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Abstract The paper is devoted to the study of a new class of optimization problems with objectives
given as differences of convex (DC) functions and constraints described by infinitely many convex
inequalities. We consider such problems in the general framework of locally convex topological vector
spaces, although the major results obtained in the paper are new even in finite dimensions when
the problems under consideration reduce to DC semi-infinite programs. The main attention is paid
to deriving qualified necessary optimality conditions as well as necessary and sufficient optimality
conditions for DC infinite and semi-infinite programs and to establishing relations between various
qualification conditions. The results obtained are applied to and specified for particular classes of DC
programs involving polyhedral convex functions in DC objectives, programs with cone constraints
as well as those with positive semi-definite constraints described via the Löwer partial order.
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1 Introduction

This paper deals with a new class of DC infinite programs given in the form:{
minimize ϑ(x)− θ(x) subject to
ϑt(x) ≤ 0, t ∈ T, and x ∈ Θ,

(1.1)

where ϑ : X → IR := (−∞,∞] and ϑt : X → IR as t ∈ T are proper, convex, lower semicon-
tinuous (l.s.c.) functions with values in the extended real line IR, where θ : X → IR is also
a proper, l.s.c., convex function while real-valued, and where Θ ⊂ X is a closed and convex
subset of a a locally convex Hausdorff topological vector space. The above assumptions are
standing throughout the whole paper. An important feature of problem (1.1) is that the
index set T is arbitrary, i.e., may be infinite. When the space X is finite-dimensional,
optimization problems with infinite inequality constraints belong to the area well known
as semi-infinite programming, where the word “semi-infinite” refers to the finite number
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of decision variables and infinite number of constraints; see, e.g., the now classical book
[15] and the references therein. Similarly, the word “infinite” in the context of (1.1) refers
to optimization problems with infinitely many variables as well as constraints. The latter
terminology has been recently introduced in [10] in the context of convex infinite programs.

Problems of DC (difference of convex) programming are highly important from both
viewpoints of optimization theory and applications. They have been extensively studied
in the literature, mainly for problems with finitely many convex inequality constraints;
see, e.g., [11, 12, 18, 19] and the references therein. On one hand, such problems—being
heavily nonconvex—can be considered as a special class in nondifferentiable programming
(in particular, quasidifferentiable programming [8]) and thus are suitable for applying ad-
vanced techniques of variational analysis and generalized differentiation developed, e.g., in
[7, 8, 29, 30, 32, 33]. On the other hand, the special convex structure of both “plus” function
ϑ and “minus” function θ in the objective of (1.1) offers the possibility to use powerful tools
of convex analysis in the study of DC programs.

Infinite DC programs of type (1.1) have been considered in the framework of Banach
spaces X in our recent paper [13], where we introduced a new closeness qualification con-
dition (CQC) and employed it to deriving qualified (i.e., of normal/KKT form) necessary
optimality conditions for local minimizers to (1.1) by using refined techniques and results
of convex analysis. In this paper we extend these results to DC programs in topological
vector spaces and also derive new necessary and sufficient conditions for global minimizers
to (1.1) under the CQC requirement. Furthermore, we establish various characterizations
of the CQC property and its relations with some other qualification conditions in DC and
convex infinite programming. Finally, we obtain implementations and specifications of the
obtained optimality conditions and constraint qualifications in particular cases of DC pro-
grams involving cone constraints, polyhedral convex “minus” functions in their objectives,
and also with positive semi-definite constraints defined via the Löwer partial order.

The rest of the paper is organized as follows. In Section 2 we present basic definitions
as well as some preliminary, less standard facts of convex analysis broadly employed in the
paper. Section 3 is devoted to a detail study of a new closedness qualification condition
(CQC) for DC infinite programs in topological vector spaces, which plays a crucial role
for the subsequent results of the paper. In particular, in this section we obtain various
characterizations of the CQC and related Farkas-Minkowski (FM) constraint qualifications
and consider their applications to calculus rules involving infinite constraints. In Section 4
we compare the CQC and FM qualification conditions with other major ones, in both primal
and dual spaces, known in this and related areas. Section 5 concerns deriving new necessary
optimality conditions as well as necessary and sufficient optimality conditions for local and
global minimizers in DC infinite and semi-infinite programs of type (1.1). Section 6 presents
some specifications of the general results obtained for DC problems with infinite constraints
to an important class of cone-constrained DC programs. In Section 7 we develop efficient
implementations of the general results obtained to a special case of DC programs whose
“minus” objective functions θ are given in the polyhedral convex form. Finally, Section 8
contains new results for DC programs with positive semi-definite constraints defined via the
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Löwer partial order in the framework of finite-dimensional spaces.

Our notation is basically standard in convex and variational analysis except special
symbols introduced where they are defined; cf. [19, 29, 32]. Recall that cl∗ signifies the
closure in the weak∗ topology w∗ of dual spaces.

2 Basic Definitions and Preliminaries

As mentioned, throughout this paper we suppose that the underlying space X in the DC
problem (1.1) is a locally convex Hausdorff topological vector space, where X∗ stands for the
topologically dual space X∗ endowed with the weak∗ topology. We always use the notation
〈·, ·〉 for the canonical paring between X and X∗.

Given a nonempty subset Ω ⊂ X, the symbol aff Ω signifies the affine hull of Ω, while
the core of Ω is defined by

core Ω =
{
x ∈ Ω

∣∣ for all y ∈ X there is ε > 0 with x + νy ∈ Ω whenever ν ∈ [−ε, ε]
}
.

The core of Ω relative to the affine hull aff Ω is called the intrinsic core of Ω and is denoted
by icrΩ. If Ω is convex, the collections of all x ∈ Ω for which the conic closure cl[cone(Ω−x)]
of Ω − x is a linear subspace of X is known as the quasi relative interior of Ω denoted by
qri Ω. Note [6] that qri Ω 6= ∅ for any convex subset of a separable Banach space. The
collection of al x ∈ Ω for which the conic hull cone(Ω − x) is a closed linear subspace is
called the strong quasi relative interior of Ω denoted by sqri Ω; see [24] for more discussions.

Having the generally infinite index set T in (1.1), consider the product space IRT of
multipliers λ = (λt| t ∈ T ) with λt ∈ IR for all t ∈ T and denote by ĨRT the collection of
λ ∈ IRT with λt 6= 0 for finitely many t ∈ T . Let ĨRT

+ be the positive cone in ĨRT defined by

ĨRT
+ :=

{
λ ∈ ĨRT

∣∣ λt ≥ 0 for all t ∈ T
}
. (2.1)

Given u ∈ IRT and λ ∈ ĨRT and denoting suppλ := {t ∈ T | λt 6= 0}, we have

〈λ, u〉 :=
∑
t∈T

λtut =
∑

t∈supp λ

λtut.

Considering further an extended-real-valued function ϕ : X → IR with the domain
dom ϕ := {x ∈ X| ϕ(x) < ∞}, we always assume that it is proper, i.e., ϕ(x) 6≡ ∞ on
X. The conjugate function ϕ∗ : X∗ → IR to ϕ is defined by

ϕ∗(x∗) := sup
{
〈x∗, x〉 − ϕ(x)

∣∣ x ∈ X
}

= sup
{
〈x∗, x〉 − ϕ(x)

∣∣ x ∈ dom ϕ
}
. (2.2)

For any ε ≥ 0, the ε-subdifferential (or approximate subdifferential if ε > 0) of a convex
function ϕ : X → IR at x̄ ∈ dom ϕ is

∂εϕ(x̄) :=
{
x∗ ∈ X∗∣∣ 〈x∗, x− x̄〉 ≤ ϕ(x)− ϕ(x̄) + ε for all x ∈ X

}
, ε ≥ 0. (2.3)

When x̄ /∈ dom ϕ we put ∂εϕ(x̄) := ∅. If ε = 0 in (2.3), the set ∂ϕ(x̄) := ∂0ϕ(x̄) is the
classical subdifferential of convex analysis. It is clear that

∂εϕ(x̄) ⊂ ∂ηϕ(x̄) whenever 0 ≤ ε ≤ η. (2.4)
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The following representation [20] of the epigraph of the conjugate function (2.2) to a l.s.c.
convex function ϕ : X → IR via the ε-subdifferential (2.3) of ϕ at any point x ∈ dom ϕ is
useful in our further development:

epiϕ∗ =
⋃
ε≥0

{(
x∗, 〈x∗, x〉+ ε− ϕ(x)

)∣∣∣ x∗ ∈ ∂εϕ(x)
}

. (2.5)

Further, it is well known in convex analysis that the conjugate epigraphical rule

epi
(
ϕ1 + ϕ2

)∗ = cl∗
(
epiϕ∗1 + epiϕ∗2

)
(2.6)

is satisfied for any l.s.c. convex functions ϕi : X → IR, i = 1, 2, where the weak∗ closure
operation on the right-hand side of (2.6) can be omitted provided that one of the functions
ϕi is continuous at some point x̄ ∈ dom ϕ1 ∩ dom ϕ2. More general results in this direction
implying the fundamental subdifferential sum rule of convex analysis have been recently
established in [5, 14] and the references therein.

