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1. INTRODUCTION

In 1929, three well-known Polish mathematicians established in [20] the

famous classical KKM theorem in finite dimensional spaces. Fan [10] ex-

tended this theorem to infinite dimensional spaces. Since then, lots of gener-

alizations and applications have been obtained. In early forms of this funda-

mental result, convexity assumptions played a crucial role and restricted the

ranges of applicable areas. In [16] Horvath, replacing convex hulls by con-

tract subsets, gave a purely topological version of the KKM theorem. Tian

1Department of Mathematics, International University of Hochiminh City, Linh Trung,

Thu Duc, Hochiminh City, Vietnam. Email: pqkhanh@hcmiu.edu.vn
2Department of Mathematics, Information Technology College of Hochiminh City, Hoa

Thanh, Tan Phu, Hochiminh City, Vietnam. Email: nguyenhongquan1978@gmail.com
3Department of Applied Mathematics, Sun Yat-Sen University, Kaohsiung, Taiwan.

Email: yaojc@math.nsysu.edu.tw

1



[30] proved so-called F -KKM theorems. Park and Kim [25-27] introduced

G-convex spaces and developed KKM-type theorems. Ding [4,5] proposed

H-KKM and L-KKM theorems for mappings from a set to an H -space and

L-convex space without linear structures. Other generalizations were also

proved, e.g. G-KKM theorems in [28], R-KKM theorems in [31], generalized

S-KKM theorems in [22], etc.

In [3] a KKM property and a KKM class of set-valued mappings with

such a property were introduced and investigated. Generalizations of such

classes have been developed with many applications, especially in solution

existence studies.

On the other hand, KKM-type theorems have been proved to be equiv-

alent to many other fundamental results in nonlinear analysis. The KKM

theorem was proved to be equivalent to generalization of Fan’s fixed-point

theorem and a minimax result in [11]. An equivalence between the KKM

theorem and Brouwer’s fixed-point theorem and minimax theorems was in-

vestigated in [1]. Another equivalent fixed-point theorem was shown in [29].

Later such equivalences have been extended to many kinds of coincidence the-

orems, matching theorems, intersection theorems, maximal-point theorems,

section theorems and also several geometric results by many researchers

Applications of KKM-type theorems, especially in existence studies for

variational inequalities, equilibrium problems and more general settings have

been obtained by many authors, see e.g. recent papers: [8, 12-15, 17, 18, 23,

24, 32] and references therein.

To avoid in a stronger sense convexity structures in investigating KKM-

type theorems, Ding [6] introduced the notion of a finitely continuous topo-

logical space (FC-space in short) to encompass many convexity structure

settings. However, this notion is incomparable with that of a G-convex

space. In [19] generalized FC-spaces (GFC-spaces in short) were proposed,

also without any convexity structure, but include both G-convex spaces and

FC-spaces as well as many recent generalized spaces. Intersection, coinci-

dence and maximal-element theorems in GFC-spaces were then discussed in
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the mentioned paper.

The aim of present paper is to develop generalized KKM-type theorems

along with generalized KKM classes and applications in deriving some section

and coincidence theorems and geometric results, which are equivalent to these

KKM-type theorems. Our results include and improve recent existing results

of the same topic. The paper is organized as follows. Section 2 is devoted to

recalling needed definitions and preliminary facts. In Section 3 we establish

KKM type theorems. The last Section 4 deals with applications of these

results in deriving section theorems and coincidence theorems. Comparisons

with known recent results are always accompanied with our contributions.

We leave applications in existence studies for optimization-related problems

to another paper.

2. PRELIMINARIES

We recall first some notions for later uses. Let X be a topological space

and Y be a set. A subset A ⊆ X is said to be compactly open (compactly

closed) if for each nonempty compact subset K ⊆ X, A∩K is open (closed,

respectively) in K. The compact interior and compact closure of A are

defined by

cintA =
⋃
{B ⊆ X : B ⊆ A and B is compactly open in X},

cclA =
⋂
{B ⊆ X : B ⊇ A and B is compactly closed in X}.

