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1 Introduction

An infinite programming problem is an infinite dimensional optimization problem
whose feasible set is described by infinitely many constraints. In this paper we con-
sider the following infinite program:

(P )


Minimize f(x)
subject to ft(x) ≤ 0, t ∈ T,

x ∈ C,

where T is an arbitrary (possibly infinite) index set, the functions f, ft : X → R,
t ∈ T , are locally Lipschitz functions on a Banach space X, and C is a nonempty
closed subset of X.

The reader will find many applications of this problem in different fields such
as Chebyshev approximation, robotics, mathematical physics, engineering design,
optimal control, transportation problems, cooperative games, robust optimization,
etc. There are also significant applications in statistics. A large list of applications
as well as an introduction to the theoretical basis and to the numerical methods can
be found in the recent survey by López and Still (Ref. 1) (see also the numerous
references quoted in this paper). Let us also mention the books (Refs. 2−4), and the
recent references on generalized semi-infinite programming problems (Refs. 5− 7).

The aim of this paper is to present Karush-Kuhn-Tucker type conditions for ε-
optimality without assuming constraint qualification hypothesis and to provide some
corresponding duality results for problem (P ). Characterizing approximate solutions
of an optimization problem is essential because, numerically, only approximate so-
lutions can be obtained. The most common definition of an approximate minimum
of a function f from X to R is that of an ε-minimum, i.e., of a point z such that
f(z) ≤ f(x) + ε for all x ∈ X where ε > 0 is some tolerance. It is clear that this
definition has a global character and is quite well suitable for approximate minima
of a convex function. For nonconvex functions, it is crucial to use local concepts
as the following one: a point z is an ε-quasiminimum of f if z is a local mini-
mum of the function x 7→ f(x) +

√
ε ‖x − z‖. It is very easy to observe that for

such a point z, there exists a ball B around z with radius less than
√
ε such that

f(z) ≤ f(x) + ε for all x ∈ B. When the function f is locally Lipschitz from Rn into
R, an ε-quasiminimum of f satisfies the properties: there exists g ∈ ∂cf(z) such that
‖g‖ ≤

√
ε and f ◦(z; d) ≥ −

√
ε for any normalized direction in Rn. Here ∂cf(z) and

f ◦(z; d) denote the Clarke generalized gradient of f at z and the Clarke generalized
derivative of f at z in the direction d (Ref. 8) (see also Ref. 9 for other properties of
an ε-quasiminimum). Let us observe that the first property is also used as a stopping
criterion in several bundle algorithms (see, e.g., Ref. 10).

When T is infinite and when all the functions f , ft, t ∈ T , are locally Lipschitz
on an Euclidean space, Zheng and Yang (Ref. 11) propose exact optimality conditions
for (P ) based on variational analysis. So, Lagrange multiplier rules are provided in
terms of epi-coderivatives when a Slater-type constraint qualification is satisfied. In
the case of convex constraints, many exact optimality conditions have been proposed
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(see, e.g., Refs. 12− 14 for a convex objective function, and Ref. 15 for a semiconvex
function). These conditions, called Karush-Kuhn-Tucker conditions (KKT conditions
in short), are derived under the main assumption that the system

σ := {ft(x) ≤ 0, t ∈ T, x ∈ C}
is a Farkas Minkowski system. This assumption is a constraint qualification condition
weaker than the well-known Slater’s condition (see, e.g., Ref. 16, Proposition 2.1).

When T is finite, many papers present necessary conditions and saddle-point
characterizations for approximate optimization (see, e.g., Refs. 17 − 22). In the last
three papers the problem is convex and the ε-subdifferential of a convex function is
suitable to obtain the approximate optimality conditions. Indeed, it is well known
that z is an ε-minimum of the convex function f if and only if 0 belongs to the
ε-subdifferential of f at z. In Refs. 17 − 19, the problem is no more convex and
the approximate conditions are obtained thanks to the Ekeland Variational Princi-
ple (Ref. 23). In particular, this principle entails the existence of a pair (x∗, λ∗) that
satisfies approximately the KKT conditions, without assuming any constraint qualifi-
cation hypothesis. In Refs. 18−19, the generalized gradient of Clarke is used while in
Ref. 17, it is the limiting subdifferential of Mordukhovich that is used. Furthermore,
these three papers give characterizations of quasi saddle-points.

The aim of this paper is to generalize the theory of approximate optimality
conditions and the characterization of quasi saddle-points to the case where the set
T is infinite. First we present necessary conditions for approximate solutions under a
Slater-type constraint qualification hypothesis. This is done by applying the calculus
rule giving the generalized gradient of the function F = supt∈T ft with respect to the
generalized gradient of the functions ft. This result allows us to define a generalized
KKT pair up to ε, and to examine the existence and the properties of such KKT
pairs without considering any constraint qualification hypothesis. This is obtained
by applying a result due to Loridan (Ref. 19, Theorem 5.2) to the problem: minimize
f(x) subject to F (x) ≤ 0 and x ∈ C. Afterwards, we particularize our results to
two important examples of infinite programming problems. The first one is the cone-
constrained convex problem where the constraints are of the form: g(x) ∈ −K with
K a closed convex cone. The second one is a particular case of the previous problem.
This is the so-called semi-definite problem and it is a problem whose constraints
require the positive semidefiniteness of a certain matrix.

In the second part of this paper, we extend the ε-Lagrangian functional defined
in Ref. 19 to the case of infinitely many constraints. In particular we prove that under
semiconvexity properties, any generalized KKT pair up to ε is a quasi saddle-point
of the ε-Lagrangian functional, and conversely, that any quasi saddle-point of the
ε-Lagrangian functional gives rise to an approximate solution. These two theorems
generalize two results obtained by Loridan (Ref. 19). To end this paper we introduce
a dual problem associated with the infinite problem (P ), and we study the duality
properties and existing relationships between generalized KKT pairs, quasi saddle-
points, and approximate solutions of the dual problem.

