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Abstract. We aim at constructing a steady-state capturing scheme
for the Baer-Nunziato model of two-phase flows. First we trans-
form the system into a new one with only a single source term.
Second, we derive a formulation to compute steady states. This
enables us to define a procedure to construct a scheme which is
capable to maintain steady states. To complete the discretization,
we employ the technique of the Engquist-Osher scheme to the com-
paction dynamics equation.

1. Introduction

We consider in this paper the Baer-Nunziato (BN) model of isen-
tropic two-phase flows. This two-phase mixture model was developed
by Baer and Nunziato to study the deflagration-to-detonation transi-
tion (DDT) in granular explosives. Precisely, the model is described
by a system of four equations characterizing the conservation of mass
in each phase and conservation of momentum when there is exchange
of momentum between the two phases, see ([3, 10, 7]):

∂t(αgρg) + ∂x(αgρgug) = 0,

∂t(αgρgug) + ∂x(αg(ρgu
2
g + pg)) = pg∂xαg,

∂t(αsρs) + ∂x(αsρsus) = 0,

∂t(αsρsus) + ∂x(αs(ρsu
2
s + ps)) = −pg∂xαg,

(1.1)

together with the compaction dynamics equation

∂tαg + us∂xαg = 0. (1.2)

where ρk, uk, pk, αk denote the density, the velocity, the pressure, and
the volume fraction in the k-phase, k = s, g. Obviously, the volume
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fractions satisfy
αs + αg = 1. (1.3)

In the following the g-phase is called the gas phase, the s-phase is
called the solid phase. Each phase has an equation of state of the form

pk = κkρ
γk

k , κk > 0, 1 < γk < 5/3, k = s, g. (1.4)

The system (1.1) is a system of balanced laws with source terms,
where sources appear on the right-hand side of the equations of con-
servation of momentum, i.e., the second and the fourth equations of
(1.1). By supplementing the system (1.1) by the compaction dynamics
equation (1.2), we can rewrite the full system under the nonconservative
form of system of conservation laws. Therefore, formulation of weak so-
lutions, theoretically, can be understood in the sense of nonconservative
product, see Dal Maso, LeFloch and Murat [8]. Construction of weak
solutions of several simple systems of balanced laws with source terms
has been done, see for example [26, 22, 16, 24, 25, 11]. But this is not
always evident and construction of solutions remains open for a broad
class of systems of balanced laws with sources. Practically, source terms
cause lots of inconveniences in approximating physical solutions of the
system. This has been observed even in the case of a single conservation
law, shallow water equations, or in the model of fluid flows in a nozzle
with variable cross-section, see [13, 20, 19, 14, 6, 12, 4, 5, 2, 18, 17, 27],
etc. Thus, the discretization of source terms is important and it has
been addressed by many authors, see [3, 7, 1, 9, 21, 29, 28], and the
references therein. Recently, a well-balanced scheme that can capture
steady states for a one-pressure model of two-phase flows was obtained
in [30].

In this paper we will construct a well-balanced numerical method
to the system (1.1)-(1.2) by considering individually (1.1) and (1.2).
A well-balanced scheme is aimed to be built up for the system (1.1)
so that it deals with the effect of the source terms. Then, a similar
technique to the Engquist-Osher scheme is employed to discretize the
compaction dynamics equation (1.2). Test cases show that our method
can capture steady states resulted by stationary waves, and that ap-
proximate solutions converge.

2. Backgrounds

2.1. Non-strictly hyperbolic system. Let us investigate properties
of the full supplemented system (1.1)-(1.2). For smooth solutions, the
system (1.1)-(1.2) is equivalent to the following system
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∂tρg + ug∂xρg + ρg∂xug = 0,

∂tug + h′g(ρg)∂xρg + ug∂xug = 0,

∂tρs + us∂xρs + ρs∂xus = 0,

∂tus + h′s(ρs)∂xρs + us∂xus +
pg − ps

(1− αg)ρs

∂xαg = 0,

∂tαg + us∂xαg = 0.

(2.1)

where

h′i(ρ) =
p′i(ρ)

ρ
, i = s, g. (2.2)

It is seen from (2.1) that if we choose the independent variable V =
(ρg, ug, ρs, us, αg), we can re-write the system as a system of balanced
laws in nonconservative form as

Vt + A(V )Vx = 0, (2.3)

where

A(V ) =




ug ρg 0 0 0
h′g(ρg) ug 0 0 0

0 0 us ρs 0

0 0 h′s(ρs) us
pg − ps

(1− αg)ρs

0 0 0 0 us




.