Since the above subdifferential definitions and results are given for any extended-real-
valued (l.s.c. and convex) functions, they encompass the case of sets by considering the
indicator function δ(x; Ω) of a set Ω ⊂ X equal to 0 when x ∈ Ω and ∞ otherwise. In this
way, the normal cone to a convex set Ω at x̄ ∈ Ω is defined by

N(x̄; Ω) := ∂δ(x̄; Ω) =
{
x∗ ∈ X∗∣∣ 〈x∗, x− x̄〉 ≤ 0 for all x ∈ Ω

}
. (2.7)

For ε > 0, the collection of ε-normals to a convex set Ω at x̄ ∈ Ω is naturally defined by

Nε(x̄; Ω) := ∂εδ(x̄; Ω) =
{
x∗ ∈ X∗∣∣ 〈x∗, x− x̄〉 ≤ ε for all x ∈ Ω

}
. (2.8)

Finally in this section, let us consider the following system of linear inequalities

σL :=
{
〈at, x〉 ≤ βt, t ∈ T

}
, (2.9)

where at ∈ X∗ and βt ∈ IR are given, and where T is an arbitrary index set. A linear
inequality 〈a, x〉 ≤ β is called a consequence relation of σL if this inequality is satisfied for
every solutions to σL. Moreover, the linear system σL in (2.9) is called a linearly Farkas-
Minkowski (FM) system if every linear consequence relation of σL is a consequence relation
of a finite subsystem of σL; see [15, 16, 27] for more details and discussions. Recall the
following remarkable fact established in [16] for X = IRn: a system σL from (2.9) is linearly
FM if and only if the conic hull

cone
{
{(at, βt) ∈ IRn × IR| t ∈ T} ∪ (0, 1)

}
with 0 ∈ IRn (2.10)

is a closed subset of the space IRn × IR.

3 Closedness Qualification Conditions for Infinite Programs

This section is devoted to qualification conditions for DC and convex infinite programs in
topological vector spaces. We pay the main attention to dual-type qualification conditions
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formulated in dual spaces. The basic qualification condition employed in this paper is the
following closedness qualification condition-CQC introduced in our previous paper [13] in
the case of Banach spaces. Consider the cone

K := cone
{ ⋃

t∈T

epiϑ∗t
}

+ epi δ∗(·; Θ) (3.1)

built upon the constraint data of the underlying DC infinite program (1.1).

Definition 3.1 (closedness qualification condition-CQC). We say that problem (1.1)
satisfies the closedness qualification condition, CQC in brief, if the set

epiϑ∗ + K

is weak∗ closed in the space X∗ × IR, where the cone K is defined in (3.1).

The following related while generally different qualification condition for the infinite
convex constraint system

σ :=
{
ϑt(x) ≤ 0, t ∈ T ; x ∈ Θ

}
(3.2)

in (1.1) has been recently introduced in [10] and employed therein to stability issues for
convex infinite programs. We say that the constraint system (3.2) satisfies the Farkas-
Minkowski (FM) constraint qualification if

the cone K defined in (3.1) is weak∗ closed in X∗ × IR. (3.3)

Observe that, in contrast to CQC, the FM qualification condition does not involve the cost
function of (1.1) depending only on the constraints system (3.4). In the case of linear
functions ϑt, t ∈ T , the FM qualification condition reduces to the now classical constraint
qualification of the Farkas-Minkowski type developed in [15, 27]. Recall also the relation

epi δ∗(·; Ξ) = cl∗K

established in [10], where Ξ stands for the set of feasible solutions to (1.1), i.e.,

Ξ := Θ ∩
{
x ∈ X

∣∣ ϑt(x) ≤ 0 for all t ∈ T
}
. (3.4)

Thus the FM qualification condition (3.3) requires in fact that the cone K in (3.1) is equal
to the epigraph of the support function δ∗(·; Ξ) of the feasible set (3.4). Dealing similarly
with the CQC property from Definition 3.1 and employing the conjugate epigraphical rule
(2.6), we have the equalities

epi
(
ϑ + δ(·; Ξ)

)∗ = cl∗
(
epiϑ∗ + epi δ∗(·; Ξ)

)
= cl∗(epiϑ∗ + cl∗K) = cl∗(epiϑ∗ + K), (3.5)

where the last equality follows from the general fact that cl(A + B) = cl(A + clB) for any
nonempty subsets of locally convex Hausdorff topological vector spaces; this can be checked
directly by definitions. Thus we conclude from (3.5) that the CQC property of Definition 3.1

5



is equivalent to the requirement that the set epiϑ∗ + K coincides with the epigraph of the
conjugate function (ϑ + δ(·; Ξ))∗.

The next theorem, which is the main result of this section, provides several character-
izations of the CQC property for DC infinite programs that seem to be new in general
infinite-dimensional as well as finite finite-dimensional settings.

Theorem 3.2 (characterizations of the CQC property). In addition to the standing
assumptions of Section 1, suppose that Ξ ∩ dom ϑ 6= ∅ in the DC infinite program (1.1).
Then the following are equivalent:

(i) The CQC property holds for (1.1).
(ii) For all x∗ ∈ X∗ we have the equality(

ϑ + δ(·; Ξ)
)∗(x∗) = min

λ∈eIRT
+

min
u,vt∈X∗

t∈supp λ

[
ϑ∗(u) +

∑
t∈supp λ

λtϑ
∗
t (vt)

+δ∗(·; Θ)
(
x∗ − u−

∑
t∈supp λ

λtvt

)]
,

(3.6)

where both minima are realized at some λ ∈ ĨRT
+, t ∈ suppλ and u, vt ∈ X∗.

(iii) For any x̄ ∈ Ξ ∩ dom ϑ and ε ≥ 0 we have the equality

∂ε

(
ϑ + δ(·; Ξ)

)
(x̄) =

⋃
λ∈eIRT

+

⋃
η,ν,εt≥0, t∈suppλ

η+
P

t∈supp λ λt[εt−ϑt(x̄)]+ν=ε

{
∂ηϑ(x̄) +

∑
t∈suppλ

λt∂εtϑt(x̄)

+Nν(x̄; Θ)
}

,

(3.7)

where Nν(x̄; Θ) is the ν-normal cone to Θ at x̄ defined in (2.8).

Proof. To justify the implication (i)=⇒(ii), suppose that the CQC property holds in (1.1)
and pick any x∗ ∈ X∗. Then it follows directly from the corresponding definitions that

ϑ∗(u) ≥ 〈u, x〉 − ϑ(x), ϑ∗t (vt) ≥ 〈vt, x〉 − ϑt(x) ≥ 〈vt, x〉,

δ∗(·; Θ)
(
x∗ − u−

∑
t∈supp λ

λtvt

)
≥

〈
x∗ − u−

∑
t∈supp λ

λtvt, x
〉

for each λ ∈ ĨRT
+, t ∈ suppλ, u, vt ∈ X∗, and x ∈ Ξ ∩ dom ϑ. The latter implies that

ϑ∗(u) +
∑

t∈supp λ

λtϑ
∗
t (vt) + δ∗(·; Θ)

(
x∗ − u−

∑
t∈supp λ

λtvt

)
≥ 〈x∗, x〉 − ϑ(x),

and hence we get the inequality

ϑ∗(u) +
∑

t∈supp λ

λtϑ
∗
t (vt) + δ∗(·; Θ)

(
x∗ − u−

∑
t∈supp λ

λtvt

)
≥

(
ϑ + δ(·; Ξ)

)∗(x∗). (3.8)

If x∗ 6∈ dom (ϑ + δ(·; Ξ))∗, then (ϑ + δ(·; Ξ))∗(x∗) = ∞. Thus, by taking (3.8) into
account, the required relation in (3.6) holds trivially in this case. Otherwise, suppose that
x∗ ∈ dom (ϑ + δ(·; Ξ))∗. Combining now (3.5) and the CQC property in (i), we get

epi
(
ϑ + δ(·; Ξ)

)∗ = cl∗(epiϑ∗ + K) = epi ϑ∗ + K. (3.9)
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Since
(
x∗, (ϑ + δ(·; Ξ))∗(x∗)

)
∈ epi (ϑ + δ(·; Ξ))∗, relations (3.9) and (3.1) yield that(

x∗, (ϑ + δ(·; Ξ))∗(x∗)
)
∈ epiϑ∗ + cone

{ ⋃
t∈T

epiϑ∗t
}

+ epi δ∗(·; Θ).

In turn, the latter inclusion ensures the existence of λ = (λt| t ∈ T ) ∈ ĨRT
+, (u, r) ∈ epiϑ∗,

(w, k) ∈ epi δ∗(·; Ξ), and (vt, st) ∈ epiϑ∗t as t ∈ suppλ satisfying(
x∗, (ϑ + δ(·; Ξ))∗(x∗)

)
= (u, r) +

∑
t∈supp λ

λt(vt, st) + (w, k),

which gives x∗ = u +
∑

t∈supp λ λtvt + w and

(ϑ + δ(·; Ξ))∗(x∗) ≥ ϑ∗(u) +
∑

t∈supp λ

λtϑ
∗
t (vt) + δ∗(·; Ξ)(w).

The last two expressions imply that(
ϑ + δ(·; Ξ)

)∗(x∗) ≥ ϑ∗(u) +
∑

t∈supp λ

λtϑ
∗
t (vt) + δ∗(·; Ξ)

(
x∗ − u−

∑
t∈supp λ

λtvt

)
.

Combining the latter inequality with that in (3.8), we conclude that (3.6) holds in the case
under consideration with both minima attained at λ ∈ ĨRT

+, t ∈ suppλ, and u, vt ∈ X∗.
This fully justifies the implication (i)=⇒(ii) in the theorem.

Next let us prove the implication (ii)=⇒(iii). Suppose that (ii) holds and take arbitrary
elements x̄ ∈ Ξ ∩ dom ϑ and ε ≥ 0. Pick further a dual vector x∗ ∈ X∗ belonging to the
right-hand side set in (3.7) and find by definition elements λ ∈ ĨRT

+, η, ν, εt ≥ 0, u ∈ ∂ηϑ(x̄),
vt ∈ ∂εtϑ(x̄) as t ∈ suppλ, and w ∈ ∂νδ(·; Θ)(x̄) such that

η +
∑

t∈supp λ

λt

(
εt − ϑt(x̄)

)
+ ν = ε and x∗ = u +

∑
t∈supp λ

λtvt + w.