The paper is divided in five sections. After this introduction, a section is devoted
to preliminaries and to calculus rules concerning the Clarke generalized gradient of
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the function F = supt∈T ft. This rule allows us to derive KKT-type conditions for
problem (P ). In Section 3, we define several concepts of approximate solution and
we recall the generalized KKT conditions up to ε introduced by Loridan when T
is finite. In Section 4, we introduce generalized KKT conditions up to ε when T is
infinite and we study their relationships with approximate solutions. We also examine
the particular cases of cone-constrained convex problems and semi-definite problems.
Finally, in Section 5, we extend the ε-Lagrangian duality to the infinite problem (P )
and its Wolfe-type dual (D).

2 Preliminaries

Throughout this paper we assume that X is a Banach space, T is a compact topo-
logical space and f : X → R is a locally Lipschitz function. We also assume that
the constraint functions ft : X → R, t ∈ T , are locally Lipschitz with respect to x
uniformly in t, i.e., that for each x ∈ X, there exists a neighborhood U of x and a
constant K > 0 such that

|ft(u)− ft(v)| ≤ K ‖u− v‖ ∀u, v ∈ U and ∀ t ∈ T.

We also suppose that the function t 7→ ft(x) is upper semicontinuous on T for every
x ∈ X. We also set, for every x ∈ X,

F (x) = max
t∈T

ft(x) and T (x) = {t ∈ T | ft(x) = F (x)}.

It is easy to prove that F is finite and locally Lipschitz on X. Finally let us recall the
following definitions and basic concepts associated with a locally Lipschitz function
g : X → R. First the Clarke generalized directional derivative (Ref. 8) of g at x in
the direction d ∈ X is denoted g◦(x; d) and defined by:

g◦(x; d) = lim sup
h→0
λ↓0

g(x+ h+ λd)− g(x+ h)

λ
.

The Clarke generalized gradient (Ref. 8) of g at x is defined by

∂cg(x) = {x∗ ∈ X∗ | x∗(d) ≤ g◦(x; d) for all d ∈ X},

where X∗ denotes the dual of X. When g is convex, ∂cg(x) coincides with the
subdifferential ∂g(x) in the sense of convex analysis. In the sequel, we will use the
same notation ∂g(x) for g convex and for g locally Lipschitz. The function g is called
quasidifferentiable (Ref. 24) (or regular (Ref. 8)) at x if, for each d ∈ X, the classical
directional derivative g′(x; d) exists and coincides with g◦(x; d).

The generalized gradient of the max-function F (x) = maxt∈T ft(x) is given in the
next theorem which is a non-integral version of Theorem 2 in Ref. 25. Since the proof
is based on a similar theorem but for the subdifferential of a maximum of convex
functions, first we recall this result.

4



Lemma 2.1 Let U be an open set of X, let S be a compact set, let {gs}s∈S be a
family of convex functions on X, and let v0 ∈ U . Let also G = sups∈S gs. Assume
that the function s 7→ gs(v) is upper semicontinuous on S for each v ∈ X and that
the function gs is continuous at v0 for each s ∈ S.
If (i) X is separable or if (ii) the function s 7→ gs(v) is continuous on S for each
v ∈ X, then

∂G(v0) = co {∪ ∂gs(v0) | s ∈ S(v0)} ,

where S(v0) = {s ∈ S | gs(v0) = G(v0)} and co(·) denotes the closed convex hull with
the closure taken in the weak∗ topology of the dual space X∗.

Proof. This result is due to Ioffe and Tihomirov (Ref. 26, Theorem 3, p.201) when
(i) holds, and to Valadier (Ref. 27, Theorem 2.15, p.69) when (ii) holds. 2

Theorem 2.1 If at least one of the following holds:

(a) X is separable; or

(b) T is metrizable and ∂ft(x) is lower semicontinuous (w∗) in t for each x ∈ X,

then, for any x ∈ X and any v ∈ X, F ◦(x; v) ≤ maxt∈T (x) f
◦
t (x; v) and

∂F (x) ⊂ co {∪ ∂ft(x) | t ∈ T (x)} . (1)

Moreover, if the functions ft are quasidifferentiable for every t ∈ T , then F is qua-
sidifferentiable and the equality holds in (1).

Proof. Let x ∈ X. Using the first part of the proof of Theorem 2 in Ref. 25, we
directly obtain the inequality

F ◦(x; v) ≤ max
t∈T (x)

f ◦t (x; v) for all v.

Note that the function t 7→ f ◦t (x; v) is upper semicontinuous and T (x) is compact,
so that the notation “max” is justified. Now let ζ ∈ ∂F (x). The previous inequality
implies

max
t∈T (x)

f̂t(v) ≥ 〈v, ζ〉 for all v,

where f̂t(v) = f ◦t (x; v). Since each f̂t is convex in v and f̂t(0) = 0, we can conclude
that ζ belongs to the subdifferential at 0 of the function G defined for each v, by
G(v) = maxt∈T (x) f̂t(v). On the other hand, for every t, f̂t is continuous at v = 0,

and for every v, the function t 7→ f̂t(v) is upper semicontinuous. So when X is
separable, Lemma 2.1 can be applied to obtain that

∂G(0) = co
{
∪ ∂f̂t(0) | t ∈ S(0)

}
, (2)
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where, for each t, S(0) = {t ∈ T (x) | f̂t(0) = G(0)}. When condition (b) holds, the
function t 7→ f̂t(v) is continuous for every v, and Lemma 2.1 can also be applied to
obtain (2). But this gives the announced result because S(0) = T (x) and ∂f̂t(0) =
∂ft(x). 2

When X is a finite dimensional space, the set {∪ ∂ft(x) | t ∈ T (x)} is compact, and
consequently its convex hull is always closed.

Let D be a nonempty closed subset of X. Then the normal cone to D at x ∈ D
(Ref. 8, p.51) is defined by

ND(x) = {x∗ ∈ X∗ |x∗(v) ≤ 0 for all v ∈ TD(x)},

where TD(x) = {v ∈ X | d◦D(x; v) = 0} denotes the tangent cone to D at x and dD
the distance function to D.