The characteristic equation of A(U) is given by

(us − λ)((ug − λ)2 − p′g)((us − λ)2 − p′s) = 0, (2.4)

which admits five roots as

λ1 = ug −
√

p′g < λ2 = ug +
√

p′g,

λ3 = us −
√

p′s < λ4 = us < λ5 = us +
√

p′s.
(2.5)

It is easy to see from (2.5) that the characteristic fields may coincide
and thus the system is not strictly hyperbolic.

2.2. System of a single source term. As observed earlier, source
terms often cause inconvenience for numerical approximations. To re-
duce the size of sources, we add up the two equations of balance of
momentum to get the conservation of momentum of the total in place
of the equation of balance of momentum for the liquid phase. So we
get three sets of equations:

- Governing equations in the gas phase
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∂t(αgρg) + ∂x(αgρgug) = 0,

∂t(αgρgug) + ∂x(αg(ρgu
2
g + pg)) = pg∂xαg,

(2.6)

- ”composite” conservation laws

∂t(αsρs) + ∂x(αsρsus) = 0,

∂t(αsρsus + αgρgug) + ∂x

(
αs(ρsu

2
s + ps) + αg(ρgu

2
g + pg)

)
= 0,

(2.7)

- compaction dynamics equation

∂tαg + us∂xαg = 0. (2.8)

Set the conservative variable

U = (αgρg, αgρgug, αsρs, αgρgug + αsρsus)
T ,

the flux

f(U) = (αgρgug, αg(ρgu
2
g + pg), αsρsus, αs(ρsu

2
s + ps) + αg(ρgu

2
g + pg))

T ,

and the source
S(U) = (0, pg∂xαg, 0, 0)T .

We can see that a unique source appears only in the second component.
Thus, we can rewrite the system (2.6)-(2.7) as a system of conservation
laws with a single source term

∂tU(x, t) + ∂xf(U(x, t)) = S(U(x, t)), x ∈ R, t > 0. (2.9)

In the next section, we will see that the numerical approximation for
the full system (1.1)-(1.2) can be performed as follows: first, we study
and obtain the values of steady states of (2.6), then the values of steady
states of (2.7), second we discretize the system with source (2.9) and
finally we discretize the compaction dynamics equation (2.8).

3. Stationary waves

Let us now investigate the stationary contact waves of the system
(2.9). Motivated by our earlier works ([24, 20]), we look for stationary
waves resulted by source terms. Thus, they are concerned only on the
first two equations of the compressible phase. Stationary waves are just
the limit of stationary smooth solutions of (2.9). A stationary smooth
solution U of (2.9) is a time-independent smooth solution. Therefore,
stationary solutions of (2.9) satisfy the following ordinary differential
equations
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(αgρgug)
′ = 0,

(u2
g

2
+ hg

)′
= 0,

(αsρsus)
′ = 0,

(
αs(ρsu

2
s + ps) + αg(ρgu

2
g + pg)

)′
= 0,

(3.1)

where (.)′ = d/dx and h′i(ρ) = p′i(ρ)/ρ, i = s, g, or

hi(ρ) =
κiγi

γi − 1
ργi−1.

We look for stationary jumps which are limit of smooth solutions of
(3.1). Then (3.1) yields the following result which gives us the way to
compute stationary waves.

Lemma 3.1. The left-hand and right-hand states of a stationary con-
tact satisfy

[αgρgug] = 0,

[u2
g

2
+ hg

]
= 0,

[αsρsus] = 0,[
αs(ρsu

2
s + ps) + αg(ρgu

2
g + pg)

]
= 0,

(3.2)

where [αρu] := α+ρ+u+ − α−ρ−u−, and so on, denotes the difference
of the corresponding value αρu between the right-hand and left-hand
states of the stationary contact.

To simplify the expressions, we omit the subindex ρg, ug, ... in the
gas phase. From Lemma 3.1, we deduce that a stationary wave from
a given state U0 = (α0, ρ0, u0, v0) to some state U = (α, ρ, u, v) must
satisfy the relations on the gas phase

αρu = α0ρ0u0,

u2

2
+ h(ρ) =

u2
0

2
+ h(ρ0).