It follows from these equalities and the definition of ε-subdifferentials in (2.3) that

ϑ(x)− ϑ(x̄) +
∑

t∈supp λ

λtϑt(x) ≥ 〈x∗, x− x̄〉 − ε for all x ∈ Θ ∩ dom ϑ.

Thus for all x ∈ Ξ ∩ dom ϑ the inequality,

ϑ(x)− ϑ(x̄) ≥ 〈x∗, x− x̄〉 − ε,

which shows that x∗ ∈ ∂ε(ϑ + δ(·; Ξ))(x̄). This therefore implies the inclusion

∂ε

(
ϑ + δ(·; Ξ)

)
(x̄) ⊃

⋃
λ∈eIRT

+

⋃
η,ν,εt≥0, t∈supp λ

η+
P

t∈supp λ λt[εt−ϑt(x̄)]+ν=ε

{
∂ηϑ(x̄) +

∑
t∈supp λ

λt∂εtϑt(x̄) + Nν(x̄; Θ)
}

.

To justify the opposite inclusion in (3.7), take any x∗ ∈ ∂ε(ϑ + δ(·; Ξ))(x̄) and get by
representation (2.5) that(

x∗, 〈x∗, x̄〉+ ε− ϑ(x̄)− δ(x̄; Ξ)
)
∈ epi

(
ϑ + δ(·; Ξ)

)∗
,
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which implies in turn the inequality

〈x∗, x̄〉+ ε− ϑ(x̄) ≥
(
ϑ + δ(·; Ξ)

)∗(x∗). (3.10)

By the assumed property (ii) there are λ ∈ ĨRT
+ and u, w, vt ∈ X∗ as t ∈ suppλ such that

x∗ = u +
∑

t∈supp λ

vt + w and
(
ϑ + δ(·; Ξ)

)∗(x∗) = ϑ∗(u) +
∑

t∈supp λ

λtϑ
∗
t (vt) + δ∗(·; Θ)(w).

Combining this with (3.10), we arrive at the inequality

〈x∗, x̄〉+ ε− ϑ(x̄) ≥ ϑ∗(u) +
∑

t∈supp λ

λtϑ
∗
t (vt) + δ∗(·; Θ)(w), (3.11)

which ensures that u ∈ dom ϑ∗, w ∈ dom δ∗(·; Θ), and vt ∈ dom ϑ∗t for all t ∈ suppλ.
Defining further the number η := ϑ∗(u) − 〈u, x̄〉 + ϑ(x̄) and using definition (2.2) of

the conjugate function, we get η ≥ 0. The representation formula (2.5) for the conjugate
function gives u ∈ ∂ηϑ(x̄). Similarly we have w ∈ Nν′(x̄; Θ) and vt ∈ ∂εtϑt(x̄), where

ν ′ := δ∗(·; Θ)(w)− 〈w, x̄〉 ≥ 0 and εt := ϑ∗t (vt)− 〈vt, x̄〉+ ϑt(x̄) ≥ 0, t ∈ suppλ.

Combining the latter facts with (3.11), we conclude that

ε + 〈x∗, x̄〉 − ϑ(x̄) ≥ η + 〈u, x̄〉 − ϑ(x̄) +
∑

t∈supp λ

λt

[
εt + 〈vt, x̄〉 − ϑt(x̄)

]
+ ν ′ + 〈w, x̄〉.

Since x∗ = u +
∑

t∈supp λ vt + w, the last inequality gives

ε ≥ η +
∑

t∈supp λ

λt

[
εt − ϑt(x̄)

]
+ ν ′.

Letting finally ν := ε− η −
∑

t∈supp λ λt[εt − ϑt(x̄)], observe that ν ≥ ν ′ and thus, by (2.4),

x∗ = u +
∑

t∈supp λ

λtvt + w ∈ ∂ηϑ(x̄) +
∑

t∈supp λ

λt∂εtϑt(x̄) + Nν′(x̄; Θ)

⊂ ∂ηϑ(x̄) +
∑

t∈supp λ

λt∂εtϑt(x̄) + Nν(x̄; Θ),

which completes the proof of the implication (ii)=⇒(iii).

It remains to justify the implication (iii)=⇒(i) in the theorem. Assume that (iii) holds
and (x∗, r) ∈ cl∗(epiϑ∗ + K), where the cone K is defined in (3.1). By (3.5) we have
(x∗, r) ∈ epi (ϑ + δ(·; Ξ))∗ and, using the subdifferential representation (2.5), find ε ≥ 0
such that x∗ ∈ ∂ε(ϑ + δ(·; Ξ))(x̄) and r = 〈x∗, x̄〉 − ϑ(x̄) + ε. Employing further the same
technique as in the proof of the implication (ii)=⇒(iii) above, find elements (u, s) ∈ epiϑ∗,
(vt, kt) ∈ epiϑ∗t , and (w, h) ∈ epi δ∗(·; Θ) such that

(x∗, r) = (u, s) +
∑

t∈supp λ

λt(vt, kt) + (w, h) ∈ epiϑ∗

+cone
{ ⋃

t∈T

epiϑ∗t
}

+ epi δ∗(·; Θ) = epiϑ∗ + K.
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This ensures the weak∗ closedness of the set epi ϑ∗ + K in X∗ × IR, which is the property
CQC in (1.1). Thus we get (iii) =⇒(i) and complete the proof of the theorem. 4

The equivalence results of Theorem 3.2 extend to the general DC infinite program setting
(1.1) those recently obtained in [11, Theorem 3.1] for cone-constrained programs considered
in Section 6 in more detail.

Next we derive several consequences of Theorem 3.2. The first one is a subdifferential
calculus rule involving infinite constraints in (1.1). The result obtained in the equality form
in topological vector spaces significantly improves its previous inclusion version derived in
[13, Corollary 3.3] by a different way in the Banach space setting. To proceed, define the
set of active constraint multipliers for the original constraint system (3.2) by

A(x̄) :=
{
λ ∈ ĨRT

+

∣∣ λtϑt(x̄) = 0 for all t ∈ suppλ
}
. (3.12)

Corollary 3.3 (subdifferential sum rule involving convex infinite constraints).
Let x̄ ∈ Ξ ∩ dom ϑ in problem (1.1), where the CQC property is satisfied. Then

∂
(
ϑ + δ(·; Ξ)

)
(x̄) = ∂ϑ(x̄) +

⋃
λ∈A(x̄)

{ ∑
t∈supp λ

λt∂ϑt(x̄)
}

+ N(x̄; Θ). (3.13)

Proof. Take ε = 0 in (3.7). Then η = ν = εt = 0 and λtϑt(x̄) = 0 for all t ∈ suppλ, since
η, ν, εt ≥ 0 and λtϑt(x̄) ≤ 0 for all t ∈ suppλ. Thus (3.7) becomes (3.13) in this case. 4

The following corollary provides a new conjugate sum rule for the “plus” cost function
and infinite constraints in the original DC problem (1.1).

Corollary 3.4 (conjugate sum rule involving convex infinite constraints). Under
the qualification condition CQC in problem (1.1), for all x∗ ∈ X∗ we have the equality(

ϑ + δ(·; Ξ)
)∗(x∗) = min

λ∈eIRT
+

(
ϑ +

∑
t∈supp λ

λtϑt + δ(·; Θ)
)∗

(x∗). (3.14)

Proof. Taking any x∗ ∈ X∗ and applying the conjugate representation (3.6) of Theo-
rem 3.2(ii) equivalent to the CQC, we find λ̃ ∈ ĨRT

+ and u, vt ∈ X∗ such that(
ϑ + δ(·; Ξ)

)∗(x∗) = ϑ∗(u) +
∑

t∈supp eλ
λ̃tϑ

∗
t (vt) + δ∗(·; Θ)

(
x∗ − u−

∑
t∈supp eλ

λ̃tvt

)
.

Thus for each x ∈ X we have the inequalities(
ϑ + δ(·; Ξ)

)∗(x∗) ≥ 〈u, x〉 − ϑ(x) +
∑

t∈supp eλ
λ̃t

[
〈vt, x〉 − ϑt(x)

]
+

〈
x∗ − u−

∑
t∈supp eλ

λ̃tvt, x
〉
− δ(x; Θ) ≥ 〈x∗, x〉 −

(
ϑ +

∑
t∈supp eλ

λ̃tϑt + δ(·; Θ)
)
(x),

which imply that(
ϑ + δ(·; Ξ)

)∗(x∗) ≥ (
ϑ +

∑
t∈supp eλ

λ̃tϑt + δ(·; Θ)
)∗

(x∗). (3.15)
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On the other hand, it easily follows for each λ ∈ ĨRT
+ that(

ϑ +
∑

t∈supp λ

λtϑt + δ(·; Θ)
)∗

(x∗) = sup
x∈Θ

{
〈x∗, x〉 −

(
ϑ +

∑
t∈supp λ

λtϑt

)
(x)

}
≥ sup

x∈Ξ

{
〈x∗, x〉 − ϑ(x)−

∑
t∈supp λ

λtϑt(x)
}

≥ sup
x∈Ξ

{
〈x∗, x〉 − ϑ(x)

}
=

(
ϑ + δ(·; Ξ)

)∗(x∗).
(3.16)

Combining finally (3.15) and (3.16), we get for all x∗ ∈ X∗ that(
ϑ + δ(·; Ξ)

)∗(x∗) = min
λ∈eIRT

+

(
ϑ +

∑
t∈supp λ

λtϑt + δ(·; Θ)
)∗

(x∗)

=
(
ϑ +

∑
t∈supp eλ

λ̃tϑt + δ(·; Θ)
)∗

(x∗),

which completes the proof of the corollary. 4
The next result provides characterizations of the Farkas-Minkowski constraint qualifica-

tion in problem (1.1).