When D is convex, ND(x) coincides with the normal cone in the sense of convex
analysis:

ND(x) := {x∗ ∈ X∗ | x∗(y − x) ≤ 0 for all y ∈ D}.

Next, we also need to recall some optimality conditions for problem (P ). In that
purpose, let

A = {x ∈ C | ft(x) ≤ 0 for all t ∈ T},

where C is a closed subset of X. Then A is closed and (Ref. 8, Corollary p.52),

x local minimum of f over A ⇒ 0 ∈ ∂f(x) +NA(x). (3)

In order to derive KKT conditions, we have to express the normal cone NA(x) in
terms of the generalized gradient of the functions ft and the normal cone to C at x.
More precisely, let F = maxt∈T ft. By Theorem 6 of Ref. 28, we obtain that

NA(x) ⊂ NC(x) + R+ ∂F (x), (4)

provided that the following constraint qualification condition holds when F (x) = 0:

∃ d ∈ TC(x) such that F ◦(x; d) < 0.

From (3), (4) and Theorem 2.1, we easily obtain the following result.

Proposition 2.1 Let x ∈ A and let I(x) = {t ∈ T | ft(x) = 0}. Assume that
the hypotheses of Theorem 2.1 are satisfied. If the following constraint qualification
condition holds:

(U) ∃ d ∈ TC(x) such that ∀ t ∈ I(x) f ◦t (x; d) < 0,

then

x local minimum of (P ) ⇒ 0 ∈ ∂f(x) + R+co {∪ ∂ft(x) | t ∈ I(x)}+NC(x).
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Let us denote by R(T ) the linear space of generalized finite sequences λ = (λt)t∈T
with λt ∈ R for each t ∈ T , and with only finitely many λt different from zero. With
λ = (λt) ∈ R(T ), we associate its supporting set T (λ) := {t ∈ T | λt 6= 0}. We also

denote by R(T )
+ := {λ = (λt) ∈ R(T ) | λt ≥ 0, t ∈ T} the nonnegative cone of R(T ). It

is easy to see that this cone is convex.

In order to simplify the writing, we introduce the following notation:

∑
t∈T

λtzt =

{ ∑
t∈T (λ) λtzt if T (λ) 6= ∅,

0 if T (λ) = ∅,

for λ ∈ R(T ) and {zt}t∈T ⊂ Z, Z being a real linear space.

When X is a finite dimensional space, the subset co {∪ ∂ft(x) | t ∈ I(x)} is closed,
which gives the following optimality condition: if (U) is satisfied and if x is an optimal

solution to (P ), then there exists λ ∈ R(T )
+ such that

0 ∈ ∂f(x) +
∑
t∈T

λt ∂ft(x) +NC(x) and ft(x) = 0 ∀t ∈ T (λ). (5)

When the functions ft, t ∈ T , are convex, condition (U) coincides with the classical
Slater condition: ∃x0 ∈ C such that F (x0) < 0. Recently, another constraint qual-
ification hypothesis weaker than the Slater condition (see Ref. 16, Proposition 2.1)
has been introduced for characterizing the normal cone to A at x ∈ A. However, in
order to facilitate its introduction, let us recall that if g : X → R∪{+∞} is a proper
lower semicontinuous convex function defined on X, then its conjugate function is
the function g∗ : X∗ → R ∪ {+∞} defined for all x∗ ∈ X∗ by

g∗(x∗) = sup{x∗(x)− g(x) | x ∈ dom g},

where dom g denotes the domain of g. The epigraph of g is defined by

epi g = {(x, r) ∈ X × R | x ∈ dom g, g(x) ≤ r},

and the subdifferential of g at x ∈ dom g is defined by

∂g(x) = {x∗ ∈ X∗ | g(y)− g(x) ≥ x∗(y − x) for all y ∈ dom g}.

When the functions ft, t ∈ T , are convex, we associate with the system σ := {ft(x) ≤
0 for all t ∈ T, x ∈ C}, the cone K defined by

K = cone{
⋃
t∈T

epif ∗t }+ epiδ∗C ,

where cone{·} denotes the convex cone generated by the set {·}.

Definition 2.1 (Refs. 12− 14 ). The system σ is a Farkas Minkowski system (“σ is
FM” in short) if the cone K is weak∗ closed.
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When problem (P ) is convex and σ is FM, it follows from Theorem 1 and Theorem

3 of Ref. 13, that x is an optimal solution to (P ) if and only if there exists λ ∈ R(T )
+

such that the optimality condition (5) is satisfied.

Finally in order to obtain sufficient conditions, we have to introduce the following
definition:

Definition 2.2 Let ε > 0 and let A be a closed subset of X. The function g is said
to be ε-semiconvex at x ∈ A with respect to A if:

(a) g is locally Lipschitz at x,

(b) g is quasidifferentiable at x, and

(c) If x+ d ∈ A and g′(x; d) +
√
ε‖d‖ ≥ 0, then g(x+ d) +

√
ε‖d‖ ≥ g(x).

Remark 2.1 Let us mention that a convex function on X is ε-semiconvex with
respect to X for any ε ≥ 0 (Refs. 19, 29). Furthermore, when ε = 0, this concept
coincides with the semiconvexity defined by Mifflin in Ref. 24.

3 Approximate Solutions

First we consider the abstract problem

(P )

{
Minimize f(x)
subject to x ∈ A,

where f : X → R is locally Lipschitz and A is a nonempty closed subset of X.
For this problem we define three kinds of approximate solutions (see Ref. 19):

Definition 3.1 Let ε > 0, a point xε ∈ A is said to be an

(a) ε-solution for (P ) if f(xε) ≤ f(x) + ε for all x ∈ A,

(b) ε-quasisolution for (P ) if f(xε) ≤ f(x) +
√
ε ‖x− xε‖ for all x ∈ A,

(c) regular ε-solution for (P ) if it is an ε-solution and an ε-quasisolution for (P ).

Remark 3.1 If xε is an ε-quasisolution for (P ), then there exists a ball B around xε
with radius equal to

√
ε such that f(xε) ≤ f(x) + ε for all x ∈ B ∩ A. In this case,

we can say that xε is a locally ε-solution for (P ).

