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1 Introduction

Optimality conditions for nonconvex-nonsmooth problems have been inten-

sively studied for a long time (see e.g. important books [6, 22-24, 30] and

some papers of our group [11-20] among numerous works of other authors),

since convexity and/or differentiability conditions are often not satisfied for

optimization-related problems in practice. A large number of classes of such

problems have been proposed and investigated due to demands of practical

applications and also to motivations for mathematical researchers. Quasicon-

vex problems constitute the most important ever-considered class of noncon-

vex optimization problems, because the extent of their applications is vast,

see e.g. [1], and their structures are convenient for employing mathematical

tools, including convex analysis. The reader can refer to [3, 4, 5, 8, 21, 25-28]

and references therein for recent developments in quasiconvex optimization.

A function f from a normed space X to R̄ := R∪{+∞} is called quasiconvex

if ∀x ∈ X its sublevel set at x, i.e. Lf (x) := {u ∈ X : f(u) ≤ f(x)}, is convex

or, equivalently, if for each r ∈ R the strict sublevel set {u ∈ X : f(u) < r}

is convex. Hence, f is quasiconvex if and only if, ∀x ∈ X, the strict sublevel

set L<
f (x) := {u ∈ X : f(u) < f(x)} is convex. Another equivalent state-

ment, which is often met in the literature, is that f is quasiconvex if for all

x, y ∈ domf := {x ∈ X : f(x) < +∞}, all t ∈ [0, 1], f((1 − t)x + ty) ≤

max{f(x), f(y)}. An optimization problem is quasiconvex if the objective is

quasiconvex and the constraint set is convex. The generalized subdifferentials

used in [21, 26] were the lower subdifferential, or Plastria subdifferential [29],

and the infradifferential or Gutiérrez subdifferential [10]. These subdifferen-

tials enjoy many helpful properties and hence are convenient to be applied.

However, they may be empty in a number of cases (many simple cases are

thucquyen911@yahoo.com (Ho Thuc Quyen), yaojc@math.nsysu.edu.tw

(Jen-Chih Yao).

2



given in examples of Sects. 3 and 4). There are even differentiable quasicon-

vex functions with the Plastria (Gutiérrez) subdifferentials which are empty

at each point. [21] even required f to be a Plastria or Gutiérrez function

(see the definitions below). [25, 27] made use additionally of the Greenberg-

Pierskalla subdifferential [9], a kind of normal-cone subdifferentials, i.e. those

with values being normal cones. In [5, 28] the two star subdifferentials, which

are similar to the Greenberg-Pierskalla subdifferential, were introduced. They

are nonempty under weak conditions and simple (e.g. they are closed convex

cones, and quite different from the classical Fenchel subdifferential, which is

very often bounded). However, these two star subdifferentials are in general

neither quasimonotone nor cone-upper semicontinuous [3, 5]. (Roughly speak-

ing, a cone-value mapping is cone-upper semicontinuous, cone-u.s.c. in short,

if the corresponding mapping with values being the bases of the values is

Berge u.s.c..) Hence, they are not suitable for relating minimization problems

to variational inequalities. Motivated by this the authors of [3] introduced

the adjusted sublevel set La
f (x), which is between L<

f (x) and Lf (x), and the

corresponding adjusted subdifferential, defined similarly as the star subdiffer-

entials, and used them to deal with the solution existence of a quasiconvex

set-constraint minimization problem. [4] applied the adjusted subdifferential

together with the limiting (or Mordukhovich) subdifferential [23] to study the

solution existence and optimality conditions for quasiconvex problem with a

locally starshaped constraint set with applications to mathematical program-

ming with equilibrium constraints, where the equality constraint is quasicon-

vex and the equality and equilibrium constraints are quasiaffine. There have

been also a number of papers using other kind of generalized derivatives to deal

with quasiconvex optimization problems. For instance, in a recent one [8] the

Dini directional derivatives are employed. But in this paper we are concerned

only with the afore-mentioned subdifferentials. We observe that the changes

of the properties of quasiconvex functions, when we assume that the sublevel

sets are convex only at a point x̄ under consideration, not at each point, can
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be controlled when considering optimality conditions. then the assumptions

become remarkably less restrictive. This observation motivates the purpose of

this paper, which is examining optimality conditions for constrained optimiza-

tion problems with sublevel sets of objective and constraint functions assumed

to be convex only at considered points. We do not impose any differentiability

assumption and use the star and adjusted subdifferentials.

The layout of this paper is as follows. Section 2 contains definitions and pre-

liminaries needed in the sequel. Section 3 is devoted to optimality conditions

for a minimization problem with a convex constraint set. In section 4 opti-

mality conditions are established for the mathematical programming problem.