(3.3)

This leads us to finding roots of the equation

F (U0, ρ, α) := sgn(u0)
(
u2

0 −
2κγ

γ − 1
(ργ−1 − ργ−1

0 )
)1/2

ρ− α0u0ρ0

α
= 0.

(3.4)
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To find zeros of the function F (U0, ρ, α), we observe that it is well-
defined whenever

u2
0 −

2κγ

γ − 1
(ργ−1 − ργ−1

0 ) ≥ 0,

or

ρ ≤ ρ̄(U0) :=
(γ − 1

2κγ
u2

0 + ργ−1
0

) 1
γ−1

.

We have

∂F (U0, ρ; α)

∂ρ
=

u2
0 − 2κγ

γ−1
(ργ−1 − ργ−1

0 )− κγργ−1

(
u2

0 − 2κγ
γ−1

(ργ−1 − ργ−1
0 )

)1/2
.

Assume, for definitiveness, that u0 > 0. The last expression yields

∂F (U0, ρ; α)

∂ρ
> 0, ρ < ρmax(ρ0, u0),

∂F (U0, ρ; α)

∂ρ
< 0, ρ > ρmax(ρ0, u0),

(3.5)

where

ρmax(ρ0, u0) :=
( γ − 1

κγ(γ + 1)
u2

0 +
2

γ + 1
ργ−1

0

) 1
γ−1

.

Since

F (U0, ρ = 0, a) = F (U0, ρ = ρ̄, a) = −α0u0ρ0

α
< 0,

the function ρ 7→ F (U0, ρ; α) admits a root if and only if the maximum
value is non-negative:

F (U0, ρ = ρmax, α) ≥ 0,

or, equivalently,

α ≥ αmin(U0) :=
α0ρ0|u0|

√
κγρ

γ+1
2

max(ρ0, u0)
. (3.6)

Similar argument can be made for u0 < 0.

It will be convenient to set in the (ρ, u)-plan the following sets, re-
ferred to as the “lower region” G1, the “middle region” G2, and the
“upper region” G3, and the ”boundary” C, as

G1 := {(ρ, u) : u < −
√

p′(ρ)},
G2 := {(ρ, u) : |u| <

√
p′(ρ)},

G3 := {(ρ, u) : u >
√

p′(ρ)}.
(3.7)
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The existence of the zeros are followed immediately from (3.5) and
(3.6). We are now at a position to say about the the existence as well
as properties of zeros of the function F (U0, ρ, α).

Lemma 3.2. Given U0 = (α0, ρ0, u0) and 0 ≤ α ≤ 1. The func-
tion F (U0, ρ, α) in (3.5) admits a zero if if and only if a ≥ αmin(U0).
In this case, F (U0, ρ, α) admits two distinct zeros, denoted by ρ =
ϕ1(U0, α), ρ = ϕ2(U0, α) such that

ϕ1(U0, α) ≤ ρmax(U0) ≤ ϕ2(U0, α) (3.8)

the equality in (3.8) holds only if α = αmin(U0).

Lemma 3.3. (a) We have

ρmax(ρ0, u0) < ρ0, (ρ0, u0) ∈ G2,

ρmax(ρ0, u0) > ρ0, (ρ0, u0) ∈ G3 ∪G1,

ρmax(ρ0, u0) = ρ0, (ρ0, u0) ∈ C±.

(3.9)

(b) (ϕ1(U0, α), u) ∈ G1 if u0 < 0, and (ϕ1(U0, α), u) ∈ G3 if u0 > 0;
(ϕ2(U0, α), u) ∈ G2, where u is defined by (3.5). Moreover,

(ρmax(U0, α), u) ∈ C. (3.10)

In addition, we have

(i) If α > α0, then

ϕ1(U0, α) < ρ0 < ϕ2(U0, α). (3.11)

(ii) If α < α0, then

ρ0 < ϕ1(U0, α) for U0 ∈ G1 ∪G3,

ρ0 > ϕ2(U0, α) for U0 ∈ G3.
(3.12)

(c)

αmin(U, α) < α, (ρ, u) ∈ Gi, i = 1, 2, 3,

αmin(U, α) = α, (ρ, u) ∈ C,
αmin(U, α) = 0, ρ = 0 or u = 0.