In the previous definitions of an approximate solution for (P ), we have imposed
that this solution is feasible. Sometimes this is a too restrictive assumption. Hence,
for every ε > 0, we associate with problem (P ) the problem (Pε) defined by

(Pε)

{
Minimize f(x)
subject to x ∈ Aε,
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where Aε := {x ∈ C | ft(x) ≤
√
ε for all t ∈ T}. The set Aε is nonempty and closed.

The following definition (Ref. 19) will play an important role in the next sections.

Definition 3.2 A point xε ∈ X is said to be an almost regular ε-solution for (P ) if
xε satisfies the following conditions:

(a) xε ∈ Aε,

(b) f(xε) ≤ f(x) + ε for all x ∈ A,

(c) f(xε) ≤ f(x) +
√
ε ‖x− xε‖ for all x ∈ A.

A point xε ∈ X is said to be an almost ε-quasisolution if conditions (a) and (c) hold.

When T is finite, Loridan (Ref. 19) showed the existence of an almost regular
ε-solution for (P ) satisfying generalized KKT conditions up to ε.

Theorem 3.1 (Ref. 19, Theorem 5.2). Let ε > 0 and assume that T = {t1, . . . , tm}
is finite. Then there exist an almost regular ε-solution xε for (P ), and real numbers
λi ≥ 0, i = 1, . . . ,m, such that

(1) λi = 0 if fti(xε) ≤ 0,

(2) λi > 0 for all i ∈ I(ε) = {i | 0 < fti(xε) ≤
√
ε},

(3) 0 ∈ ∂f(xε) +
∑

i∈I(ε) λi∂fti(xε) +NC(xε) +
√
εB∗,

where B∗ denotes the closed unit ball in X∗.

4 Generalized KKT Conditions up to ε

In order to define generalized KKT conditions up to ε when T is infinite, we examine
the necessary optimality conditions associated with an ε-quasisolution.

Theorem 4.1 Let ε ≥ 0 and let xε be an ε-quasisolution for (P ). Assume that all
the assumptions of Theorem 2.1 are satisfied. If the constraint qualification condition
(U) holds and the convex hull of {∪ ∂ft(xε) | t ∈ I(xε)} is weak∗ closed, then there

exists λ ∈ R(T )
+ such that

0 ∈ ∂f(xε)+
∑
t∈T

λt∂ft(xε)+NC(xε)+
√
εB∗ and ft(xε) = 0 for all t ∈ T (λ). (6)
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Proof. It suffices to apply Proposition 2.1 and to observe that

∂
(
f +
√
ε‖ · −xε‖

)
(xε) ⊂ ∂f(xε) +

√
εB∗.

2

In the particular case where the functions ft, t ∈ T , are convex, the constraint
qualification “σ is FM” is sufficient to obtain condition (6).

A more general condition than (6) can be obtained by replacing in this condition,
ft(xε) = 0 by ft(xε) ≥ 0.

Definition 4.1 A pair of vectors (xε, λ) ∈ Aε × R(T )
+ is a generalized KKT pair up

to ε if

0 ∈ ∂ f(xε) +
∑
t∈T

λt ∂ft(xε) +NC(xε) +
√
εB∗ and ft(xε) ≥ 0 for all t ∈ T (λ).

The pair is called strict if ft(xε) > 0 for all t ∈ T (λ), which is equivalent to λt = 0 if
ft(xε) ≤ 0.

This generalized KKT condition being weaker than condition (6), allows us to obtain
the existence of a generalized KKT pair up to ε without assuming a constraint qual-
ification condition. It is the subject of the next theorem which can be considered as
a generalization of Theorem 3.1.

Theorem 4.2 Let ε > 0. Assume that the assumptions of Theorem 2.1 are satisfied,
and that for every x ∈ Aε, the strong closure of the subset co {∪ ∂ft(x) | t ∈ T (x)}
is weak ∗ closed. (In particular, this assumption is satisfied when X is a reflexive

Banach space). Then there exist an almost regular ε-solution xε for (P ) and λ ∈ R(T )
+

such that (xε, λ) is a strict generalized KKT pair up to ε.

Proof. Let us define F (x) = supt∈T ft(x) for all x ∈ X. Then problem (P ) can be
written as

min f(x) subject to F (x) ≤ 0 and x ∈ C.

Applying Theorem 3.1 to this problem, there exist α ≥ 0 and an almost regular
ε/4–solution xε, such that

α = 0 if F (xε) ≤ 0,

α > 0 if 0 < F (xε) ≤
√
ε/4,

0 ∈ ∂ f(xε) + α ∂ F (xε) +NC(xε) +
√
ε/4B∗.

It is obvious that xε is an almost regular ε-solution for (P ).
If α = 0, then F (xε) ≤ 0, and so ft(xε) ≤ 0 for all t ∈ T . Now we have

0 ∈ ∂f(xε) +NC(xε) +
√
ε/4B∗,
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which entails that (xε, 0) ∈ Aε×R(T )
+ is a strict generalized KKT pair up to ε for (P ).

If α > 0, we make the following reasoning. By the second assumption, the equality

∂F (xε) = co {∪ ∂ft(xε) | t ∈ T (xε)}

is also valid when the closure is taken for the strong topology. Then for any h ∈
∂F (xε), there must exist h̄ ∈ co {∪ ∂ft(xε) | t ∈ T (xε)} such that ‖h−h̄‖∗ ≤ α−1

√
ε/4.

(Here ‖ · ‖∗ denotes the dual norm).

Furthermore, by definition of the convex hull, h̄ =
∑

t∈T λ̄t gt where λ̄ ∈ R(T )
+ with

T (λ̄) ⊂ T (xε),
∑

t∈T λ̄t = 1, and gt ∈ ∂ft(xε) for all t ∈ T (λ̄).