Corollary 3.5 (characterizations of the FM constraint qualification). The follow-
ing properties are equivalent for the constraint system σ in (3.2):

(i) The Farkas-Minkowski constraint qualification (3.3) is satisfied.
(ii) For each x∗ ∈ X∗ we have the representation

δ∗(x∗; Ξ) = min
λ∈eIRT

+

min
vt∈X∗, t∈T

[ ∑
t∈supp λ

λtϑ
∗
t (vt) + δ∗(·; Θ)

(
x∗ −

∑
t∈supp λ

λtvt

)]
.

(iii) For any x̄ ∈ Ξ and ε ≥ 0 the collection of ε-normals to Ξ is given by

Nε(x̄; Ξ) =
⋃

λ∈eIRT
+

⋃
ν,εt≥0, t∈TP

t∈supp λ λt[εt−ϑt(x̄)]+ν=ε

{ ∑
t∈supp λ

λt∂εtϑt(x̄) + Nν(x̄; Θ)
}

.

Proof. Follows directly from Theorem 3.2 with ϑ = 0. 4
The last corollary gives the exact formula for computing the normal cone to the set

of feasible solutions (3.4) to the original problem (1.1) involving infinite constraints in
topological vector spaces. It significantly improves the previous result of [13, Corollary 3.4]
establishing just an upper estimate of N(x̄; Ξ) in Banach spaces.

Corollary 3.6 (normal cone to convex infinite constraints). Under the Farkas-
Minkowski constraint qualification (3.3) we have

N(x̄; Ξ) =
⋃

λ∈A(x̄)

[ ∑
t∈supp λ

λt∂ϑt(x̄)
]

+ N(x̄; Θ) for all x̄ ∈ Ξ,

where the set of active multipliers is defined in (3.12).

Proof. Follows from Corollary 3.3 with ϑ = 0. 4

10



4 Relations between Various Qualification Conditions

In this section we establish relations between the CQC and FM qualification conditions and
some other constraint qualifications for infinite and semi-infinite constraint systems known
in the literature. First let us present two sufficient conditions, which can be derived from the
results recently established in [9, 10], ensuring the fulfillment of the CQC property in Defi-
nition 3.1 for the DC infinite program (1.1) provided that the FM constraint qualification
(3.3) holds for the corresponding constraint system (3.2).

Proposition 4.1 (sufficient conditions for the CQC property of DC infinite pro-
grams in the presence of the FM constraint qualification). Suppose that the FM
constraint qualification (3.3) holds for the constraint system σ in (3.2). Then the CQC
property from Definition 3.1 also holds if one of the following assumptions is satisfied:

(A1) The “plus” function ϑ in the objective of (1.1) is continuous at some point of the
feasible set Ξ defined in (3.4).

(A2) The conic hull cone[dom(ϑ− Ξ)] is a closed subspace of X.

Observe again that the FM qualification condition, in contrast to the CQC one, concerns
only the constraint convex system σ in (1.1) but not the cost function of the original DC
program. In the rest of this section we consider relations between the FM qualification
condition and some other constraint qualifications for infinite convex systems of type (3.2).
The results obtained in this way apply to the CQC property of DC and convex infinite
programs via the CQC–FM relations given in Proposition 4.1.

Let us next consider behavior of the FM constraint qualification (3.3) under an appropri-
ate linearization of the original constraint system σ from (3.2). We construct the linearized
constraint system as follows:

σ1 :=

{
〈x∗t , x〉 ≤ ϑ∗t (x

∗
t ) + α, x∗t ∈ dom ϑ∗t , t ∈ T, α ≥ 0,

〈x∗, x〉 ≤ δ∗(x∗; Θ) + β, x∗ ∈ dom δ∗(·; Θ), β ≥ 0.
(4.1)

Observe that the linearized constraint system σ1 in (4.1) corresponds to the same solution
set Ξ from (3.4) as the original convex constraint system σ defined in (3.2). The following
proposition establishes the equivalence, in the case of X = IRn, between the FM qualification
condition for the convex constraint system σ and the linear FM qualification condition for
the linearized system σ1 in the sense defined at the end of Section 2.

Proposition 4.2 (FM constraint qualification under linearization in semi-infinite
programming). Let X = IRn. Then the convex constraint system (3.2) satisfies the
Farkas-Minkowski qualification condition if and only if the corresponding linearized con-
straint system (4.1) is linearly FM.

Proof. Observe that ϑ∗∗t = ϑt for all t ∈ T , since each constraint function ϑt is assumed
to be proper, l.s.c., and convex function. Therefore for each t ∈ T and x ∈ X we have the
equivalent relations

ϑt(x) ≤ 0 ⇐⇒ ϑ∗∗t (x) ≤ 0 ⇐⇒ 〈x∗t , x〉 − ϑ∗t (x
∗
t ) ≤ 0 for all x∗t ∈ dom ϑ∗t

⇐⇒ 〈x∗t , x〉 ≤ ϑ∗t (x
∗
t ) for all x∗t ∈ dom ϑ∗t

⇐⇒ 〈x∗t , x〉 ≤ ϑ∗t (x
∗
t ) + α whenever x∗t ∈ dom ϑ∗t and α ≥ 0.
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Taking now x ∈ Θ and expressing this as δ(x; Θ) ≤ 0, via the indicator function, we get

δ(x; Θ) ≤ 0 ⇐⇒ 〈x∗, x〉 ≤ δ∗(x∗; Θ) for all x∗ ∈ dom δ∗(·; Θ)
⇐⇒ 〈x∗, x〉 ≤ δ∗(x∗; Θ) + β if x∗ ∈ dom δ∗(·; Θ), β ≥ 0.

The corresponding cone (2.10) for the linearized system σ1 is computed in [9] as

cone
{ ⋃

t∈T

[
epiϑ∗t ∪ epi δ∗(·; Θ)

]}
= cone

{ ⋃
t∈T

epiϑ∗t
}

+ epi δ∗(·; Θ) = K, (4.2)

where the cone K is defined in (3.1). Furthermore, it is shown in [10, Proposition 1] that
the linear system σ1 is linearly FM in the sense discussed at the end of Section 2 if and
only if the cone K is weak∗ closed in X∗× IR. Taking finally into account the mentioned in
Section 2 characterization of the linear FM property via the cone (2.10) in IRn, we conclude
that the latter property for σ1 is equivalent to the FM constraint qualification for σ. This
completes the proof of the proposition. 4

Now we take a closer look at several other types of constraint qualification conditions and
relations between them for infinite systems of convex inequalities (3.2) in general topological
vector spaces. Observe first of all that it follows from representation (4.2) of the cone K

from the proof of Proposition 4.2 that the FM constraint qualification is equivalent to the
so-called conical epigraph hull property recently introduced in [26] and applied therein to
problems of constrained optimization.

Another dual-type qualification condition for infinite systems of convex inequalities is in-
troduced in [10] under the name of locally Farkas-Minkowski (LFM) constraint qualification.
The constraint system σ in (3.2) is said to be locally FM at x ∈ Ξ if

N(x; Ξ) = N(x; Θ) + cone
{ ⋃

t∈T (x)

∂ϑt(x)
}

, (4.3)

where T (x) := {t ∈ T | ϑt(x) = 0} signifies the active index set for σ at x. For standard
(finite) convex systems, condition (4.3) is introduced in [19, p. 307] under the name of basic
constraint qualification (BCQ); see also [15, 17] for its developments and applications in the
case of convex systems of semi-infinite programming. A counterpart of the LFM condition
is used in [2] in the cone-constrained setting; see Section 6 for more discussions on the latter
class of convex programs.

The following relations between the FM and LFM qualification conditions can be derived
from the results of [10, 26].

Proposition 4.3 (relations between FM and LFM constraint qualifications for
infinite programs). Let Θ = X in (3.2) and (3.4). Then the constraint system σ is LFM
at all x ∈ Ξ if it satisfies the FM qualification condition. The converse implication holds
provided that dom δ∗(·; Ξ) ⊂ rge ∂(·; Ξ), where rge stands as usual for the range/image of
the subdifferential mapping under consideration.

We refer the reader to [10, 25, 26] for other modifications of FM and LFM constraint
qualifications for infinite systems of convex inequalities and relations between them.

Finally in this section, we compare the dual-type Farkas-Minkowski qualification con-
dition for infinite systems of convex inequalities with a primal qualification condition of
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the Slater type in the case of finite-dimensional spaces. The latter condition for convex
semi-infinite programs is introduced in [15, 27]. We prove that the FM condition is always
less restrictive than the Slater one in finite dimensions and present a particular example
showing that this implication is generally strict.

Definition 4.4 (Slater constraint qualification for semi-infinite programs). Let
Θ = X = IRn for the constraint system σ in (3.2). We say that σ satisfies the Slater

qualification condition if the following properties hold:
(a) the index set T is a compact subset of a finite-dimensional space;
(b) the constraint family ϑt(x) is continuous with respect to both variables (t, x) on the

set T × IRn;
(c) there is a point x0 ∈ IRn such that ϑt(x0) < 0 for all t ∈ T .

The next theorem is the main result of this section establishing the afore-mentioned
relation between the FM and Slater qualification conditions in the setting of Definition 4.4.

Theorem 4.5 (relation between Farkas-Minkowski and Slater qualification con-
ditions for semi-infinite programs). Let σ be the infinite system of convex inequalities
(3.2) in the framework of Definition 4.4. Assume in addition that the set of feasible solutions
Ξ in (3.4) with Θ = IRn is bounded. Then the Slater qualification condition for σ implies
the Farkas-Minkowski constraint qualification in the sense of (3.3).

Proof. Along with the linearization σ1 from (4.1) of the original convex system σ in (3.2),
consider another linearization of σ defined by

σ2 :=
{
〈u, x〉 ≤ 〈u, y〉 − ϑt(y), (t, y) ∈ T × IRn, u ∈ ∂ϑt(y)

}
. (4.4)

Due to assumed continuity of the constraint functions ϑt(·) as t ∈ T , their are subdifferen-
tiable and satisfy the relation

ϑ∗t (u) = 〈u, y〉 − ϑt(y) whenever u ∈ ∂ϑt(y), (t, y) ∈ T × IRn.