2 Preliminaries

Throughout the paper, let X be a normed space. For A ⊆ X intA, clA, coA

and coneA denote the interior, closure, convex hull of A and the conical hull

(called also the cone generated by A), i.e. coneA := {λx : x ∈ A, λ ∈ R+},

respectively. The distance from x ∈ X to A is dist(x, A) = inf{‖x−y‖ : y ∈ A}.

X∗ is the topological dual of X and 〈., .〉 is the duality pairing. The normal

cone at x to A, denoted by N(A, x), is defined by

N(A, x) := {x∗ ∈ X∗ : ∀u ∈ A, 〈x∗, u− x〉 ≤ 0}.

If x 6∈ A we adopt that N(A, x) = ∅. The contingent cone of A at x ∈ X,

denoted by T (A, x), is the following cone

T (A, x) := {v ∈ X : ∃(rn) → 0+,∃(vn) → v, ∀n, x + rnvn ∈ A}.
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To see relationships between N(A, x) and T (A, x), recall that the polar cones

of cones B ⊆ X and D ⊆ X∗ are

B− := {x∗ ∈ X∗ : ∀x ∈ B, 〈x∗, x〉 ≤ 0},

D− := {x ∈ X : ∀x∗ ∈ D, 〈x∗, x〉 ≤ 0}.

Clearly N(A, x) = [clcone(A−x)]−. Setting, in the definition of T (A, x), xn =

x + rnvn, we see that

T (A, x) = {v : ∃(rn) → 0,∃(xn) ⊆ A → x, lim
xn − x

rn

= v} ⊆ clcone(A− x).

Hence, T (A, x)− ⊇ N(A, x). Furthermore, if v ∈ T (A, x), i.e. v is of the form

lim xn−x
rn

, and x∗ ∈ N(A, x), then 〈x∗, v〉 ≤ 0. Therefore, T (A, x) ⊆ N(A, x)−.

Moreover, if A is convex then the above containments become equalities. A ⊆

X is called strictly convex at x̄ if 〈x∗, x − x̄〉 < 0 for every x ∈ A \ {x̄} and

x∗ ∈ N(A, x̄) \ {0}. If N(A, x̄) \ {0} 6= ∅, this strict convexity implies that

x̄ is an extreme point of A. The converse is not true. For instance, the set

{(x, y) ∈ R2 : y ≥ e|x|} is strictly convex at the point (0,1), but R2
+ is not

strictly convex at the origin, although this point is an extreme point.

Let f : X → R̄ be an arbitrary function, which is finite at x̄. We recall the

definitions of the important subdifferentials, encountered in the Instruction.

The lower subdifferential or Plastria subdifferential [29] is defined by

∂<f(x̄) :=
{
x∗ ∈ X∗ : ∀x ∈ L<

f (x̄), f(x)− f(x̄) ≥ 〈x∗, x− x̄〉
}

.

The infradifferential or Gutiérrez subdifferential [10] is

∂≤f(x̄) := {x∗ ∈ X∗ : ∀x ∈ Lf (x̄), f(x)− f(x̄) ≥ 〈x∗, x− x̄〉} .

The Greenberg-Pierskalla subdifferential [9], which is akin to the normal cone,

is defined by

∂∗f(x̄) :=
{
x∗ ∈ X∗ : ∀x ∈ L<

f (x̄), 〈x∗, x− x̄〉 < 0
}

.
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So we say that it is a kind of normal-cone subdifferentials. The star subdiffer-

entials [5, 28], are the following normal-cone subdifferentials

∂νf(x̄) := N(Lf (x̄), x̄),

∂~f(x̄) := N(L<
f (x̄), x̄).

The adjusted sublevel set of f at x̄ [3] is

La
f (x̄) = Lf (x̄) ∩ clB(L<

f (x̄), ρx̄)

if x is not a global minimizer of f and La
f (x̄) = Lf (x̄) otherwise, where

B(A, ρ) = {x ∈ X : dist(x, A) < ρ} and ρx = dist(x, L<
f (x)). The adjusted

subdifferential [3] is

∂af(x̄) := N(La
f (x̄), x̄).

It is obvious that

∂<f(x̄) ⊆ ∂∗f(x̄) ⊆ ∂~f(x̄), (1)

∂≤f(x̄) ⊆ ∂νf(x̄) ⊆ ∂af(x̄) ⊆ ∂~f(x̄). (2)

For details about the calculus of these subdifferentials the reader is referred

to [3, 28]. Although they are defined for arbitrary functions (finite at x̄), they

possess good properties only under additional conditions. In the literature

the sublevel sets are usually assumed to be convex. In this paper we relax

remarkably this assumption to the convexity only at x̄.