(3.13)

Proof. Most of the proof was available in [30]. However, for com-
pleteness, we will show the steps. Assume for simplicity that u0 > 0.
Define

g(U0, ρ) = u2
0 −

2κγ

γ − 1
(ργ−1 − ργ−1

0 )− κγργ−1. (3.14)
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Then, a straightforward calculation gives

g(U0, ρmax(U0)) = 0,

which proves (3.10). On the other hand, since

dg(U0, ρ)

dρ
= −(γ + 1)κγργ−2 < 0,

and that ϕ1(U0, α) < ρmax(U0, α) < ϕ2(U0, α) it holds that

g(U0, ϕ1(U0, α)) > g(U0, ρmax(U0)) = 0 > g(U0, ϕ1(U0, α)).

The last two inequalities justify the statement in (b). Moreover,

F (U0, ρ0; α) = ρ0u0(1− α0/α) > 0 iff a > α0,

which proves (3.11), and shows that ρ0 is located outside of the interval
[ϕ1(U0, α), ϕ2(U0, α)] in the opposite case. Since

∂F (U0, ρ0; α)

∂ρ
=

u2
0 − κγργ−1

0

u0

< 0 iff U0 ∈ G2,

which, together with the earlier observation, implies (3.12).
We next check (3.13) for a = α0. It comes from the definition of

αmin(U0) that αmin(U0) < α0 if and only if
√

κγρ∗
γ+1
2 > ρ0|u0|,

that can be equivalently written as

Q(m) :=
2

γ + 1
m− (κγ)

1−γ
γ+1 m

2
γ+1 +

γ − 1

κγ(γ + 1)
> 0,

where m := ργ−1
0 /u2

0. Then, we can see that

Q(1/κγ) = 0, (3.15)

which, in particular shows that the second equation in (3.13) holds,
since (ρ0, u0) ∈ C± for m = 1/κγ. Moreover,

dQ(m)

dm
=

2

γ + 1
(1− (κγm)

1−γ
γ+1 ),

which is positive for m > 1/κγ and negative for m < κγ. This together
with (3.15) establish the first statement in (3.13). The third statement
in (3.13) is straightforward. This completes the proof of Lemma 3.3.

¤

To select a unique stationary wave, we need the following so-called
Monotonicity criterion. The relationships (3.2) also defines a curve
ρ 7→ α = α(U0, ρ). So we require that
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Monotonicity Criterion. The volume fraction α = α(U0, ρ)
must vary monotonically between the two values ρ0 and ρ1, where ρ1 is
the ρ-value of the corresponding state of a stationary wave having U0

as one state.

A similar criterion was used by Kröner, LeLoch, and Thanh [23, 20,
19], Isaacson and Temple [15, 16].

Geometrically, we can choose either ϕ1 or ϕ2 in the domains G1, G2, G3

using the following lemma.

Lemma 3.4. The Monotonicity Criterion is equivalent to saying that
any stationary shock does not cross the boundary C. In other words:

(i) If U0 ∈ G1 ∪ G3, then only the zero ϕ(U0, α) = ϕ1(U0, α) is
selected.

(ii) If U0 ∈ G2, then only the zeros ϕ(U0, α) = ϕ2(U0, α) is selected.

Proof. The second equation of (3.2) determines the u-value as u =
u(ρ). Taking the derivative with respect to ρ in the equation

α2(u(ρ)ρ)2 = (α0u0ρ0)
2,

we get
α(ρ)α′(ρ)(uρ)2 + 2α2(uρ)(u(ρ)′ρ + u(ρ)) = 0. (3.16)

Thus, to prove the lemma, it is sufficient to show that the factor
(u(ρ)′ρ + u(ρ)) remains of a constant sign whenever (ρ, u) remains in
the same domain. Indeed, assume for simplicity that u0 > 0, then

u′(ρ)ρ + u(ρ) =
−κγργ−1

u
+ u

=
u2 − κγργ−1

u
,

which remains of a constant sign as long as (ρ, u) remain in the same
domain. This completes the proof of Lemma ??. ¤

For the solid phase, we set

G(ρ) = κsα
2
sρ

γ+1−(
αs0(ρs0u

2
s0+ps0)−[αg(ρgu

2
g+pg)]

)
αsρ+(αs0ρs0us0)

2.
(3.17)

The value ρs satisfies

G(ρs) = 0. (3.18)

The us value is then given by

us =
αs0ρs0us0

αsρs

. (3.19)
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The function G is convex so finding the root ρ = ρs,± from a given
value of the ρs value in the other side ρs,∓ of stationary waves can be
done using Newton-Raphson method. Since