The latter yields that u ∈ ∂ϑt(y), and thus the inequality 〈u, x〉 ≤ 〈u, y〉 − ϑt(y) reduces to
〈u, x〉 ≤ ϑ∗t (u). Therefore we have σ2 ⊂ σ1.

Furthermore, it follows from [27, Theorem 4.5] that the Slater condition for σ implies
under the assumptions made that the linear system σ2 built in (4.4) is linearly FM in the
sense defined at the end of Section 2. By σ2 ⊂ σ1 this ensures the linear FM property of the
linearization σ1 from (4.1). The latter implies the Farkas-Minkowski qualification condition
for σ by Proposition 4.2, which completes the proof of the theorem. 4

The following example shows that the Farkas-Minkowski qualification condition for σ is
strictly better than the Slater one.

Example 4.6 (the Farkas-Minkowski constraint qualification strictly improves
the Slater one). Let the constraint system σ in (3.2) is given by

ϑt(x1, x2) := max
{
− x1, 0

}
− tx2 with t ∈ T = [0, 1) and (x1, x2) ∈ IR2.
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It is clear that the Slater qualification condition from Definition 4.4 does not hold in this
example, since first T is not compact and then there is no x0 = (x01, x02) ∈ IR2 such
that ϑt(x01, x02) < 0 for all t ∈ [0, 1). On the other hand, it is easy to verify that the
Farkas-Minkowski constraint qualification is satisfied. Indeed,

epiϑ∗t = [−1, 0]× {−t} × IR+ and hence cone
( ⋃

t∈T

epiϑ∗t
)

= IR2
− × IR+,

which is a closed subset of IR3.

5 Optimality Conditions for DC Infinite Programs

In this section we employ the CQC property to derive qualified optimality conditions in DC
and convex problems of infinite programming in topological vector spaces. We obtain various
results in this direction: necessary optimality conditions as well as necessary and sufficient
optimality conditions for both local and global minimizers. Let us start with the following
necessary and sufficient conditions for global minimizers in DC infinite programs expressed
in terms of approximate subgradients for convex functions and approximate normals to
convex sets defined in Section 2.

Theorem 5.1 (qualified necessary and sufficient optimality conditions for global
minimizers in DC infinite programs). Let the DC infinite program (1.1) satisfy the
CQC qualification condition. Then x̄ ∈ Ξ∩dom ϑ is a global minimizer for (1.1) if and only
if for each ε ≥ 0 and x∗ ∈ ∂εθ(x̄) there are λ ∈ ĨRT

+, η, ν, εt ≥ 0 as t ∈ suppλ such that

η +
∑

t∈supp λ

λt

[
εt − ϑt(x̄)

]
+ ν = ε and (5.1)

x∗ ∈ ∂εϑ(x̄) +
∑

t∈supp λ

λt∂εtϑt(x̄) + Nν(x̄; Θ). (5.2)

Proof. Observe that the original DC infinite program (1.1) can be equivalently rewritten
in the following unconstrained form:

minimize
(
ϑ + δ(·; Ξ)

)
(x)− θ(x), x ∈ X, (5.3)

where Ξ is the feasible solution set defined in (3.4). The well-known characterization of
optimal solutions to unconstrained DC problems presented in [18, 19] allows us to conclude
that x̄ is a global minimizer for (5.3) if and only if for each ε ≥ 0 we have the inclusion

∂εθ(x̄) ⊂ ∂ε

(
ϑ + δ(·; Ξ)

)
(x̄). (5.4)

By the assumed CQC property in (1.1) we get from the calculus rule of Theorem 3.2(iii) that
representation (3.7) for ∂ε(ϑ + δ(·; Ξ))(x̄) holds whenever ε ≥ 0. Thus the characterization
(5.4) of global solutions to the unconstrained problem (5.3) and the above calculus rule
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yield that x̄ is a global minimizer for the original DC problem (1.1) with infinite constraints
if and only if the inclusion

∂εθ(x̄) ⊂
⋃

λ∈eIRT
+

⋃
η,ν,εt≥0, t∈T

η+
P

t∈supp λ λt[εt−ϑt(x̄)]+ν=ε

{
∂ηϑ(x̄ +

∑
t∈supp λ

λt∂εtϑt(x̄) + Nν(x̄; Θ)
}

holds for each ε ≥ 0. The latter means that for every subgradient x∗ ∈ ∂εθ(x̄) there exist
multipliers λ ∈ ĨRT

+ and numbers η, ν, εt ≥ 0 as t ∈ suppλ satisfying both conditions (5.1)
and (5.2). This completes the proof of the theorem. 4

The next theorem establishes necessary optimality conditions for local solutions to the
DC infinite program (1.1) in general topological vector spaces. It extends our recent result
in [13, Theorem 3.2] derived by a different method in the Banach space setting.

Theorem 5.2 (necessary optimality conditions for local solutions to DC infinite
programs). Let x̄ ∈ Ξ ∩ dom ϑ be a local minimizer for the DC program (1.1) under the
CQC qualification condition. Then we have the inclusion

∂θ(x̄) ⊂ ∂ϑ(x̄) +
⋃

λ∈A(x̄)

[ ∑
t∈supp λ

λt∂ϑt(x̄)
]

+ N(x̄; Θ), (5.5)

where the set of active constraint multipliers A(x̄) is defined in (3.12).

Proof. Since x̄ is a local minimizer for (1.1), it is also a local minimizer for the unconstrained
DC problem (5.3). Employing a standard necessary optimality condition for unconstrained
DC programs (see, e.g., [8, 19]), we get the inclusion

∂θ(x̄) ⊂ ∂
(
ϑ + δ(·; Ξ)

)
(x̄). (5.6)

The subdifferential sum rule (3.13) from Corollary 3.3 ensures, under the CQC qualification
condition, the equality representation for ∂(ϑ+δ(·; Ξ))(x̄). Combining the latter with (5.6),
we arrive at (5.5) and complete the proof of the theorem. 4

Finally in this section, consider a particular case of the DC problem (1.1) with θ(x) ≡ 0
when (1.1) reduces to the convex program involving infinite constraints:{

minimize ϑ(x) subject to
ϑt(x) ≤ 0, t ∈ T, and x ∈ Θ.

(5.7)

In this case, the necessary condition (5.5) for local minimizers in Theorem 5.2 reads as

0 ∈ ∂ϑ(x̄) +
∑

t∈supp λ

λt∂ϑt(x̄) + N(x̄; Θ). (5.8)

The next result, which extends the recent one from [13, Theorem 3.5] obtained in Banach
spaces, shows that condition (5.8) is necessary and sufficient for global solutions to the
convex infinite program (5.7).
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Theorem 5.3 (necessary and sufficient optimality conditions for convex infinite
programs). Let the qualification condition CQC hold for the convex program (5.7). Then
x̄ ∈ Ξ ∩ dom ϑ is a (global) solution to (5.7) if and only if there is λ ∈ A(x̄) such that
inclusion (5.8) is satisfied.

Proof. The necessity of (5.8) for the global optimality of x̄ in (5.7) follows immediately from
Theorem 5.2 with θ(x) ≡ 0. Let us prove the sufficiency of (5.8) for the global optimality of
x̄ in the convex program (5.7). To proceed, we suppose that (5.8) holds with some λ ∈ A(x̄)
and so find u ∈ X∗ such that −u ∈ N(x̄; Θ) and

u ∈ ∂ϑ(x̄) +
∑

t∈supp λ

λt∂ϑt(x̄) ⊂ ∂
(
ϑ +

∑
t∈supp λ

λtϑt

)
(x̄).

By the subgradient definition (2.5) as ε = 0 the latter implies that

ϑ(x) +
∑

t∈supp λ

λtϑt(x) ≥ ϑ(x̄) +
∑

t∈supp λ

λtϑt(x̄) + 〈u, x− x̄〉, x ∈ X.

Taking into account that ϑt(x̄) = 0 for all t ∈ suppλ and that −u ∈ N(x̄; Θ), we get

ϑ(x) +
∑

t∈supp λ

λtϑt(x)− ϑ(x̄) ≥ 〈u, x− x̄〉 ≥ 0 whenever x ∈ Θ. (5.9)

Furthermore, if x ∈ Ξ satisfies all the constraints in (5.7), then (5.9) gives

ϑ(x) ≥ ϑ(x) +
∑

t∈supp λ

λtϑt(x) ≥ ϑ(x̄),

which means that x̄ is an optimal solution to (5.7). 4

6 DC Programs with Cone Constraints

In this section we discuss a remarkable class of cone-constrained DC programs, which are
of significant interest for optimization theory and its applications and can be reduced to
the general class of DC infinite programs of type (1.1). In this way we present certain
specifications for the case of cone-constrained programs of some results for general DC
infinite problems obtained in the previous sections, which will be applied in Sections 7 and
8 to DC programs with more particular forms of cone constraints.

The cone-constrained DC programs under consideration are written generally as:{
minimize ϑ(x)− θ(x) subject to
f(x) ∈ −S ⊂ Y and x ∈ Θ ⊂ X,

(6.1)

where ϑ, θ, Θ satisfy the standing assumptions of Section 1, X and Y are locally convex
Hausdorff topological vector spaces, S is a closed convex cone in Y , and f : X → Y is a
continuous S-convex mapping in the sense that

f
(
νx1 + (1− ν)x2

)
− νf(x1)− (1− ν)f(x2) ∈ −S for all x1, x2 ∈ X and ν ∈ [0, 1].
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The feasible set in the cone-constrained DC problem (6.1) is denoted by

Ξ̂ :=
{
x ∈ X

∣∣ f(x) ∈ −S, x ∈ Θ
}
. (6.2)

Observe that f(x) ∈ −S if and only if

ϑλ(x) := λf(x) ≤ 0 whenever λ ∈ S+, (6.3)

where S+ stands for the positive dual cone to S defined by

S+ :=
{
λ ∈ Y ∗∣∣ λs ≥ 0 for all s ∈ S

}
(6.4)

with the simplified notation for the inner product λs := 〈λ, s〉 in (6.3), (6.4), and in what
follows. Thus the cone-constrained problem (6.1) can be equivalently rewritten as:{

minimize ϑ(x)− θ(x) subject to
ϑλ(x) ≤ 0, λ ∈ S+, and x ∈ Θ,

(6.5)

which is obviously a special case of the underlying DC infinite program (1.1).