By (1) and (2) it is clear that R+∂<f(x̄) ⊆ ∂~f(x̄) and R+∂≤f(x̄) ⊆ ∂νf(x̄).

Therefore, the following definitions are natural. A function f is said to be a

Plastria function at x̄ if its strict sublevel set L<
f (x̄) is convex and

R+∂<f(x̄) = ∂~f(x̄)

and to be a Gutiérrez function at x̄ if Lf (x̄) is convex and

R+∂≤f(x̄) = ∂νf(x̄).
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Since ∂<f(x̄) (and also ∂≤f(x̄)) are shady, i.e. ∀γ ≥ 1, γ∂<f(x̄) ⊆ ∂<f(x̄),

the relations in the above definition can be written as [0, r)∂<f(x̄) = ∂~f(x̄)

and [0, r)∂≤f(x̄) = ∂νf(x̄), respectively, for any positive scalar r.

Now we develop several simple properties of the star subdifferentials. The first

one deals with transformable functions.

Proposition 2.1 Let f := hog, where g : X → R and h : R → R is a strictly

increasing function with h(+∞) = +∞ and x̄ ∈ domg. Then

(i) h is a Plastria function at r ∈ domh with R+∂<h(r) = ∂~h(r) = R+

provided ∂<h(r) 6= ∅;

(ii) h is a Gutiérrez function at r ∈ domh with R+∂≤h(r) = ∂νh(r) = R+

provided ∂≤h(r) 6= ∅;

(iii) ∂νf(x) = ∂νg(x) and ∂~f(x) = ∂~g(x) for all x ∈ X;

(iv) f is a Plastria function at x̄ provided that g is a Plastria function at

x̄ and ∂<h(g(x̄)) 6= ∅;

(v) f is a Gutiérrez function at x̄ provided that g is a Gutiérrez function

at x̄ and ∂≤h(g(x̄)) 6= ∅.

Proof. (i) and (ii) are obvious.

(iii) Since L<
h (r) = (−∞, r), we get ∂~h(r) = R+. By definition, x∗ ∈ ∂<h(r)

if and only if h(r) − h(x) ≤ x∗(r − x), ∀x ∈ (−∞, r). Hence, x∗ > 0 and we

are done.

(iv) Setting r := g(x̄), using (iii) and Proposition 3.5 of [28] we get

∂~f(x̄) = ∂~g(x̄) = R+∂<g(x̄) = R+∂<h(r)∂<g(x̄) ⊂ R+∂<f(x̄).

(v) Similarly as in (iv) we have

∂νf(x̄) = ∂νg(x̄) = R+∂≤g(x̄) = R+∂≤h(r)∂≤g(x̄) ⊂ R+∂≤f(x̄).
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2

The following result characterizes the star subdifferentials of Gateaux differ-

entiable functions.

Proposition 2.2 Let f : X → R∞ be Gateaux differentiable at x̄ with a

nonzero derivative. Then

(i) ∂~f(x̄) = R+f ′(x̄) provided that L<
f (x̄) is convex;

(ii) ∂νf(x̄) = R+f ′(x̄) provided that Lf (x̄) is convex.

Proof

(i) L<
f (x̄) is nonempty since f ′(x̄) 6= 0. By the definition of the direc-

tional derivative, we have f ′(x̄)−1((−∞, 0)) ⊆ T (L<
f (x̄), x̄) ⊆ f ′(x̄)−1(−∞, 0].

Since f ′(x̄) 6= 0, we can find some w ∈ X with f ′(x̄)w < 0. Then, for

any v ∈ f ′(x̄)−1(−∞, 0] and any sequence (rn) → 0+, we have vn := v +

rnw ∈ f ′(x̄)−1(−∞, 0) ⊆ T (L<
f (x̄), x̄). Since (vn) → v and T (L<

f (x̄), x̄) is

closed, v ∈ T (L<
f (x̄), x̄). Thus, T (L<

f (x̄), x̄) = f ′(x̄)−1(−∞, 0]. Then, ∂~f(x̄) =

[f ′(x̄)−1(−∞, 0]]−. This means that x∗ ∈ ∂~f(x̄) if and only if 〈x∗, v〉 ≤ 0 and

〈f ′(x̄), v〉 ≤ 0. By the Farkas lemma the latter is equivalent to x∗ = rf ′(x̄)

and r ≥ 0. Thus, we are done.

(ii) It is proved similarly as for (i).

2

3 Optimality conditions for set-constrained problems

Consider the minimization problem

minimize f(x) subject to x ∈ C, (3)
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where f : X → R and C is a convex subset of X.