G(0) = (αs0ρs0us0)
2 ≥ 0, lim

ρ→+∞
G(ρ) = +∞,

the convexity implies that the functions G(ρ) when it has a zero it
will have two zeros. The Newton-Raphson method starting at ρs,±
will converge to the zero ρs,∓, where G is monotone between these two
values. The fact that there are two zeros of G(ρ) means there would be
different choices for stationary waves and that would lead to multiple
approximating solutions. This coincides with what has been known in
systems of balanced laws with source terms when there are probably
multiple solutions, see [24, 25, 11]. We observe that the uniqueness
of solutions and/or criteria to select a unique solution of systems of
balanced laws with sources is still an open question.

4. Construction of the well-balanced scheme

Let us consider the system when sources are reduced to a single term

∂tU(x, t) + ∂xf(U(x, t)) = S(U(x, t)), x ∈ R, t > 0, (4.1)

where the independent variable is given by

U = (αgρg, αgρgug, αsρs, αgρgug + αsρsus)
T ,

the flux functions are given by

f(U) = (αgρgug, αg(ρgu
2
g + pg), αsρsus, αs(ρsu

2
s + ps) + αg(ρgu

2
g + pg))

T ,

and the source is given by

S(U) = (0, pg∂xαg, 0, 0)T .

Given a uniform time step ∆t, and a spacial mesh size ∆x, setting
xj = j∆x, j ∈ Z, and tn = n∆t, n ∈ N, we denote Un

j to be an
approximation of the exact value U(xj, tn).

A C.F.L condition is also required on the mesh sizes:

λ max
U
{|ug|+

√
p′g(ρg), |us|+

√
p′s(ρs)} < 1, λ :=

∆t

∆x
. (4.2)

The well-balanced scheme is defined by
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Un+1
j = Un

j − λ(g(Un
j , Un

j+1,−)− g(Un
j−1,+, Un

j )). (4.3)

for some numerical flux g. The states Un
j+1,−, Un

j−1,+ are defined as
followed. Set

U0 = Un
j+1 =(αn

g,j+1ρ
n
g,j+1, α

n
g,j+1ρ

n
g,j+1u

n
g,j+1, α

n
s,j+1ρ

n
s,j+1,

αn
g,j+1ρ

n
g,j+1u

n
g,j+1 + αn

s,j+1ρ
n
s,j+1u

n
s,j+1)

T
.

Then, we take α = αn
g,j and first compute the corresponding ρ =

ρn
g,j+1,− := ϕ(U0, α) as seen by Lemma 3.4. Second, the value u =

un
g,j+1,− is computed using (3.3). Third, observe that αn

s,j = 1 − αn
g,j,

the value ρn
s,j+1,− is computed using (3.18). Then un

s,j+1,− is given by
(3.19).

Similarly, set

U0 = Un
j−1 =(αn

g,j−1ρ
n
g,j−1, α

n
g,j−1ρ

n
g,j−1u

n
g,j−1, α

n
s,j−1ρ

n
s,j−1,

αn
g,j−1ρ

n
g,j−1u

n
g,j−1 + αn

s,j−1ρ
n
s,j−1u

n
s,j−1)

T .

Then, we take α = αn
j and first compute the corresponding ρ =

ρn
g,j−1+ := ϕ(U0, α) as seen by Lemma 3.4. Second, the value u =

un
g,j−1,+ is computed using (3.3). Third, ρn

s,j−1,+ is computed using
(3.18). Then un

s,j−1,+ is given by (3.19).

To complete the discretization of the whole model, we employ the
technique in the Engquist-Osher scheme to discretize the compaction
dynamics equation (1.2). We first write

u = max{u, 0}+ min{u, 0} = u+ + u−. (4.4)

and then we apply the backward difference scheme for u+ and forward
difference scheme for u−. This can be done as arrive at

αn+1
j = αn

j − λ
(
u+,n

j (αn
j − αn

j−1) + u−,n
j (αn

j+1 − αn
j )

)
. (4.5)

Remark. Observe that we have for stationary solutions

αn
g,j+1ρ

n
g,j+1u

n
g,j+1 = αn

g,jρ
n
g,ju

n
g,j,

(un
g,j+1)

2

2
+ hg(ρ

n
g,j+1) =

(un
g,j)