The CQC qualification condition from Definition 3.1 reads in case (6.5) as

epiϑ∗ +
⋃

λ∈S+

epi (λf)∗ + epi δ∗(·; Θ) is weak∗ closed in X∗ × IR (6.6)

while the Farkas-Minkowski constraint qualification reduces to⋃
λ∈S+

epi (λf)∗ + epi δ∗(·; Θ) is weak∗ closed X∗ × IR, (6.7)

where the set
⋃

λ∈S+ epi (λf)∗ in (6.6) and (6.7) is a closed and convex cone [20].
The FM condition (6.7) for the cone-constrained systems in (6.1) has been first intro-

duced in [21] under the name of the CCCQ condition and then was rediscovered in [1]. It was
further used in many publications; see, e.g., [2, 10, 11, 12] and the references therein. The
CQC qualification condition (6.6) seems to be new for the DC and convex cone-constrained
problems under consideration.

The next proposition taken from [21] gives sufficient conditions of the primal type en-
suring the fulfillment of the FM qualification condition (3.3) and therefore our major CQC
property for the cone-constrained programs (6.1) due to Proposition 4.1.

Proposition 6.1 (primal sufficient conditions for the FM constraint qualification
in cone-constrained programming). The FM constraint qualification (6.7) holds for
the cone-constrained program (6.1) provided that one of the following primal qualification
conditions is satisfied:

(CQ1) 0 ∈ icr
(
f(Θ) + S

)
and the affine hull aff

(
f(Θ) + S

)
is a closed subspace of X.

(CQ2) 0 ∈ sqri
(
f(Θ) + S

)
.

(CQ3) 0 ∈ core
(
f(Θ) + S

)
.

(CQ4) There is x0 ∈ Θ such that −f(x0) ∈ intS.
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We can see that the primal qualification conditions (CQ1)—(CQ4) are of Slater, or
of (generalized) interiority, type; cf. Definition 4.4 in a different setting of semi-infinite
programming. In [21], the reader can find detailed discussions on these qualification condi-
tions and their relations with dual-type constraint qualifications. In particular, it is shown
therein that the FM constraint qualification (6.7) is strictly weaker (less restrictive) than
the primal-type conditions (CQ1)–(CQ4) for the cone-constrained problems.

As an immediate consequence of Proposition 4.1 and Proposition 6.1 we get the following
sufficient conditions ensuring the CQC property in the DC cone-constrained programs (6.1).

Corollary 6.2 (sufficient conditions for the CQC property in cone-constrained
programs). Suppose in the framework of (6.1) that one of the qualification conditions
(CQ1)–(CQ4) is satisfied and that either assumption (A1) or assumption (A2) from Propo-
sition 4.1 holds with the replacement of Ξ by the feasible set Ξ̂ to (6.1) defined in (6.2).
Then we have the CQC property (6.6) in the cone-constrained problem (6.1).

Note that for the cone-constrained DC program (6.1) the characterizations of the CQC
property given in Theorem 3.2 reduce to the ones recently obtained in [11, Theorem 3.1].
Let us now establish a counterpart of the sum rule (3.13) from Corollary 3.3 in the case of
cone constraints in problem (6.1).

Proposition 6.3 (subdifferential sum rule for cone-constrained systems). Let the
CQC qualification condition (6.6) hold for the cone-constrained problem (6.1). Then the
subdifferential sum rule (3.13) in the specified setting of (6.5) is equivalent to

∂
(
ϑ + δ(·; Ξ̂)

)
(x̄) = ∂ϑ(x̄) +

⋃
λ∈Λ(x̄)

∂(λf)(x̄) + N(x̄; Θ), (6.8)

where Λ(x̄) := {λ ∈ S+| λf(x̄) = 0}.

Proof. First observe that in the cone-constrained setting of (6.5) the right-hand side of the
subdifferential rule (3.13) becomes

∂ϑ(x̄) +
⋃

γ∈ bA(x̄)

{ ∑
λ∈supp γ

γλ∂ϑλ(x̄)
}

+ N(x̄; Θ), (6.9)

where the set of active constraint multipliers (3.12) equivalently reduces to

Â(x̄) :=
{
γ = (γλ) ∈ ĨRS

+

∣∣ γλϑλ(x̄) = 0 for all λ ∈ supp γ
}
. (6.10)

For each γ ∈ Â(x̄) in (6.10) denote

λ̃ :=
∑

λ∈supp γ

γλλ

and notice that λ̃ ∈ S+, since S+ is a cone. Taking the notation in (6.3) into account, we
have therefore the equalities

λ̃f(x̄) =
∑

λ∈supp γ

γλ

(
λf

)
(x̄) =

∑
λ∈supp γ

γλϑλ(x̄) = 0, (6.11)
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which imply that λ̃ ∈ Λ(x̄) for the multiplier set defined in the proposition. It follows from
the continuity of the function (λf)(x) for all λ ∈ supp γ that∑

λ∈supp γ

γλ∂ϑλ(x̄) =
∑

λ∈supp γ

γλ∂
(
λf

)
(x̄) = ∂

(
λ̃f

)
(x̄). (6.12)

Combining finally (6.11) and (6.12), we get

∂ϑ(x̄) +
⋃

γ∈ bA(x̄)

{ ∑
λ∈supp γ

γλ∂ϑλ(x̄)
}

+ N(x̄; Θ) ⊂ ∂ϑ(x̄) +
⋃

λ∈Λ(x̄)

∂
(
λf

)
(x̄) + N(x̄; Θ),

while the opposite inclusion is obvious. This completes the proof of the proposition. 4
Let us finally present specified versions of optimality conditions from Section 5 in the case

of cone-constrained programs (6.1). Using the above arguments, we similarly justify that
the results of Theorem 5.1 and Theorem 5.2 can be combined in the following proposition
established recently in [11, Theorem 6.1].

Proposition 6.4 (optimality conditions for DC cone-constrained programs). As-
sume that the CQC property (6.6) holds for the cone-constrained program (6.1). Then
x̄ ∈ Ξ̂ ∩ dom ϑ is a global solution to (6.1) if and only if for each ε ≥ 0 and x∗ ∈ ∂εθ(x̄)
there exist λ ∈ S+ and ε1, ε2, ε3 ≥ 0 satisfying the conditions

ε1 + ε2 + ε3 = ε + λf(x̄) and

x∗ ∈ ∂ε1ϑ(x̄) + ∂ε2(λf)(x̄) + Nε3(x̄; Θ).

If furthermore x̄ ∈ Ξ̂ ∩ dom ϑ is a local solution to (6.1), then for each x∗ ∈ ∂θ(x̄) there
exists λ ∈ S+ such that

x∗ ∈ ∂ϑ(x̄) + ∂
(
λf

)
(x̄) + N(x̄; Θ) and λf(x̄) = 0.

Observe that for convex programs with cone constraints, i.e., for problems in form (6.1)
with θ(x) ≡ 0, the last condition of Proposition 6.4 reduces to the familiar Karush-Kuhn-
Tucker form: there is λ ∈ S+ such that

0 ∈ ∂ϑ(x̄) + ∂
(
λf

)
(x̄) + N(x̄; Θ), λf(x̄) = 0,

which is necessary and sufficient for the global optimality in this problem; cf. Theorem 5.3.

7 DC Infinite Programs under Polyhedrality

This section is devoted to studying a special class of DC infinite programs, where the
“minus” term θ in the objective of (1.1) is described by a function of the polyhedral convex
type. For simplicity we restrict ourselves to the case of cone-constrained polyhedral DC
problems, i.e., DC programs of the afore-mentioned polyhedral type with constraints written
in the form of (6.1). The results obtained can be easily extended to polyhedral DC programs
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with general infinite convex constraints as in (1.1). Let us first recall the definition of
polyhedral convex functions; see, e.g., [18, 28].

A real-valued function θ : X → IR is polyhedral convex, or piecewise affine convex, if it
can be represented in the form

θ(x) = max
i∈I

{
〈a∗i , x〉+ bi

}
, x ∈ X, (7.1)

where I = {1, 2, . . . , n}, n ∈ IN with a∗1, a
∗
2, . . . , a

∗
n ∈ X∗ and b1, . . . , bn ∈ IR. Every

polyhedral convex function is obviously convex and continuous on X.

Thus the polyhedral DC cone-constrained program under consideration in this section is
formulated as follows:{

minimize ϑ(x)−max
i∈I

{
〈a∗i , x〉+ bi

}
subject to

f(x) ∈ −S ⊂ Y and x ∈ Θ ⊂ X,
(7.2)

where ϑ, f , S, X, Y are the same as in Section 6, while the “minus” function in the objective
of (7.2) is given in the polyhedral form (7.1). We keep the notation Ξ̂ = f−1(−S) ∩ Θ for
the feasible set (6.2) in (7.2) and denote further

θi(x) := 〈a∗i , x〉+ bi and I(x) :=
{
i ∈ I

∣∣ θi(x) = θ(x)
}
, x ∈ X. (7.3)

The following main result of this section gives necessary and sufficient conditions for
global solutions to the polyhedral DC programs (7.2).