Combining the previous results, and starting from

0 ∈ ∂f(xε) + α∂F (xε) +NC(xε) +
√
ε/4B∗,

we deduce the existence of λ̄ ∈ R(T )
+ , with T (λ̄) ⊂ T (xε), and such that

0 ∈ ∂f(xε) +
∑

t∈T αλ̄t ∂ft(xε) +NC(xε) + α(h− h̄) +
√
ε/4B∗

⊂ ∂f(xε) +
∑

t∈T αλ̄t ∂ft(xε) +NC(xε) + 2
√
ε/4B∗.

Setting λ := αλ̄, we can write

0 ∈ ∂f(xε) +
∑
t∈T

λt ∂ft(xε) +NC(xε) +
√
εB∗.

If ft0(xε) ≤ 0, since F (xε) > 0, we can conclude that t0 6∈ T (xε) and, consequently,

that t0 6∈ T (λ̄) = T (λ). In other words, λt0 = 0, and (xε, λ)∈ Aε × R(T )
+ is a strict

generalized KKT pair up to ε for (P ). 2

When the Banach space X is reflexive, it is well known that the weak ∗ topology
coincides with the weak topology on the dual space X∗. So it is very easy to deduce
that the second assumption of Theorem 4.2 is satisfied in that situation.

Theorem 4.2 is a generalization of Theorem 3.1 (due to Loridan) to the case of an
infinite number of locally Lipschitz constraints. The existence of a strict generalized
KKT pair (xε, λ) is obtained satisfying λt = 0 when ft(xε) ≤ 0 and λt > 0 for all t
belonging to a finite subset of {t ∈ T | ft(xε) > 0} (see Theorem 3.1 (1), (2)).

Conversely, we can derive the following sufficient condition for an almost ε-quasi
solution for (P ).

Theorem 4.3 Assume that C is convex and that the functions ft, t ∈ T , are convex.
Let ε ≥ 0 and let (xε, λ) ∈ Aε × R(T )

+ be a generalized KKT pair up to ε. If f is
ε-semiconvex at xε with respect to C, then

f(xε) ≤ f(x) +
√
ε ‖x− xε‖ for all x ∈ C such that ft(x) ≤ ft(xε) ∀t ∈ T (λ).

In particular, xε is an almost ε-quasisolution for (P ).

11



Proof. Let ε ≥ 0, let (xε, λ) ∈ Aε ×R(T )
+ be a generalized KKT pair up to ε, and let

x ∈ C such that ft(x) ≤ ft(xε) for all t ∈ T (λ). Then ft(xε) ≥ 0 for all t ∈ T (λ), and
there exist u ∈ ∂f(xε), ut ∈ ∂ft(xε), t ∈ T (λ), w ∈ NC(xε) and v ∈ B∗ such that

0 = u+
∑
t∈T

λtut + w +
√
ε v. (7)

Furthermore, by definition of ∂ft(xε), NC(xε) and B∗, we have the following proper-
ties for all t ∈ T (λ)

ut(x− xε) ≤ ft(x)− ft(xε) ≤ 0,

w(x− xε) ≤ 0 and v(x− xε) ≤ ‖x− xε‖.

Combining these properties with (7), we obtain

u(x− xε) +
√
ε ‖x− xε‖ ≥ u(x− xε) +

√
ε v(x− xε)

= −
∑
t∈T

λtut(x− xε)− w(x− xε) ≥ 0. (8)

On the other hand, since f is quasidifferentiable at xε, the property u ∈ ∂f(xε)
implies that f ′(xε;x−xε) ≥ u(x−xε) for all x ∈ C. So from (8), we can deduce that

f ′(xε;x− xε) +
√
ε ‖x− xε‖ ≥ 0.

But this implies, by definition of an ε-semiconvex function with respect to C, that

f(xε) ≤ f(x) +
√
ε ‖x− xε‖.

Finally, since A is contained in the set of points x ∈ C such that ft(x) ≤ ft(xε) for
all t ∈ T (λ), the vector xε is also an almost ε-quasisolution for (P ). 2

When ε = 0, an (almost) ε-quasisolution for (P ) is in fact a solution for (P ).
In that case, Theorems 4.1 and 4.3 allow us to find again the optimality results
concerning semiconvex programs presented in Ref. 15, Theorem 5.1.

As a first example of an infinite programming problem of the form (P ), we
consider the following optimization problem

(P1)


Minimize f(x)
subject to g(x) ∈ −K,

x ∈ C,

where f and C are as above, g is a mapping from X into a separated locally convex
topological vector space Y , and K is a closed convex cone in Y . Here we assume that
g is continuous and K-convex in the sense that

g
(
ξx+ (1− ξ)y

)
− ξg(x)− (1− ξ)g(y) ∈ −K

for every x, y ∈ X and every ξ ∈ [0, 1]. Note that, in this case, the feasible set of (P1)
is a closed convex subset of X. When f is convex, problem (P1) has been studied

12



in particular in Refs. 30− 32. We also assume that f is bounded from below on the
feasible set of (P1).

For writing problem (P1) under the form of (P ), we have to use the dual cone of K,
denoted K+ and defined by

K+ := {y ∈ Y ∗ | y(k) ≥ 0 for all k ∈ K}.

This set is weak∗ closed and it is easy to see that

g(x) ∈ −K ⇔ (λg)(x) ≤ 0 for all λ ∈ K+,

where (λg)(x) stands for λ(g(x)). So problem (P1) is equivalent to the infinite pro-
gramming problem

(P2)


Minimize f(x)
subject to (λg)(x) ≤ 0 for all λ ∈ K+,

x ∈ C.

Since λg : X → R is a convex function for all λ ∈ K+, problem (P2) has the same
structure as (P ), and we can apply the previous theory to (P2) to derive results for
(P1). This is the aim of the following propositions. However in order to use Theorem
4.2 for problem (P2) we need to have a compact set of indices, which is not the case
with the cone K+. But it is very easy to see that if Y is a normed space and S∗

denotes the closed unit ball of Y ∗, then the set K+ ∩ S∗ is weak∗ compact and

g(x) ∈ −K ⇔ (λg)(x) ≤ 0 for all λ ∈ K+ ∩ S∗.