Apart from usual solutions we consider also strict solutions to (3), i.e., points

x̄ ∈ C such that f(x̄) < f(x) for all x ∈ C \ {x̄}.

Theorem 3.1 Let L<
f (x̄)∪{x̄} be convex and x̄ ∈ C be a solution to (3), which

is not a local minimizer of f on X. Assume either of the following conditions

holds

(i) intL<
f (x̄) 6= ∅ or f is u.s.c. at a point of L<

f (x̄);

(ii) intC 6= ∅;

(iii) X is finite dimensional.

Then

∂~f(x̄) ∩ (−N(C, x̄)) 6= {0}. (4)

If furthermore f is lower semicontinuous (l.s.c.) at x̄, then

∂af(x̄) ∩ (−N(C, x̄)) 6= {0}. (5)

Proof. It is clear that x̄ is a solution to (3) if and only if the sublevel set

L<
f (x̄) is disjoint from C. For (i) observe first that, if f is u.s.c. at some point

of L<
f (x̄), then intL<

f (x̄) 6= ∅. So assume that intL<
f (x̄) 6= ∅. By the Hahn-

Banach separation theorem, this implies the existence of c ∈ R and u∗ 6= 0 in

X∗ such that the following inequalities hold for all w ∈ intL<
f (x̄) and x ∈ C

〈u∗, x− x̄〉 ≥ c ≥ 〈u∗, w − x̄〉.

Since intL<
f (x̄) 6= ∅, we get L<

f (x̄) ⊆ clintL<
f (x̄). So, the above inequalities

hold for all w ∈ L<
f (x̄) and x ∈ C. Taking x = x̄, we see that c ≤ 0. Moreover,

since x̄ is not a local minimizer of f , there exists a sequence (wn) → x̄ such

that wn ∈ L<
f (x̄) for each n. Therefore c = 0. Hence the left inequality means

u∗ ∈ −N(C, x̄), and the right one means u∗ ∈ ∂~f(x̄) and we get the result.
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If (ii) or (iii) holds, we also get the mentioned inequalities for all w ∈ L<
f (x̄)

and x ∈ C. Therefore, the proof is completed by the same arguments.

Now assume the lower semicontinuity of f at x̄. As L<
f (x̄) ∪ {x̄} is convex,

ρx̄ = 0. Consequently, La
f (x̄) = Lf (x̄)∩ clL<

f (x̄). Hence, La
f (x̄) ⊆ clL<

f (x̄). To

see the reverse inclusion, let (xn) is in L<
f (x̄) and x = limxn. By the lower

semicontinuity f(x) ≥ f(x̄). As x ∈ Lf (x̄) one has f(x) = f(x̄). Therefore,

x ∈ La
f (x̄). Now looking at the inequalities by the beginning of the proof of

the proposition, one sees that they hold for all w ∈ La
f (x̄). Thus (5) is true. 2

Corollary 3.2 Let x̄ be a solution of (3) but not a local minimizer of f on

X.

(i) (Proposition 2.2 (i) of [25]) If X is finite dimensional and f is qua-

siconvex, then ∂~f(x̄) ∩ (−N(C, x̄)) 6= {0}.

(ii) (Proposition 2.2 (ii) of [25]) If f is quasiconvex and upper semicon-

tinuous (u.s.c.) at each point of L<
f (x̄), then ∂∗f(x̄) ∩ (−N(C, x̄)) 6= {0}.

(iii) (Proposition 4 of [21]) If f is u.s.c. at each point of L<
f (x̄) and a

Plastria function at x̄, then ∂<f(x̄) ∩ (−N(C, x̄)) 6= {0}.

Proof. (i) is clear. To see (ii) note that in this case we have ∂~f(x̄) =

∂∗f(x̄)∪{0} and that the assumed upper semicontinuity implies the openness

of L<
f (x̄). For (iii) observe that if f is u.s.c. at each point of L<

f (x̄) and a Plas-

tria function at x̄, then L<
f (x̄) is nonempty, open, and ∂~f(x̄) = R+∂<f(x̄) . 2

In the following example, the above-mentioned results of [21, 25] and the ones

of [26, 27] cannot be applied, but Theorem 3.1 can.
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Example 3.3 Let C = [0, 1], x̄ = 0 and f : R → R be given by

f(x) =



−2, for x ≤ −1,

−1, for − 1 < x ≤ −2
3
,−1

3
≤ x < 0,

−1
2
, for − 2

3
< x < −1

3
,

x, for 0 ≤ x.