Theorem 7.1 (necessary and sufficient conditions for global optimality in poly-
hedral DC programs problem). Let the CQC qualification condition (6.6) hold in prob-
lem (7.2). Then x̄ ∈ Ξ̂ ∩ dom ϑ is a global solution to (7.2) if and only if for each i ∈ I

there exist multiplier λi ∈ S+ and numbers µi, νi, ρi ≥ 0 such that

µi + νi + ρi = λif(x̄) + θ(x̄)− θi(x̄) and (7.4)

a∗i ∈ ∂µif(x̄) + ∂νi

(
λif

)
(x̄) + Nρi(x̄; Θ), (7.5)

where the polyhedral functions θ(x) and θi(x) are defined in (7.1) and (7.3), respectively.

Proof. Let us first prove the necessity part. If x̄ ∈ Ξ̂ ∩ dom ϑ is a global solution to (7.2),
then for each i ∈ I we have

θ(x)− θ(x̄) ≥ θi(x)− θ(x̄) ≥ 〈a∗i , x〉+ bi − θ(x̄)
≥ 〈a∗i , x− x̄〉+ 〈a∗i , x̄〉+ bi − θ(x̄)
≥ 〈a∗i , x− x̄〉+ θi(x̄)− θ(x̄),

which imply that a∗i ∈ ∂εiθ(x̄) with εi := θ(x̄)−θi(x̄) ≥ 0. It follows from Proposition 6.4 by
the assumed CQC qualification condition in (7.2) that there are λi ∈ S+ and µi, ηi, ρi ≥ 0
satisfying the necessary optimality conditions (7.4) and (7.5). .

To justify next the sufficiency part of the theorem, for each i ∈ I we take λi ∈ S+ and
µi, νi, ρi ≥ 0 satisfying conditions (7.4) and (7.5). Denoting

αi := µi + νi + ρi = λif(x̄) + θ(x̄)− θi(x̄), i ∈ I, (7.6)

20



we thus have the inclusion

∂µiϑ(x̄) + ∂νi

(
λif

)
(x̄) + Nρi(x̄; Θ) ⊂ ∂αi

(
ϑ + λif + δ(·; Θ)

)
(x̄),

which yields by definition (2.3) of the approximate subdifferentials that

ϑ(x) + λif(x)− ϑ(x̄)− λif(x̄) ≥ 〈a∗i , x− x̄〉 − αi whenever x ∈ Θ.

Since λif(x) ≤ 0 for each x ∈ Ξ̂, the latter inequality implies that

ϑ(x) ≥ 〈a∗i , x− x̄〉+ ϑ(x̄)− αi + λif(x̄) = 〈a∗i , x− x̄〉+ ϑ(x̄)− θ(x̄) + θi(x̄)
≥ 〈a∗i , x− x̄〉+ 〈a∗i , x̄〉+ bi + ϑ(x̄)− θ(x̄)
≥ 〈a∗i , x〉+ bi + ϑ(x̄)− θ(x̄) = θi(x) + ϑ(x̄)− θ(x̄)

and therefore ϑ(x)− θi(x) ≥ ϑ(x̄)− θ(x̄) for all i ∈ I and x ∈ Ξ̂. Hence we conclude that

ϑ(x)− θ(x) = ϑ(x)−max
i∈I

θi(x) ≥ ϑ(x̄)− θ(x̄) for all x ∈ Ξ̂,

which justifies the optimality of x̄ in (7.2) and completes the proof of the theorem. 4
It is not hard to observe that the necessary optimality conditions of Theorem 7.1 can

be equivalently formulated in somewhat different and more convenient form involving the
active index set I(x̄) from (7.3).

Theorem 7.1’ (equivalent necessary and sufficient conditions for global optimal-
ity in polyhedral DC problems). Let the CQC qualification condition (6.6) be satisfied
in (7.2). Then x̄ is a global solution to (7.2) if and only if the following statements hold:

(i) For any i ∈ I(x̄) there is λi ∈ S+ such that

a∗i ∈ ∂ϑ(x̄) + ∂
(
λif

)
(x̄) + N(x̄; Θ) and λif(x̄) = 0. (7.7)

(ii) For any i ∈ I \ I(x̄) there is λi ∈ S+ such that

a∗i ∈
⋃

µi,νi,ρi≥0, µi+νi+ρi=αi

{
∂µiϑ(x̄) + ∂νi

(
λif

)
(x̄) + Nρi(x̄; Θ)

}
, (7.8)

where the numbers αi ≥ 0 are defined in (7.6).

Proof. Observe that for i ∈ I(x̄) conditions (7.4) and (7.5) of Theorem 7.1 reduce to (7.7).
Indeed, for such indices i we get from (7.3) and (7.4) that

0 ≤ µi + νi + ρi = λif(x̄) + θ(x̄)− θi(x̄) = λif(x̄) ≤ 0,

and thus λif(x̄) = 0 with µi = νi = ρi = 0. Condition (7.8) in (ii) clearly reduces to (7.5)
by the definition of αi in (7.6). 4

The next theorem provides a necessary and sufficient condition for local optimality in
the polyhedral DC program (7.2). This result is a polyhedral counterpart of Theorem 5.2
obtained in the general infinite DC setting. In contrast to Theorem 5.2, we now get the
condition that is not only necessary but also sufficient for local optimality in polyhedral DC
(generally nonconvex) cone-constrained programs.
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Theorem 7.2 (qualified necessary and sufficient condition for local optimality in
polyhedral DC cone-constrained programming). Let the CQC qualification condition
(6.6) hold in the polyhedral DC program (7.2). Then x̄ ∈ Ξ̂∩ dom ϑ is a local minimizer for
this problem if and only if we have the inclusion

co
{
a∗i

∣∣ i ∈ I(x̄)} ⊂ ∂ϑ(x̄) +
⋃

λ∈Λ(x̄)

∂
(
λf

)
(x̄) + N(x̄; Θ), (7.9)

where the multiplier set Λ(x̄) is defined in Proposition 6.3.

Proof. As usual we rewrite the constrained problem (7.2) in the equivalent unconstrained
form involving the infinite penalty:

minimize
(
ϑ + δ(·; Ξ̂)

)
(x)− θ(x), x ∈ X, (7.10)

where θ(x) is a polyhedral convex function of type (7.1). Applying now a delicate polyhedral
result obtain in [29] (see also [18, Theorem 4.1]), we conclude that x̄ is a local minimizer
for problem (7.10) if and only if the inclusion

∂θ(x̄) ⊂ ∂
(
ϑ + δ(·; Ξ̂)

)
(x̄) (7.11)

is satisfied. It is easy to compute the classical subdifferential of the polyhedral convex
function θ(x) given in (7.1) by

∂θ(x̄) = co
{
a∗i

∣∣ i ∈ I(x̄)
}
. (7.12)

Furthermore, by the calculus rule of Proposition 6.3 we have

∂
(
ϑ + δ(·; Ξ̂)

)
(x̄) = ∂ϑ(x̄) +

⋃
λ∈Λ(x̄)

∂
(
λf

)
(x̄) + N(x̄; Θ). (7.13)

Substituting finally equalities (7.12) and (7.13) into the unconstrained optimality criterion
(7.11), we conclude that inclusion (7.9) provides a necessary and sufficient condition for
local optimality in the constrained polyhedral DC program (7.2). 4

8 DC Programs with Positive Semi-Definite Constraints

The final section of the paper is devoted to some specifications of the major optimality con-
ditions obtained above in the general case of DC infinite programs for a remarkable class of
the so-called DC programs with positive semi-definite constraints, which are highly impor-
tant in optimization theory and its applications. We refer the reader to the fundamental
books [3, 4], where convex models of this type are studied in detailed and applied to various
practical problems. To the best of our knowledge, DC programs with positive semi-definite
constraints have nor received much attention in the literature. The results obtained below
in finite-dimensional spaces extend those established in [22, 23] for convex programs with
positive semi-definite constraints. Note also that, in addition to semi-definite constraints
as in [3, 4, 22, 23], we impose convex set/geometric constraints on the decision variables.
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The basic problem under consideration in this section is formulated as follows:
minimize ϑ(x)− θ(x) subject to

x ∈ Θ ⊂ IRn, F0 +
m∑

i=1

xiFi � 0,
(8.1)

where ϑ, θ, and Θ satisfy the standing assumptions of Section 1 while Fi as i = 0, . . . ,m

belong to the space Sn of symmetric (n×n)-matrices. The symbol � signifies in this section
the Löwer partial order on Sn defined as follows:

M � P for M,P ∈ Sn ⇐⇒ M − P is positive semi-definite.

Recall that Sn is considered as a vector space with the trace inner product defined by

〈M,P 〉 := Tr[MP ], where Tr[·] is the trace operation.

Let S = {M ∈ Sn| M � 0} be the closed convex cone of all positive semi-definite
(n × n)-matrices. Then S+ = S and M ∈ S if and only if Tr[ZM ] ≥ 0 for all Z ∈ S.
Further, for each x ∈ IRm and Z ∈ Sn denote

F (x) := F0 +
m∑

i=1

xiFi, F̂ (x) :=
m∑

i=1

xiFi, and F̂ ∗(Z) :=
(
Tr[ZF1], . . . , T r[ZFm]

)
. (8.2)

Then the DC problem with positive semi-definite constraints (8.1) can be equivalently
rewritten as the DC cone-constrained program of type (6.1):{

minimize ϑ(x)− θ(x) subject to
x ∈ Θ ⊂ IRn and − F (x) ∈ −S.

(8.3)

Observe that for all Z ∈ S and u ∈ IRm we have

(−ZF )∗(u) = sup
x∈IRm

{
〈u, x〉+ 〈Z,F (x)〉

}
= sup

x∈IRm

{
〈u, x〉+

m∑
i=1

xiTr[ZFi] + Tr[ZF0]
}

= Tr[ZF0] + sup
x∈IRm

〈u + F̂ ∗(Z), x〉.

