is compact, then Theorem

3.1 drops to Theorem 3.1.1 of Ref. 2.

The following two examples make it clear that our relaxed compactness as-

sumptions are really weaker than the compactness assumptions.
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Example 3.1. Let fi : l2 → l2 be defined by fi(x) = (x1, 0, ..., 0, xi, 0, ...),

where x = (x1, ..., xi, ...) ∈ l2 and A = {fi : i ≥ 2} ⊂ L(l2, l2). Then ‖fi‖ = 1.

Let f0 ∈ L(l2, l2) be defined by f0(x) = (x1, 0, ...), then fi
p−→ f0, but (fi) does

not contain convergent subsequence. Therefore, A is relatively p-compact but not

relatively compact.

Example 3.2. Let A = {ifi : i ≥ 2} ⊂ L(l2, l2), where fi be defined as

in Example 3.1. Then ‖ifi‖ = i and ifi/‖ifi‖
p−→ f0 with f0 as in Example 3.1.

However, (ifi/‖ifi‖) has no convergent subsequence. Thus, A is asymptotically

p-compact but not asymptotically compact.

Theorem 3.2. If (Af (x0), Bf (x0)) is a second-order approximation of f at

x0, which is relatively p-compact as well as asymptotically p-compact. Then each

of the following conditions is sufficient for x0 to be a local ideal solution of (P1):

(i) f is C-convex at x0 and for each h ∈ X \ {0} one has Mh ∈ C if M ∈

p-cl Af (x0) and Mh ∈ C \ (−C) if M ∈ p-Af (x0)∞ \ {0};

(ii) f is generalized C-quasiconvex at x0 and for each h ∈ X \ {0} one has

Mh ∈ int C if M ∈ p-clAf (x0)
⋃

(p-Af (x0)∞ \ {0});

(iii) X = Rn and for each h ∈ Rn \ {0} one has Mh ∈ C if M ∈ Af (x0)
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and N(h, h) ∈ int C if N ∈ p-clBf (x0)
⋃

(p-Bf (x0)∞ \ {0}).

Proof. (i) Assume that U is a convex neighborhood of x0 where f is C-

convex and (Af (x0), Bf (x0)) satisfies the definition of the second-order approxima-

tion. Then, for x ∈ U \ {x0} and i = 1, 2, ...,

f(x)− f(x0)− i[f(x0 + 1
i
(x− x0))− f(x0)] ∈ C.

Hence, with Mi ∈ Af (x0) such that

f(x0 + 1
i
(x− x0))− f(x0) = Mi(

1
i
(x− x0)) + o(1/i),

one has

f(x)− f(x0)−Mi(x− x0)− io(1/i) ∈ C. (6)

If (Mi) is bounded, one can assume that Mi
p−→ M ∈ p-clAf (x0). Hence,

f(x)− f(x0) ∈ M(x− x0) + C ⊆ C.

Now suppose that ‖Mi‖ → ∞ and Mi/‖Mi‖
p−→ M ∈ p-Af (x0)∞\{0}. Dividing

(6) by ‖Mi‖ and letting i → ∞ one gets −M(x − x0) ∈ C, i.e. M(x − x0) ∈ −C,

which is impossible.

(ii) Suppose there is a sequence xi converging to x0 such that, for i = 1, 2, ...,

f(xi)− f(x0) ∈ Y \C. (7)

Fix an i0 such that xi0 lies in the neighborhood of x0 stated in the definition of the
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generalized C-quasiconvexity (for f) and set h = xi0 − x0 6= 0. By this definition,

for all large i,

f(x0 + 1
i
h)− f(x0) ∈ Y \int C.

Hence, for i large enough, there is Mi ∈ Af (x0) such that

Mi(
1
i
h) + o(1/i) ∈ Y \int C.

By arguing both the case where (Mi) is bounded and the opposite case, similarly

as in the proof of Theorem 3.1, one arrives at the contradiction that an M ∈ p-

clAf (x0)
⋃

(p-Af (x0)∞ \ {0}) exists such that Mh ∈ Y \int C.

(iii) Suppose also the contrary (7). We can assume (xi − x0)/‖xi − x0‖ → k,

for some k 6= 0. For all large i, there are Mi ∈ Af (x0) and Ni ∈ Bf (x0) satisfying

(4). Again considering both cases, where (Ni) is bounded or unbounded similarly

as in the proof of Theorem 3.1, one gets a contradiction. �

Remark 3.3. Part (iii) contains Theorem 4.2 of Ref. 7 as a special case where

X = Rn, Y = Rm, f ∈ C1,1, Af (x0) = {f ′
(x0)} = {0} and Bf (x0) = 1

2
∂2

Cf(x0). Parts

(i) and (ii) are new.