Then L<
f (x̄) = (−∞, 0), f is not u.s.c. at −1 ∈ L<

f (x̄), not quasiconvex and

∂<f(x̄) = ∅. So the mentioned results of [21, 25] cannot be applied. But

the assumptions of Theorem 3.1 are satisfied. Easy direct calculations give

∂~f(x̄) = R+ and N(C, x̄) = −R+. So the conclusion of our theorem holds.

Furthermore, ∂≤f(x̄) = ∅. Hence, the results of [26, 27], using ∂<f and ∂≤f ,

do not work either.

For sufficient conditions we have

Theorem 3.4 Assume that either of relations (4) and (5) is satisfied at x̄ ∈ C.

Then x̄ is a solution of (3) if either of the following conditions holds

(i) L<
f (x̄) is open;

(ii) C \ {x̄} is open.

Proof. We have to deal only with the weaker relation (4), which means the

existence of u∗ ∈ X∗ \ {0} such that, ∀w ∈ L<
f (x̄),∀x ∈ C,

〈u∗, x− x̄〉 ≥ 0 ≥ 〈u∗, w − x̄〉.

Suppose L<
f (x̄)∩C 6= ∅. The preceding inequalities imply that 〈u∗, v− x̄〉 = 0

for any v ∈ L<
f (x̄) ∩ C.

(i) Let h ∈ X be arbitrary. Since L<
f (x̄) is open, there exists t > 0 small
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enough such that v + th ∈ L<
f (x̄). Hence

t〈u∗, h〉 = 〈u∗, v − x̄ + th〉 − 〈u∗, v − x̄〉 ≤ 0.

Consequently, u∗ = 0, a contradiction. Thus L<
f (x̄)∩C = ∅, i.e. x̄ is a solution

of (3).

(ii) Let h ∈ X be arbitrary. There exists t > 0 small enough such that v+th ∈

C \ {x̄} as C is open. Therefore,

t〈u∗, h〉 = 〈u∗, v − x̄ + th〉 − 〈u∗, v − x̄〉 ≥ 0,

which implies that u∗ = 0, again a contradiction. 2

The following example illustrates advantages of Theorem 3.4.

Example 3.5 Let C = {(x1, x2) : x2 < 0} ∪ {(0, 0)}, x̄ = (0, 0) and f : R2 →

R be given by

f(x1, x2) =


−1, if (x1, x2) 6= (0, 0) and x2 ≥ 0,

0, if (x1, x2) = (0, 0) or x2 < 0.

Then C \ {x̄} is open. Since ∂∗f(x̄) = ∂<f(x̄) = ∅, Propositions 5 of [21],

Proposition 2.1 of [25] and the results of [26, 27] using these two subdifferen-

tials cannot be in use. But the assumptions of Theorem 3.4 (ii) are fulfilled,

since (0,−1) ∈ ∂~f(x̄) ∩ −N(C, x). It is easy to see directly that x̄ is a mini-

mizer of f on C.

Now we prove a necessary condition for strict solutions to (3).

Theorem 3.6 Let x̄ be a strict solution to (3) and an extreme point of C. As-

sume that Lf (x̄) is convex, C is not reduced to {x̄} and either of the conditions
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(i)-(iii) of Theorem 3.1 holds. Then

∂νf(x̄) ∩ (−N(C, x̄)) 6= {0} . (6)

Proof. Since x̄ is an extreme point of C and C 6= {x̄}, the set C \ {x̄} is

convex and nonempty. As x̄ is a strict solution to (3), C \ {x̄} and Lf (x̄) are

disjoint. For (i), by the Hahn-Banach separation theorem, there exists some

c ∈ R and 0 6= u∗ ∈ X∗ such that the following inequalities hold, for all

w ∈ Lf (x̄) and x ∈ C \ {x̄} ,

〈u∗, x− x̄〉 ≥ c ≥ 〈u∗, w − x̄〉.

Since x can be arbitrarily close to x̄, we have c ≤ 0. On the other hand, since

we can take w = x̄, c ≥ 0 and hence c = 0. Therefore, the left inequality

means u∗ ∈ −N(C, x̄) and the right one means u∗ ∈ ∂νf(x̄), and the result

follows.

For (ii) and (iii), we can also apply the separation theorem to get the above

inequalities for all w ∈ Lf (x̄) and x ∈ C \ {x̄}. Similar arguments complete

the proof. 2

Corollary 3.7 Let f be a Gutiérrez function at a strict solution x̄ to (3).

Assume that C is not reduced to {x̄}, x̄ is an extreme point of C, and either

of the conditions (i)-(iii) of Theorem 3.1 holds. Then

0 ∈ ∂≤f(x̄) + N(C, x̄).