So in (P2) we can replace K+ by the weak∗ compact set K+∩S∗. We denote by (P3)
the corresponding problem. Finally we say that xε is an almost regular ε-solution for
(P1) if it is an almost regular ε-solution for (P3), i.e., if for all λ ∈ K+ ∩ S∗ and all
x ∈ C such that g(x) ∈ −K, one has

(λg)(xε) ≤
√
ε, f(xε) ≤ f(x) + ε, and f(xε) ≤ f(x) +

√
ε ‖x− xε‖.

Proposition 4.1 Assume that X is a reflexive Banach space and Y is a normed
space. Let also ε > 0. Then there exist an almost regular ε-solution xε for (P1) and
λ̄ ∈ K+ such that (xε, λ̄) is a strict generalized KKT pair up to ε, i.e.,

0 ∈ ∂ f(xε) + ∂(λ̄g)(xε) +NC(xε) +
√
εB∗ and (λ̄g)(xε) > 0. (9)

Proof. Since K+∩S∗ is weak∗ compact and the mapping λ 7→ (λg)(x) from Y ∗ to R
is weak∗ continuous for each x, it follows from Theorem 4.2 applied to problem (P3),

that there exist an almost regular ε-solution xε for (P3) and a vector µ ∈ R(K+∩S∗)
+

such that (xε, µ) is a strict generalized KKT pair up to ε, i.e.,

0 ∈ ∂f(xε)+
∑
λ∈T

µλ∂(λg)(xε)+NC(xε)+
√
εB∗, (λg)(xε) > 0 for all λ ∈ T (µ), (10)
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where T (µ) := {λ ∈ K+ ∩ S∗ | µλ > 0}.
Furthermore, for each λ ∈ K+, the function λg is continuous and convex. So we have

∑
λ∈T

µλ∂(λg)(xε) = ∂

(∑
λ∈T

µλλ

)
g(xε). (11)

Then λ̄ = (
∑

λ∈T µλλ) is suitable. Indeed λ̄ ∈ K+ because T (µ) is finite and K+ is a
convex cone. Furthermore, since (λ̄g)(xε) ≥ 0, it follows from (10) and (11) that (9)
holds. 2

The next proposition gives sufficient conditions to obtain an ε-quasisolution for
(P1), i.e., a point xε feasible for (P1) and such that for all x feasible for (P1), f(xε) ≤
f(x) +

√
ε ‖x− xε‖. The proof is omitted because it is similar to the one of Theorem

4.3. However, let us note that here we do not have to assume that X is reflexive and
that the index set is compact. So Y can be any separated locally convex topological
vector space.

Proposition 4.2 Let ε ≥ 0 and let (xε, λ̄) ∈ C ×K+ such that g(xε) ∈ −K and

0 ∈ ∂ f(xε) + ∂ (λ̄g) (xε) +NC(xε) +
√
εB∗ and λ̄g(xε) ≥ 0.

If f is quasidifferentiable and ε-semiconvex at xε with respect to C, then xε is an
ε-quasisolution for (P1). 2

These results (Propositions 4.1 and 4.2) are related to Theorem 4.1 of Ref. 31, where
f is convex and ε = 0.

A very important instance of problem (P1) is the following semi-definite pro-
gramming problem:

(SDP )


Minimize f(x)
subject to G(x) � 0,

x ∈ C,
where f : Rn → R is a locally Lipschitz continuous function, C is a nonempty closed
convex subset of Rn and G : Rn → Sp is a continuous mapping. Here Sp denotes the
space of p × p symmetric matrices and the notation A � 0 (A � 0) means that the
matrix A is negative semidefinite (positive semidefinite). We assume that the space
Sp is equipped with the scalar product A •B = trace (AB). In order to establish the
relationship existing between problems (SDP ) and (P1), we note that the constraint
G(x) � 0 is equivalent to G(x) ∈ −K where K = Sp+, the convex cone of positive
semidefinite p×p symmetric matrices, and that the dual cone K+ coincides with Sp+.
With these notations, for any Λ ∈ K+, the function ΛG becomes a function from Rn

to R defined by
(ΛG)(x) = Λ •G(x) ∀x ∈ R.

If the constraint mapping is affine, i.e., G(x) = F0+
∑n

i=1 Fixi where F0, F1, . . . , Fn ∈
Sp are n+ 1 given matrices, then the subdifferential ∂(ΛG)(x) is equal to the vector
(Λ • F ) = (Λ • F1, . . . ,Λ • Fn). In that case Propositions 4.1 and 4.2 become:
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Proposition 4.3 Let ε > 0. Then there exist an almost regular ε-solution xε for
(SDP ) and a matrix Λ̄ ∈ Sp+ such that (xε, Λ̄) is a strict generalized KKT pair up to
ε, i.e.,

0 ∈ ∂ f(xε) + Λ̄ • F +NC(xε) +
√
εB∗, Λ̄ •

[
F0 +

n∑
i=1

Fixε,i

]
≥ 0, (12)

where xε,i, i = 1, · · · , n, denote the components of xε.
Conversely, let xε be feasible for (SDP ) and Λ̄ ∈ Sp+ such that (12) is satisfied.
If f is quasidifferentiable and ε-semiconvex at xε with respect to C, then xε is an
ε-quasisolution for (SDP ).

5 Quasi Saddle-Points and ε-Lagrangian Duality

In this section we associate with Problem (P) the following Lagrangian function:

L(x, λ) = f(x) +
∑
t∈T

λtft(x) for all (x, λ) ∈ X × R(T )
+ .

For every λ ∈ R(T )
+ , the function L(·, λ) is locally Lipschitz on X. For problems (P1)

and (SDP ), the corresponding Lagrangian functions become

L(x, λ) = f(x) + (λg)(x) for all (x, λ) ∈ X ×K+

and
L(x,Λ) = f(x) + Λ •G(x) for all (x,Λ) ∈ Rn × Sp+,

respectively.