3.2 Optimality Conditions for Weakly Efficient and Efficient Solutions

Theorem 3.3. Assume that (Af (x0), Bf (x0)) is a second-order approximation
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of f at x0, which is both relatively p-compact and asymptotically p-compact. If x0

is a local weakly efficient solution of (P1), then

(i) ∀h ∈ X, ∃M ∈ p-clAf (x0)
⋃

(p-Af (x0)∞ \ {0}), Mh ∈ Y \ −int C;

(ii) ∀h ∈ X : Af (x0)(h) ⊆ −(C\ int C), ∃N ∈ p-clBf (x0)
⋃

(p-Bf (x0)∞ \{0}),

N(h, h) ∈ Y \ −int C.

Proof. (i) Let h ∈ X and xi = x0 + h/i, i = 1, 2, ....Then, for large i,

f(xi)−f(x0) ∈ Y \−int C. (8)

Then, there exists Mi ∈ Af (x0) with

Mi(xi − x0) + o(‖xi − x0‖) ∈ Y \−int C. (9)

Similarly as in the proof of part (i) of Theorem 3.1, we have M ∈ p-clAf (x0)
⋃

(p-

Af (x0)∞ \ {0}) such that Mh ∈ Y \ −int C.

(ii) Let h ∈ X be such that Af (x0)(h) ⊆ −(C\int C) and xi = x0 + h/i

satisfy (8). By the definition of the second-order approximation, Mi ∈ Af (x0) and

Ni ∈ Bf (x0) exist fulfilling (4). Therefore,

Ni(xi − x0, xi − x0) + o(‖xi − x0‖2) ∈ Y \ −int C.

Similarly as part (ii) of Theorem 3.1 we get N(h, h) ∈ Y \ −int C for some N ∈

p-clBf (x0)
⋃

(p-Bf (x0)∞ \ {0}). �
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Remark 3.4. Theorem 5.1 of Ref. 7 is a particular case of Theorem 3.3.

Of course, an assertion similar to Theorem 5.1 of Ref. 7 for the finite di-

mensional case, using approximate Jacobians and approximate Hessians, can be

formulated as a corollary of Theorem 3.3. However, for infinite dimensional cases

as in the following example, Theorem 3.3 does work but the known results do not.

Example 3.3. Let f : l2 → R2 be defined as, for x = (x1, x2, ...) ∈ l2,

f(x) = (−2
3
|x1|3/2 − 2

3
|x2|3/2 − 1

2
x2

2, −2
3
|x1|3/2 − 2

3
|x2|3/2 + 1

2
x2

2)

and C = R2
+. Then (Af (0), Bf (0)) is a second-order approximation of f at 0, where

Af (0) = {f ′
(0)} = {0}, Bf (0) = {Nαβ ∈ B(l2, l2, R2) : α, β < −1}, where, for

x, y ∈ l2 and y = (y1, y2, ...),

Nαβ(x, y) = (αx1y1 + βx2y2 − 1
2
x2y2, αx1y1 + βx2y2 + 1

2
x2y2).

Observe that, for all α, β < −1, Nαβ ∈ spand{N1, N2, N3}, where spand{.}

stands for the linear space generated by N1, N2, N3 ∈ B(l2, l2, R2), where

N1(x, y) = (x1y1, x1y1),

N2(x, y) = (x2y2, x2y2),

N3(x, y) = (−1
2
x2y2,

1
2
x2y2).

Being contained in a finite dimensional space, (Af (0), Bf (0)) is both relatively
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p-compact and asymptotically p-compact. We have further

p-clBf (0) = {Nαβ ∈ B(l2, l2, R2) : α, β ≤ −1},

p-Bf (0)∞ = {λN1 + γN2 : λ, γ ≤ 0}.

To show that 0 ∈ l2 is not a local weakly efficient solution of (P1) we choose

h = (h1, h2, h3, ...) ∈ l2 with h1 6= 0 6= h2. Then ∀Nαβ ∈ p-clBf (0),

Nαβ(h, h) = (αh2
1 + (β − 1

2
)h2

2, αh2
1 + (β + 1

2
)h2

2) ∈ − int C.

∀Nαβ ∈ p-Bf (0)∞ \ {0}: Nαβ = λN1 + γN2, λ2 + γ2 > 0, λ, γ ≤ 0,

Nαβ(h, h) = (λh2
1 + γh2

2, λh2
1 + γh2

2) ∈ −int C.