Proof. By Theorem 3.6, there exists u∗ 6= 0 such that −u∗ ∈ N(C, x̄) and

u∗ ∈ ∂νf(x̄) = R+∂≤f(x̄), since f is a Gutiérrez function at x̄. So, one can

find s > 0 and x∗ ∈ ∂≤f(x̄) such that u∗ = sx∗ and −x∗ ∈ N(C, x̄). 2
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Corollary 3.7 (iii) is the necessary condition of Proposition 6 in [21]. How-

ever, being a Gutiérrez function may be a severe restriction as shown by the

following example.

Example 3.8 Let C = [0, 1], x̄ = 0 and f : R → R be given by

f(x) =


−1, for x < 0,

x, for x ≥ 0.

Then Lf (x̄) = (−∞, 0] and ∂≤f(x̄) = ∅. So Corollary 3.7 cannot be applied.

But ∂νf(x̄) = R+ and N(C, x̄) = −R+ and hence the conclusion of Theorem

3.6 is true. The assumptions of Theorem 3.6 are also easily seen to be verified.

Furthermore, ∂<f(x̄) is also empty and then the results involving these two

subdifferentials of [21, 25, 26, 27] are out of use.

Passing to sufficient conditions for strictly solutions we have

Theorem 3.9 x̄ is a strict solution of (3) if (6) is satisfied and either of the

following conditions holds

(i) either C is strictly convex at x̄ or C \ {x̄} is open;

(ii) Lf (x̄) \ {x̄} is open.

Proof. Suppose, ab absurdo, (Lf (x̄)∩C) \ {x̄} 6= ∅. The relation (6) implies

that there exists 0 6= u∗ ∈ X∗ such that

〈u∗, x− x̄〉 ≥ 0 ≥ 〈u∗, w − x̄〉, ∀w ∈ Lf (x̄), x ∈ C,

then 〈u∗, v − x̄〉 = 0 for any v ∈ (Lf (x̄) ∩ C) \ {x̄}. For (i), observe first that

C \ {x̄} is open implies that C is strictly convex at x̄. Indeed, if C \ {x̄} is

open, it is equal to intC. Hence 〈x∗, x − x̄〉 < 0 for every x ∈ C \ {x̄} and

x∗ ∈ N(C, x̄) \ {0}, i.e. C is strictly convex at x̄. Now we have to consider

only the case where C is strictly convex at x̄. Then, by the strict convexity,

〈−u∗, x − x̄〉 < 0 for all x ∈ C \ {x̄}, a contradiction. For (ii), let h ∈ X be
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arbitrary. As Lf (x̄) \ {x̄} is open, there exists t > 0 small enough such that

v + th ∈ Lf (x̄). Then

t〈u∗, h〉 = 〈u∗, v − x̄ + th〉 − 〈u∗, v − x̄〉 ≤ 0.

Hence u∗ = 0, again a contradiction. 2

Note that, like Theorem 3.4, in this sufficient condition no convexity condi-

tion is imposed on f . Note further that Theorem 3.9 (i) sharpens the sufficient

condition of Proposition 6 in [21], where the Gutiérrez subdifferential is em-

ployed. However, Gutiérrez subdifferentials may be empty in many cases as

shown in Example 3.8, where ∂νf(x̄) ∩N(C, x) = R+, and so Theorem 3.9 is

directly verified (and can be applied).

The condition that Lf (x̄) \ {x̄} is open looks restrictive. So we illustrate it in

the following example.

Example 3.10 Let C = 0 × (−∞, 0], (x̄1, x̄2) = (0, 0) and f : R2 → R be

given by

f(x1, x2) =



−1, if x1 6= 0 and x2 > 0,

x2
2, if x2 < 0 or x1 = 0,

x2
1, if x2 = 0.

Then Lf (x̄) = {(x1, x2) : x2 > 0, x1 6= 0} ∪ {x̄}. C is not strictly convex at x̄

since 〈(1, 0), x〉 = 0 for all x ∈ C. So Proposition 6 of [21] does not work. But

Lf (x̄) \ {x̄} is open. ∂νf(x̄) = 0 × (−∞, 0] and (0,−1) ∈ ∂νf(x̄) ∩ −N(C, x̄)

and hence Theorem 3.9 concludes that x̄ is a strict solution.

A natural question is whether we can replace (6) by the following weaker

relation

∂af(x̄) ∩ (−N(C, x̄)) 6= {0},
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in Theorem 3.9. The following example yields a negative answer.

Example 3.11 Let X = R, C = R+, x̄ = 0 and

f(x) =


0, if x ≥ 0,

−1, if x < 0.

Then, ∂af(x̄) = [0, +∞) and −N(C, x̄) = [0, +∞) and the mentioned modified

conditions are fulfilled but x̄ is not a strict solution.