When the number of constraints is finite (i.e., when T is finite), Loridan intro-
duced in Ref. 19 an ε-Lagrangian function and the corresponding concept of saddle-
point. Here our aim is to propose an extension of these notions to Problem (P ) with
an infinite number of constraints.

Let ε ≥ 0. The ε-Lagrangian function associated with Problem (P ) is a function

Lε defined on X×R(T )
+ ×X×R(T )

+ by setting for all (x, λ, z, µ) ∈ X×R(T )
+ ×X×R(T )

+

Lε(x, λ, z, µ) = L(x, λ) +
√
ε ‖x− z‖ −

√
ε ‖λ− µ‖1,

where ‖λ− µ‖1 =
∑

t∈T |λt− µt|. The corresponding quasi saddle-point is defined as
follows.

Definition 5.1 The point (x̄, λ̄) ∈ C×R(T )
+ is a quasi saddle-point for the ε-Lagrangian

Lε if

Lε(x̄, λ, x̄, λ̄) ≤ Lε(x̄, λ̄, x̄, λ̄) ≤ Lε(x, λ̄, x̄, λ̄) for all (x, λ) ∈ C × R(T )
+ .

Equivalently:

L(x̄, λ)−
√
ε ‖λ− λ̄‖1 ≤ L(x̄, λ̄) ≤ L(x, λ̄) +

√
ε ‖x− x̄‖ for all (x, λ) ∈ C × R(T )

+ .
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For problem (P1) with Y a normed space, the left-hand side of the previous inequality
can be written as

L(x̄, λ)−
√
ε ‖λ− λ̄‖∗ ≤ L(x̄, λ̄) for all λ ∈ K+,

where the norm ‖·‖∗ is taken in the dual space Y ∗. For problem (SDP ) this inequality
becomes

L(x̄,Λ)−
√
ε ‖Λ− Λ̄‖ ≤ L(x̄, Λ̄) for all Λ ∈ Sp+,

where the norm ‖ · ‖ is taken in the space of symmetric matrices Sp.
In the following two theorems we study the relationships between generalized KKT
pairs and quasi saddle-points for problem (P ). They are extensions of Theorems 6.1
and 6.2 from Ref. 19 to the infinite programming problem (P ). However, in order to
present these results, we need the following lemma.

Lemma 5.1 Let z ∈ C and λ ∈ R(T )
+ . Assume that C is convex, the functions f and

ft, t ∈ T are quasidifferentiable at z and L(·, λ) is ε-semiconvex at z with respect to
C. If the following condition holds

0 ∈ ∂f(z) +
∑
t∈T

λt ∂ft(z) +NC(z) +
√
εB∗,

then L(x, λ) +
√
ε ‖x− z‖ ≥ L(z, λ) for all x ∈ C.

Proof. By assumption there exist u ∈ ∂f(z), ut ∈ ∂ft(z), for all t ∈ T (λ), w ∈ NC(z)
and v ∈ B∗ such that

0 = u+
∑
t∈T

λt ut + w +
√
ε v.

Then for all x ∈ C, we have, f and ft, t ∈ T , being quasidifferentiable at z, and C
being convex, the following properties:

f ′(z ; x− z) = f ◦(z ; x− z) ≥ u(x− z),

f ′t(z ; x− z) = f ◦t (z ; x− z) ≥ ut(x− z) for all t ∈ T (λ),

w(x− z) ≤ 0.

So, for all x ∈ C we obtain that

f ′(z ; x−z)+
∑
t∈T

λtf
′
t(z ; x−z) ≥ (u+

∑
t∈T

λtut+w)(x−z) = −
√
ε v(x−z) ≥ −

√
ε ‖x−z‖,

i.e.,
L(·, λ)′(z ; x− z) ≥ −

√
ε ‖x− z‖ for all x ∈ C.

Since L(·, λ) is ε-semiconvex at z with respect to C, we deduce from the previous
inequality that

L(x, λ) +
√
ε ‖x− z‖ ≥ L(z, λ) for all x ∈ C,

i.e., what we have to prove. 2

16



Theorem 5.1 Let xε ∈ Aε and λ̄ ∈ R(T )
+ such that (xε, λ̄) is a strict generalized KKT

pair up to ε. Then

(a) L(xε, λ̄)− L(xε, λ) ≥ −
√
ε ‖λ̄− λ‖1 for all λ ∈ R(T )

+ ;

(b) If C is convex, if the functions f and ft, t ∈ T , are quasidifferentiable at xε
and if L(·, λ̄) is ε-semiconvex at xε with respect to C, then (xε, λ̄) is a quasi

saddle-point for the ε-Lagrangian Lε on C × R(T )
+ .

Proof. First we prove that for all λ ∈ R(T )
+ , we have (a), i.e.,∑

t∈T

(λ̄t − λt) ft(zε) ≥ −
√
ε
∑
t∈T

|λ̄t − λt|. (13)

Let t ∈ T . If ft(xε) ≤ 0, then by assumption λ̄t = 0 and

(λ̄t − λt) ft(xε) = −λt ft(xε) ≥ 0. (14)

If 0 < ft(xε) ≤
√
ε, then

(λ̄t − λt) ft(xε) ≥ −|λ̄t − λt| ft(xε) ≥ −|λ̄t − λt|
√
ε. (15)

So (13) directly follows from (14) and (15) and the first part is proven.
To prove the second part, Lemma 5.1 is applied with z = xε and λ = λ̄ to give

L(x, λ̄) +
√
ε ‖x− xε‖ ≥ L(xε, λ̄) for all x ∈ C.

But this inequality and the one proven in the first part imply that (zε, λ̄) is a quasi
saddle-point. 2

Since a convex function is quasidifferentiable and ε-semiconvex, the next corollary
is a direct consequence of Theorem 5.1.

Corollary 5.1 If C is convex and if the functions f and ft, t ∈ T , are convex, then
any strict generalized KKT pair up to ε is a quasi saddle-point for the ε-Lagrangian
on C × R(T )

+ .