Hence the adjoint operator to (−ZF ) is represented as

(−ZF )∗(u) =

{
Tr[ZF0] if u = −F̂ ∗(Z),
∞ otherwise.

Consequently, for all Z ∈ S and x ∈ IRm we get the representations

∂(−ZF )(x) = −F̂ ∗(Z), epi (−ZF )∗ =
(
− F̂ ∗(Z),Tr[ZF0]

)
+ {0} × IR+. (8.4)

It follows from (8.4) that the cone K in (3.1) corresponding to the constraint system

σ̂ :=
{
x ∈ Θ,−F (x) ∈ −S

}
(8.5)
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in problem (8.3) is represented via the initial data of this problem as

K =
⋃

Z∈S, r≥0

(
− F̂ ∗(Z),Tr[ZF0] + r

)
+ epi δ∗(·; Θ).

Thus the Farkas-Minkowski (FM) qualification condition (3.3) for the constraint system σ̂

in (8.5) reads as follows:

the set
⋃

Z∈S, r≥0

(
− F̂ ∗(Z),Tr[ZF0] + r

)
+ epi δ∗(·; Θ) is closed in IRm+1. (8.6)

For the case of Θ = IRm it reduces to the one introduced in [31] and then used in [22]. The
set-constrained extension (8.6) first appeared and employed in [23].

The following theorem establishes necessary and sufficient conditions for global opti-
mality in the DC problem with positive semi-definite constraints (8.1). It can be consid-
ered as a specification of Theorem 5.1 and Propositions 6.4 in the case of program (8.1)
written in the equivalent cone-constrained form (8.3). As in Proposition 6.4, denote by
Ξ̂ := {x ∈ Θ| − F (x) ∈ −S} the set of feasible solutions to problem (8.3).

Theorem 8.1 (necessary and sufficient conditions for global optimality in DC
programs with positive semi-definite constraints). Assume that the Farkas-Minkowski
qualification condition (8.6) holds for the constraint system (8.5) in problem (8.1) and the
“plus” function ϑ in the objective is continuous at some point from Ξ̂ . Then x̄ ∈ Ξ̂∩dom ϑ

is a global solution to (8.1) if and only if for each ε ≥ 0 and each x∗ ∈ ∂εθ(x̄) there exist
Z ∈ S and ε1, ε2 ≥ 0 such that

ε1 + ε2 = ε− Tr[ZF (x̄)] and (8.7)

x∗ + F̂ ∗(Z) ∈ ∂ε1ϑ(x̄) + Nε2(x̄; Θ). (8.8)

In particular, if x̄ ∈ Ξ̂ ∩ dom ϑ is a local solution to (8.1), then for each subgradient x∗ ∈
∂θ(x̄) there exists Z ∈ S such that

x∗ + F̂ ∗(Z) ∈ ∂ϑ(x̄) + N(x̄; Θ) and Tr[ZF (x̄)] = 0. (8.9)

Proof. Since the Farkas-Minkowski constraint qualification (8.6) is satisfied and ϑ is as-
sumed to be continuous at some feasible point, the CQC condition (3.1) holds in (8.3) by
Proposition 4.1. Applying now Proposition 6.4 to (8.3) and taking into account the specific
structure of this problem, we get the following necessary and sufficient conditions for the
global minimizer x̄ under consideration: for each ε ≥ 0 and each x∗ ∈ ∂εθ(x̄) there are
Z ∈ S+ = S and ε′1, ε

′
2, ε

′
3 ≥ 0 such that

ε′1 + ε′2 + ε′3 = ε + 〈Z,−F (x̄)〉 = ε− Tr[ZF (x̄)] and

x∗ ∈ ∂ε′1
ϑ(x̄) + Nε′2

(x̄; Θ) + ∂ε′3
(−ZF )(x̄).
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Note further that ∂ε′3
(−ZF )(x̄) = ∂(−ZF )(x̄) = −F̂ ∗(Z) and ∂ε′1

ϑ(x̄) ⊂ ∂ε′1+ε′3
ϑ(x̄). Thus

setting ε1 := ε′1 + ε′3 and ε2 := ε′2, we get

x∗ ∈ ∂ε1ϑ(x̄) + Nε2(x̄; Θ)− F̂ ∗(Z) and ε1 + ε2 = ε− Tr[ZF (x̄)].

This justifies that the fulfillment of both conditions (8.7) and (8.8) is necessary and sufficient
for the global optimality in (8.1). The necessary conditions in (8.9) follow immediately from
(8.7) and (8.8) as ε = 0. 4

When θ(x) ≡ 0, problem (8.1) reduces to a convex semi-definite program of the form
minimize ϑ(x) subject to

x ∈ Θ ⊂ IRn, F0 +
m∑

i=1

xiFi � 0.
(8.10)

Thus we arrive at the following consequence of Theorem 8.1, which was previously derived
in [22, Corollary 4.1] for convex problems of type (8.10) with no set constraints x ∈ Θ.

Corollary 8.2 (necessary and sufficient optimality conditions for convex pro-
grams with positive semi-definite constraints). Assume that the Farkas-Minkowski
qualification condition (8.6) holds for the constraint system (8.5) in problem (8.10) and that
the cost function ϑ in (8.10) is continuous at some point of the feasible set Ξ̂. Then x̄ ∈ Ξ
is an optimal solution to (8.10) if and only if there exists Z ∈ S such that

F̂ ∗(Z) ∈ ∂ϑ(x̄) + N(x̄; Θ), Tr[ZF (x̄)] = 0. (8.11)

Proof. The necessity of the conditions in (8.11) for the (global ) optimality of x̄ in problem
(8.10) follows immediately from relations (8.9) of Theorem 8.1. The sufficiency part can be
derived from Theorem 5.3 due to the fully convex structure of (8.10). 4

Finally in this section, we present an example of using the necessary and sufficient
optimality conditions obtained in Theorem 8.1 to solve a DC program with positive semi-
definite and geometric constraints of type (8.1) in the case of n = 2 and m = 3.

Example 8.3 (solving a DC program with positive semi-definite and geometric
constraints). Consider the following DC program of type (8.1):

minimize (x2
1 + x2)− x2

2

subject to (x1, x2) ∈ Θ,

 0 x1 0
x1 x2 0
0 0 x1

 � 0,
(8.12)

where Θ := {(x1, x2)| x1 ≤ 0, x2 ≤ 1} is a closed convex subset of IR2.

Let us show, based on the optimality conditions of Theorem 8.1, that x̄ = (0, 0) is an
optimal solution to problem (8.12). To write down problem (8.12) in the framework of (8.1),
put ϑ(x1, x2) := x2

1 + x2, θ(x1, x2) := x2
2, and

F0 =

 0 0 0
0 0 0
0 0 0

 , F1 =

 0 1 0,

1 0 0
0 0 1

 , F2 =

 0 0 0
0 1 0
0 0 0

 .
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Based on the constructions in (8.2), we can prove that the set⋃
Z∈S, r≥0

(
−F̂ ∗(Z),Tr[ZF0] + r

)
+ epi δ∗(·; Θ)

is closed in IR3; see [23, Example 6.1] for more details. Therefore, the Farkas-Minkowski
qualification condition (8.6) holds for the corresponding constraint system σ̂ in (8.5). Fur-
thermore, it is easy to check that for each ε, ε1, ε2 ≥ 0 and each Z ∈ S we have

∂εθ(0, 0) = {0} × [−2
√

ε, 2
√

ε],
∂ε1ϑ(0, 0) = [−2

√
ε1, 2

√
ε1]× {1},

Nε2((0, 0);Θ) = [0,∞)× [0, ε2],
F̂ ∗(Z) = (2λ2 + λ6, λ4),

where Z is a positive semi-definite matrix given by

Z =

 λ1 λ2 λ3

λ2 λ4 λ5

λ3 λ5 λ6

 � 0.

To proceed with checking the optimality conditions of Theorem 8.1, fix ε ≥ 0 and take

(0, a) ∈ ∂εθ(0, 0) = {0} × [−2
√

ε, 2
√

ε].

Observe that for a ≤ 1 we can choose ε1 = 0, ε2 = ε, and

Z =

 0 0 0
0 λ4 0
0 0 0

 � 0

with λ4 := 1− a ≥ 0. Then ε1 + ε2 = ε− Tr[ZF (0, 0)] = ε and

(0, a) + F̂ ∗(Z) ∈ ∂ε1ϑ(0, 0) + Nε2

(
(0, 0);Θ

)
.

Otherwise, for a > 1 choose ε1 = 0, ε2 = ε, Z = O3×3. Then ε1 + ε2 = ε− Tr[ZF (x̄)] and

a ∈ [1, 2
√

ε] ⊂ [1, 1 + ε],

since 1 + ε ≥ 2
√

ε and a ∈ [−2
√

ε, 2
√

ε]. The latter implies that

(0, a) + F̂ ∗(Z) = (0, a) ∈ (0, 1) + [0,∞)× [0, ε] = ∂ε1ϑ(0, 0) + Nε2

(
(0, 0);Θ

)
.

Therefore for each ε ≥ 0 and each (0, a) ∈ ∂εθ(0, 0) there exist Z ∈ S and ε1, ε2 ≥ 0
satisfying the conditions ε1 + ε2 = ε− Tr[ZF (x̄)] and

(0, a) + F̂ ∗(Z) ∈ ∂ε1ϑ(x̄) + Nε2(x̄; Θ),

which justify the global optimality of x̄ = (0, 0) in the DC problem (8.12) with positive
semi-definite and geometric constraints under consideration.
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[1] Boţ, R.I., Wanka, G.: An alternative formulation for a new closed cone constraint
qualification, Nonlinear Anal., 64 1367–1381 (2006)
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