4 Optimality conditions for the mathematical programming prob-

lem

Let us consider now the case in which the constraint set C is defined by a

finite family of inequalities, so that problem (3) turns into the mathematical

programming problem

minimize f(x) subject to g1(x) ≤ 0, ..., gn(x) ≤ 0. (7)

We denote g = max1≤i≤n gi, C = g−1(−∞, 0], I = {i : gi(x̄) = 0} and h =

maxi∈I gi.

Theorem 4.1 Assume for problem (7) that

(i) L<
f (x̄) ∪ {x̄} and g−1

i (−∞, 0] are convex for i=1,...,n;

(ii) gi are u.s.c. at x̄ for i = 1, ..., n;

(iii) either of the following regularity conditions holds

(a) there exists k ∈ I such that Lgk
(x̄) ∩ {x ∈ X : x ∈ L<

gi
(x̄),∀i ∈

I \ {k}} 6= ∅ (Slater condition);

(b) X is complete, Lgi
(x̄) is closed for each i ∈ I and R+(∆ −∏

i∈I Lgi
(x̄)) = XI , where ∆ = {(xi)i∈I : ∀j, k ∈ I; xj = xk} is the diagonal
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of XI , (Attouch-Brézis’s regularity condition);

(iv) either X is finite dimensional or f is u.s.c. at some point of L<
f (x̄).

If x̄ is a solution but not a local minimizer of f on X, then

∂~f(x̄) ∩
(
−
∑
i∈I

∂νgi(x̄)

)
6= {0} . (8)

Hence there are λ1, ..., λn ∈ R+, not all zero, such that

0 ∈ ∂~f(x̄) +
n∑

j=0

λj∂
νgj(x̄), (9)

λjgj(x̄) = 0, j = 1, ..., n. (10)

If additionally, f is l.s.c. at x̄ then, in (8) and (9), ∂~f(x̄) can be replaced by

∂af(x̄).

Proof. Observe that C is convex and contained in Lh(x̄). So N(Lh(x̄), x̄) ⊆

N(C, x̄).

To prove the reverse inclusion we show that T (Lh(x̄), x̄) ⊆ T (C, x̄). By the

assumed convexity we have T (Lh(x̄), x̄) = clcone(Lh(x̄) − x̄), i.e. any v ∈

T (Lh(x̄), x̄) is of the form lim tk(xk− x̄), where tk > 0 and xk ∈ Lh(x̄). On the

other hand, let x ∈ Lh(x̄) be arbitrary. If i ∈ I and xt := x̄ + t(x − x̄), then

gi(xt) ≤ 0 for t ∈ [0, 1] by the convexity. For i 6∈ I, x̄ ∈ int g−1
i (−∞, 0] by the

assumed upper semicontinuity. So, for t > 0 small enough, gi(xt) ≤ 0. Hence

xt ∈ C. Therefore, t(x− x̄) ∈ cone(C− x̄) for any x ∈ Lh(x̄) and any t > 0. It

follows that the above-mentioned lim tk(xk − x̄) belongs to clcone (C − x̄) =

T (C, x̄). Thus, T (Lh(x̄), x̄) ⊆ T (C, x̄), and then N(C, x̄) ⊆ N(Lh(x̄), x̄). Thus

we have equality.

Now we have Lh(x̄) = ∩i∈ILgi
(x̄), N(C, x̄) = N(Lh(x̄), x̄) = clco∪i∈IN(Lgi

(x̄), x̄)

and Lgk
(x̄) ∩ (∩i∈I\{k}intLgi

(x̄)) 6= ∅ (by the assumed upper semicontinuity).

Then, in case (a) of the regularity condition, by the Moreau-Rockafellar the-

orem, and in case (b) by [2], we have
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N(C, x̄) =
∑
i∈I

N(Lgi
(x̄), x̄).

By (iv) we can apply Theorem 3.1 to get (8).

Taking λi ∈ R \ {0} arbitrarily for i ∈ I and λi = 0 for i /∈ I we obtain (9)

and (10).

If f is l.s.c. at x̄, applying the last assertion of Theorem 3.1, the counterpart

of (8)-(10) in this theorem, involving ∂af , is proven. 2

For the special case, where f is a Plastria function at x̄ and gi are Gutiérrez func-

tions at x̄ for all i ∈ I (severe conditions), Theorem 4.1 with f being u.s.c. in

(iv) collapses to Theorem 10 of [21] and relation (9) takes the form

0 ∈ ∂<f(x̄) +
n∑

i=0

λi∂
≤gi(x̄). (11)

If, more specifically, f and gi, i = 1, ..., n are Gateaux differentiable, then (9)

and (10) become the classical Kuhn-Tucker multiplier rule. It should be noted

here that (9) and (10) together are still weaker than (8), but they look more

similar to the mentioned classical rule. Theorem 4.1 with dimX being finite in

(iv) is new and indicated in the following example to be conveniently applied

in some cases where Theorem 10 of [21] fails in use.