2

2
+ hg(ρ

n
g,j),

αn
s,j+1ρ

n
s,j+1u

n
s,j+1 = αn

s,jρ
n
s,ju

n
s,j,

αn
s,j+1(ρ

n
s,j+1(u

n
s,j+1)

2 + pn
s,j+1) + αn

g,j+1(ρ
n
g,j+1(u

n
g,j+1)

2 + pn
g,j+1)

= αn
s,j(ρ

n
s,j(u

n
s,j)

2 + pn
s,j) + αn

g,j(ρ
n
g,j(u

n
g,j)

2 + pn
g,j),

(4.6)
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This implies that in the stationary case it holds that

ρn
g,j+1,− = ρn

g,j, un
g,j+1,− = un

g,j,

ρn
g,j−1,+ = ρn

g,j, un
g,j−1,+ = un

g,j,

ρn
s,j+1,− = ρn

s,j, un
s,j+1,− = un

s,j,

ρn
s,j−1,+ = ρn

s,j, un
s,j−1,+ = un

s,j,

(4.7)

so that
Un

j+1,− = Un
j , Un

j−1,+ = Un
j .

This yields
Un+1

j = Un
j . (4.8)

The equation (4.8) means that our scheme captures exactly stationary
waves.

We will present several tests, using the first-order Lax-Friedrich scheme.
The n + 1th time step values of the first variable group U of five com-
ponents is calculated by the Lax-Friedrichs scheme:

Un+1
j =

1

2
(Un

j+1,− + Un
j−1,+)− λ

2
(f(Un

j+1,−)− f(Un
j−1,+)). (4.9)

Test 1. Let us consider the Riemann problem for the system (1.1)
with the Riemann data

(ρg,0(x), ug,0(x), ρs,0, us,0(x), αg,0(x)) =

{
UL, if x < 0
UR, if x > 0,

where

UL = (0.5, 0.3, 1, 0, 0.7),

UR =(0.514866336524944, 0.254920531192354, 1.246397691948884, 0, 0.8).
(4.10)

It is not difficult to check that the solution is a stationary wave of the
form

U(x, t) =

{
UL, if x < 0
UR, if x > 0.

The classical (modified) Lax-Friedrichs gives unsatisfactory result, see
Figure 1; our scheme captures exactly the stationary wave, see Figure
2.

Test 2. Let us consider the Riemann problem for the system (1.1)
with the Riemann data
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Figure 1. Steady states (4.10) by classical scheme

(ρg,0(x), ug,0(x), ρs,0, us,0(x), αg,0(x)) =

{
UL if x < 0
UR if x > 0,

(4.11)

where

UL = (0.2, 0.8, 1, 0.5, 0.5), UR = (0.5, 0.9, 1, 1, 0.8, 0.6). (4.12)

Our results show a monotone sequence of solutions corresponding to
the discretization the interval [−1, 1] into 1000, 2000, 3000 and 4000
points, see Figures 3, 4, 5, 6, and 7.
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16 D. KRÖNER AND M.D. THANH

−0.1 −0.05 0 0.05 0.1 0.15 0.2 0.25 0.3
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

 

 

1000 points
2000 points
3000 points
4000 points

Figure 4. Density of the gas phase of the problem (1.1),
(1.2) and (4.12) by our scheme with increasing numbers
of discretization

[14] J.M. Greenberg, A.Y. Leroux, R. Baraille, and A. Noussair, Analysis and
approximation of conservation laws with source terms. SIAM J. Numer. Anal.,
34:1980–2007, 1997.

[15] E. Isaacson and B. Temple, Nonlinear resonance in systems of conservation
laws, SIAM J. Appl. Math., 52:1260–1278, 1992.

[16] E. Isaacson and B. Temple, Convergence of the 2 × 2 godunov method for
a general resonant nonlinear balance law, SIAM J. Appl. Math., 55:625–640,
1995.

[17] S. Jin and X. Wen, Two interface type numerical methods for computing hy-
perbolic systems with gometrical source terms having concentrations, Preprint.

[18] S. Jin and X. Wen, An efficient method for computing hyperbolic systems with
gometrical source terms having concentrations, J. Comp. Math., 22:230–249,
2004.
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Figure 6. Density of the solid phase of the problem
(1.1), (1.2) and (4.12) by our scheme with increasing
numbers of discretization
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Figure 7. Velocity of the solid phase of the problem
(1.1), (1.2) and (4.12) by our scheme with increasing
numbers of discretization