Thus, (ii) of Theorem 3.3 is violated.

Theorem 3.4. Assume that (Af (x0), Bf (x0)) is as in Theorem 3.3. Then x0

is a local efficient solution of (P1), if one of (i) or (ii) below holds:

(i) X = Rn and ∀h ∈ Rn \ {0}, ∀M ∈ p-clAf (x0)
⋃

(p-Af (x0)∞ \ {0}),

Mh ∈ Y \ −C;

(ii) X = Rn and

(a) ∀h ∈ Rn \ {0}, ∀M ∈ p-clAf (x0)
⋃

(p-Af (x0)∞ \ {0}), Mh ∈ (Y \

− C) ∪ (C ∩ (−C));
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(b) ∀h ∈ Rn \ {0} : ∃M ∈ p-clAf (x0)
⋃

(p-Af (x0)∞ \ {0}), Mh ∈ C ∩

(−C); ∀N ∈ p-clBf (x0)
⋃

(p-Bf (x0)∞ \ {0}); N(h, h) ∈ int C.

Proof. (i) Suppose to the contrary that a sequence xi → x0 with

f(xi)−f(x0) ∈ (−C)\C. (10)

We can assume that (xi − x0)/‖xi − x0‖ → h, for some h 6= 0. For all large i,

there is Mi ∈ Af (x0) which satisfies (2). Then, Mi(xi − x0) + o(‖xi − x0‖) ∈ −C.

Therefore, by a routine argument as before one obtains Mh ∈ −C for some M ∈

p-clAf (x0)
⋃

(p-Af (x0)∞ \ {0}).

(ii) Suppose (10), by (i) we have Mh ∈ −C for some M ∈ p-clAf (x0)
⋃

(p-

Af (x0)∞\{0}). By assumption (a), Mh ∈ C∩(−C). Employing a similar argument

as in Theorem 3.2(iii), (b) and (4) we get

f(xi)− f(x0) ∈ (Y \ −C) ∪ (C ∩ (−C)) + int C ⊆ Y \ −C,

which contradicts (10). �

Remark 3.5. Theorem 3.4 contains Theorem 5.2 of Ref. 7 as a special case

in the same way as Theorem 3.3 contains Theorem 5.1 of Ref. 7.

4. Optimality Conditions for Constrained Optimization

Now pass to the constrained nonsmooth vector problem
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(P2) min f(x), s.t. x ∈ S.

We first recall that all the solution notions specified in Definition 3.1 for the

unconstrained problem (P1) are extended naturally to the problem (P2) with ”∀x ∈

U” replaced by ”∀x ∈ U∩S”. Recall also the definitions of the first and second-order

contingent cones of S at x0, respectively,

T1(S, x0) = {u ∈ X : ∃ti → 0+, xi = x0 + tiu + o(ti) ∈ S},

T2(S, x0) = {(u, v) ∈ X ×X : ∃ti → 0+, xi = x0 + tiu + 1
2
t2i v + o(t2i ) ∈ S}. (11)

The positive polar cone of C is defined as

C∗ = {y∗ ∈ Y ∗ : 〈y∗, x〉 ≥ 0,∀x ∈ C},

and the truncated cone generated by S at x0 is

Sδ(x0) = {t(x− x0) : t ≥ 0, x ∈ S, ‖x− x0‖ ≤ δ}.

Denote further Λ = {λ ∈ C∗ : ‖λ‖ = 1}.

Theorem 4.1. Assume that (Af (x0), Bf (x0)) is the same as in Theorem 3.3.

If x0 ∈ S is a local weakly efficient solution of (P2), then, ∀(u, v) ∈ T2(S, x0),

(i) ∃M ∈ p-clAf (x0)
⋃

(p-Af (x0)∞ \ {0}), ∃λ ∈ Λ, 〈λ, Mu〉 ≥ 0;

(ii) If Af (x0) = {f ′
(x0)} and f

′
(x0)(u) = 0, then there is λ̄ ∈ Λ such that

28



N ∈ p-clBf (x0) exists such that 〈λ̄, 1
2
f

′
(x0)(v) + N(u, u)〉 ≥ 0 or N̄ ∈

p-Bf (x0)∞ \ {0} such that 〈λ̄, N̄(u, u)〉 ≥ 0.