Example 4.2 Let X = R, x̄ = 0, g1(x) = −x and f : R → R be given by

f(x) =


x if x ≤ 0,

x + 1 if x > 0.

Then, L<
f (x̄) = (−∞, 0) and Lg(x̄) = [0, +∞). We can compute directly the

subdifferentials ∂<f(x̄) = [1, +∞), ∂~f(x̄) = [0, +∞), ∂≤g1(x̄) = (−∞,−1]

and ∂νg1(x̄) = (−∞, 0]. Consequently, f is a Plastria function at x̄ and g1 is
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a Gutiérrez functions at x̄. The Slater condition is satisfied at x̄. x̄ is not a

local minimizer of f on R but is a solution of problem (7). Therefore, we can

employ Theorem 4.1. In fact, taking λ1 = 1 we get (11) and λ1g1(x̄) = 0. Note

that Theorem 10 of [21] cannot be used as f is not u.s.c.

The following theorem gives a simple sufficient condition for problem (7).

Theorem 4.3 Let f be u.s.c. and x̄ be a feasible solution of problem (7).

Then, relation (8) implies that x̄ is a solution.

Proof. Let D = h−1((−∞, 0]). Then, C ⊆ D. Observe that x̄ is a solution to

problem (7) if and only if L<
f (x̄)∩C = ∅. We shall prove a stronger conclusion

that L<
f (x̄) ∩D = ∅.

Since f is u.s.c., L<
f (x̄) is open. Applying Theorem 3.4, we see that x̄ is a

solution to the following set-constrained problem

minimize f(x) subject to x ∈ D.

This completes the proof. 2

The following example yields a case where Theorem 4.3 is more advantageous

than Theorem 12 of [21].

Example 4.4 Let x̄ = 0, f : R → R be given by f(x) = −1 for x < 0,

f(x) = x for x ≥ 0, and g1 : R → R be given by g1(x) = −x. Then f is

u.s.c. but ∂<f(x̄) = ∅. Hence, Theorem 12 of [21] cannot be applied. However,

∂~f(x̄) = R+ and ∂νg1(x̄) = −R+. So Theorem 4.3 concludes that x̄ is a

solution. (This is also easily checked directly.)

Let us turn now to strict solutions of problem (7). A necessary condition is

slightly stronger than that for usual solutions given in Theorem 4.1, under

almost the same assumptions.
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Theorem 4.5 For problem (7) let conditions (i)-(iv) of Theorem 4.1 hold. If

x̄ is a strict solution, which is an extreme point but not a single point of the

feasible set, then

∂νf(x̄) ∩
(
−
∑
i∈I

∂νgi(x̄)

)
6= {0} . (12)

Hence there are λ1, ..., λn ∈ R+, not all zero, such that

0 ∈ ∂νf(x̄) +
n∑

j=o

λj∂
νgj(x̄), (13)

λjgj(x̄) = 0, j = 1, ..., n. (14)

Proof. By applying Theorem 3.6 and the same arguments as in the proof

of Theorem 4.1, we get the result. 2

Remark 4.6 The condition that x̄ is an extreme point of C can be guaran-

teed by a stronger but easier-to-be-checked one that it is an extreme point of

Lgi∗(x̄), for some i∗ ∈ I. This condition in turn is weaker than the strictly

quasiconvexity of gi∗.

If f and gi are Gutiérrez functions at x̄, for all i ∈ I, relation (13) takes the

form

0 ∈ ∂≤f(x̄) +
∑
i∈I

yi∂
≤gi(x̄). (15)

Theorem 4.7 Let f be u.s.c. and x̄ be a feasible solution of problem (7) such

that f−1(f(x̄)) = {x̄}. Then, the relation (12) implies that x̄ is a strict solution.

Proof. Since f−1(f(x̄)) = {x̄}, we get Lf (x̄)\{x̄} = S<
f (x̄). Hence Lf (x̄)\{x̄}

is open (by the assumed upper semicontinuity). By applying Theorem 3.9 and

the same arguments as in the proof of Theorem 4.3, the proof is complete. 2
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Example 4.8 Let x̄ = 0, g1(x) = −x and

f(x) =


−1, for x < 0,

x, for x ≥ 0.

We have ∂νf(x̄) = R+ and ∂νg1(x̄) = −R+ and hence the assumptions of

Theorem 4.7 are fulfilled. Hence, x̄ is a strict solution (as is easily verified

directly).
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