Conversely we do not obtain that any quasi saddle-point (zε, λ̄) is a generalized
KKT pair because the condition ft(zε) ≥ 0 is not necessarily satisfied for each t ∈
T (λ̄). This fact was already observed by Loridan (Ref. 19) in the case of a finite
number of constraints. However we obtain the following result.

Theorem 5.2 If (xε, λ̄) is a quasi saddle-point for the ε-Lagrangian Lε on C×R(T )
+ ,

then xε satisfies the following statements:

(a) f(xε) ≤ f(x) +
√
ε ‖x− xε‖ for all x ∈ C verifying ft(x) ≤ ft(xε) for all

t ∈ T (λ̄);
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(b) ft(xε) ≤
√
ε for all t ∈ T ;

(c) 0 ∈ ∂f(xε) +
∑

t∈T λ̄t ∂ft(xε) +NC(xε) +
√
εB∗;

(d) λ̄t > 0 implies −
√
ε ≤ ft(xε).

Proof. From the definition of a quasi saddle-point, we have

f(xε) +
∑
t∈T

λ̄tft(xε) ≤ f(x) +
∑
t∈T

λ̄tft(x) +
√
ε ‖x− xε‖ for all x ∈ C.

Hence, for all t ∈ T (λ̄) and for all x ∈ C verifying ft(x) ≤ ft(xε), we obtain (a).
In order to prove (b), let t0 ∈ T (arbitrary) and let us consider the vector λ = (λt)t∈T
defined by

λt0 = 1 + λ̄t0 and λt = λ̄t if t 6= t0.

It is clear that λ ∈ R(T )
+ and t0 ∈ T (λ). Moreover

T (λ) = T (λ̄) if λ̄t0 > 0 and T (λ) = T (λ̄) ∪ {t0} if λ̄t0 = 0.

Since (xε, λ̄) is a quasi saddle-point of Lε, we obtain the following inequality

f(xε) +
∑
t∈T

λtft(xε)−
√
ε
∑
t∈T

|λ̄t − λt| ≤ f(xε) +
∑
t∈T

λ̄tft(xε). (16)

Hence ft0(xε) =
∑

t∈T (λt− λ̄t) ft(xε) ≤
√
ε
∑

t∈T |λt− λ̄t| =
√
ε and (b) is obtained.

In order to prove (c), we consider the second inequality defining the quasi saddle-point
(xε, λ̄)

L(xε, λ̄) ≤ L(x, λ̄) +
√
ε ‖x− xε‖ for all x ∈ C,

which gives rise to the necessary optimality condition

0 ∈ ∂xL(xε, λ̄) +NC(xε) +
√
εB∗,

where ∂xL(xε, λ̄) denotes the generalized gradient of L(·, λ̄) at xε. But this is nothing
else than (c). Finally, to prove (d), assume that λ̄t > 0 for some t ∈ T (λ̄) and consider
a vector λ = (λu)u∈T such that

0 < λt < λ̄t and λu = λ̄u if u 6= t.

Then λ ∈ R(T )
+ and T (λ) = T (λ̄). Hence, it follows from (16) that

λtft(xε)−
√
ε(λ̄t − λt) ≤ λ̄tft(xε),

i.e.,−
√
ε (λ̄t − λt) ≤ (λ̄t − λt) ft(xε). Since λ̄t − λt > 0, we obtain −

√
ε ≤ ft(xε) and

the proof is complete. 2

In the last part of this section we associate with problem (P ) the following dual
problem of Wolfe-type:

(D)


Maximize L(y, λ)
s.t. 0 ∈ ∂f(y) +

∑
t∈T λt ∂ft(y) +NC(y) +

√
εB∗

y ∈ C, λ ∈ R(T )
+ .

First a weak duality result is given in the next proposition.
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Proposition 5.1 Let x and (y, λ) be feasible points for problems (P ) and (D) re-
spectively. If C is convex, if the functions f and ft, t ∈ T are quasidifferentiable at
y and if L(·, λ) is ε-semiconvex on C, then

f(x)− L(y, λ) ≥ −
√
ε ‖x− y‖.

Proof. Applying Lemma 5.1 to the dual feasible point (y, λ), we obtain the following
inequality

L(x, λ)− L(y, λ) ≥ −
√
ε ‖x− y‖ for all x ∈ C. (17)

On the other hand, x being feasible for (P ), we have that

L(x, λ) = f(x) +
∑
t∈T (λ)

λt ft(x) ≤ f(x). (18)

Combining (17) and (18), we deduce the required inequality. 2

Proposition 5.2 Let (xε, λ̄) be a quasi saddle-point for the ε-Lagrangian Lε on C×
R(T )

+ . If C is convex, if the functions f and ft, t ∈ T are quasidifferentiable on C, and

if L(·, λ) is ε-semiconvex on C for each λ ∈ R(T )
+ , then (xε, λ̄) is an ε-quasisolution

for (D).

Proof. First observe that by Theorem 5.2 (c), the pair (xε, λ̄) is feasible for the dual
problem (D). Then let (y, λ) be an arbitrary feasible point for (D). We have to prove
that

L(xε, λ̄) ≥ L(y, λ)−
√
ε ‖xε − y‖ −

√
ε ‖λ̄− λ‖1. (19)

Since y ∈ C, λ ∈ R(T )
+ and 0 ∈ ∂ f(y) +

∑
t∈T (λ) λt ∂ft(y) +NC(y) +

√
εB∗, it follows

from Lemma 5.1 that

L(xε, λ) +
√
ε ‖xε − y‖ ≥ L(y, λ). (20)

On the other hand, by definition of a quasi saddle-point, we have

L(xε, λ̄) ≥ L(xε, λ)−
√
ε ‖λ̄− λ‖1. (21)

Hence, combining (20) and (21), we immediately derive (19). 2

Using Theorem 5.1, we obtain the following corollary.

Corollary 5.2 Let (xε, λ̄) be a strict generalized KKT pair up to ε. If C is convex,
if the functions f and ft, t ∈ T are quasidifferentiable on C and if L(·, λ) is ε-

semiconvex on C for each λ ∈ R(T )
+ , then (xε, λ̄) is an ε-quasisolution for (D).
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