Proof. (i) Let (u, v) ∈ T2(S, x0), i.e. we have (11). Then, for all large i, we

have (8) and (9). Dividing (9) by ti if (Mi) is bounded and by ti‖Mi‖ if lim
i→∞

‖Mi‖ =

∞ we obtain M ∈ p-clAf (x0)
⋃

(p-Af (x0)∞ \ {0}) such that Mu ∈ Y \ −int C.

Hence λ ∈ Λ exists such that 〈λ, Mu〉 ≥ 0.

(ii) Assume that Af (x0) = {f ′
(x0)} and f

′
(x0)(u) = 0. By (8), there is

Ni ∈ Bf (x0) for all large i such that,

f(xi)− f(x0) = f
′
(x0)(xi − x0) + Ni(xi − x0, xi − x0) + o(‖xi − x0‖2)

= 1
2
t2i f

′
(x0)(v) + t2i Ni(u, u) + o(t2i ) ∈ Y \ −int C.

Dividing this by t2i if (Ni) is bounded and by t2i ‖Ni‖ if ‖Ni‖ → ∞, similarly as have

been done several times we complete the proof. �

Remark 4.1. (i) If X = Rn, Y = Rm, f is continuously differentiable, ∂2f

is upper semicontinuous at x0 and (Af (x0), Bf (x0)) = (f
′
(x0),

1
2
co∂2f(x0)), then

Theorem 4.1 collapses to Theorem 3.1 of Ref. 18.

(ii) If X = Rn, Y = Rm, f ∈ C1,1 and (Af (x0), Bf (x0)) = (f
′
(x0),

1
2
∂2

Cf(x0)),

then Theorem 4.1 drops to Theorem 3.1 of Ref. 8.
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Theorem 4.2. Let (Af (x0), Bf (x0)) be as in Theorem 3.3 and x0 ∈ S. Then

each of the following conditions is sufficient for x0 to be a locally unique efficient

solution of (P2):

(i) X = Rn and ∀u ∈ T1(S, x0) \ {0}, ∀M ∈ p-clAf (x0)
⋃

(p-Af (x0)∞ \ {0}),

∃λ ∈ Λ, 〈λ, Mu〉 > 0;

(ii) X = Rn, Y = Rm and ∃δ > 0, ∀v ∈ Sδ(x0), ∀u ∈ T1(S, x0),

(a) ∀M ∈ Af (x0), ∃λ ∈ Λ, 〈λ, Mv〉 ≥ 0 and

(b) ∀N ∈ p-clBf (x0)
⋃

(p-Bf (x0)∞ \ {0}), ∀λ ∈ Λ, 〈λ, N(u, u)〉 > 0.

Proof. (i) Arguing by contradiction assume the existence of xi ∈ S, xi → x0,

such that

f(xi)−f(x0) ∈ −C. (12)

We can assume that (xi − x0)/‖xi − x0‖ converges to some u ∈ T1(S, x0) \ {0}.

By (12), for all large i there exists Mi ∈ Af (x0) such that

Mi(xi − x0) + o(‖xi − x0‖) ∈ −C.

By repeating an argument which has been employed several times previously we

receive M ∈ p-clAf (x0)
⋃

(p-Af (x0)∞ \ {0}) with Mu ∈ −C, a contradiction.

(ii) Suppose again (12). For all large i, xi−x0 ∈ Sδ(x0) and there is (Mi, Ni) ∈
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(Af (x0), Bf (x0)) satisfying (4). On other hand, (a) implies the existence of λi ∈ Λ

such that 〈λi, Mi(xi − x0)〉 ≥ 0. Hence, by (12) and (4)

〈λi, Ni(xi− x0, xi− x0) + o(‖xi− x0‖2)〉 ≤ 0. (13)

Since Λ is compact we can assume that λi → λ0 ∈ Λ. Again by considering the two

cases depending on whether (Ni) is bounded or not, by (13) N ∈ p-clBf (x0)

⋃
(p-Bf (x0)∞ \ {0}) exists with 〈λ0, N(u, u)〉 ≤ 0, contradicting (b). �

Remark 4.2. (i) If X = Rn, Y = Rm, f is continuously differentiable, ∂2f

is upper semicontinuous at x0 and (Af (x0), Bf (x0)) = (f
′
(x0),

1
2
co∂2f(x0)), then

Theorem 4.2 coincides with Theorem 4.1 of Ref. 18.

(ii) If X = Rn, Y = Rm, f ∈ C1,1 and (Af (x0), Bf (x0)) = (f
′
(x0),

1
2
∂2

Cf(x0))

Theorem 4.2 collapses to Theorem 3.3 of Ref. 8.
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