We clearly have K ∩ cintA= intK(K ∩ A) and K ∩ cclA= clK(K ∩ A),

where clK stands for the closure with respect to (wrt) the topology of K,

induced by that of X. A set-valued mapping F : Y → 2X , is called transfer

open-valued (transfer closed-valued) if ∀y ∈ Y , ∀x ∈ F (y) (∀x /∈ F (y)),

∃y′ ∈ Y such that x ∈ int(F(y′) (x /∈ cl(F(y′), respectively). F : Y → 2X is

termed transfer compactly open-valued (transfer compactly closed-valued) if

∀y ∈ Y , ∀K ⊂ X: nonempty and compact, ∀x ∈ F (y)∩K (∀x /∈ F (y)∩K),

∃y′ ∈ Y such that x ∈ intK(F(y′) ∩K) (x /∈ clK(F(y′) ∩K), respectively). Of

course transfer open-valuedness (transfer closed-valuedness) implies transfer

compact open-valuedness(transfer compact closed-valuedness, respectively).
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Lemma 2.1(e.g.[7]) Let Y be a set, X be a topological space and F : Y →
2X . The following statements are equivalent

(i) F is transfer compactly closed-valued (transfer compactly open-valued,

respectively).

(ii) for each compact subset K ⊂ X,⋂
y∈Y

(K ∩ F (y)) =
⋂
y∈Y

(K ∩ cclF(y)) =
⋂
y∈Y

(K ∩ clKF(y))

(
⋃

y∈Y (K ∩ F (y)) =
⋃

y∈Y (K ∩ cintF(y)) =
⋃

y∈Y(K ∩ intKF(y))).

For a nonempty set Y, 〈Y 〉 stands for the set of all finite subsets of Y .

For n ∈ N, the set of the natural numbers, ∆n stands for the n-simplex with

the vertices being the unit vectors e1, e2, ..., en+1 of a basis of Rn+1. For a

topological space X, a subset A ⊂ X and a mapping H : X → 2Y , A, Ac and

H|A denote the closure and complement of A and the mapping H restricted

on A, respectively.

Definition 2.1([19])

(i) Let X be a topological space, Y be a nonempty set and Φ be a family

of continuous mappings ϕ : ∆n → X, n ∈ N. Then a triple (X, Y, Φ)

is said to be a generalized finitely continuous topological space (GFC-

space in short) if for each finite subset N = {y0, y1, ..., yn} ∈ 〈Y 〉, there

is ϕN : ∆n → X of the family Φ. Later we also use (X, Y, {ϕN}) to

denote (X, Y, Φ).

(ii) Let D, C ⊆ Y and set-valued S : Y → 2X be given. D is called an

S -subset of Y (S -subset of Y wrt C ) if ∀N = {y0, y1, ..., yn} ∈ 〈Y 〉,
∀{yi0 , yi1 , ..., yik} ⊆ N ∩ D (⊆ N ∩ C, respectively), ϕN(∆k) ⊆ S(D),

where ∆k is the face of ∆n corresponding to {yi0 , yi1 , ..., yik}.

If Y = X, we simply write (X, Φ), instead of (X, X, Φ) which collaps to an

FC-space, introduced in [6]. If in addition, S is the identity map then an S -

subset of Y coincides with an FC-subspace of Y [6]. If Y ⊆ X and (X, Y, Γ)
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is a G-convex space (with Γ being a generalized convex hull operator) in-

troduced in [26], then taking Φ as the family of the continuous mappings

ϕN : ∆n → Γ(N) as defined in [26], we obtain a special case (X, Y, Φ) of

GFC-spaces. Both G-convex spaces and FC-spaces are general and include

many spaces with general convexity structures, but are incomparable.

Definition 2.2

(i) Let (X, Y, Φ) be a GFC-space and Z be a topological space. Let F :

Y → 2Z and T : X → 2Z be set-valued mappings. F is said to be a

generalized KKM mapping (wrt) T (T -KKM mapping in short) if, for

each N = {y0, y1, ..., yn} ∈ 〈Y 〉 and each {yi0 , yi1 , ..., yik} ⊆ N , one has

T (ϕN(∆k)) ⊆
⋃k

j=0 F (yij), where ϕN ∈ Φ is corresponding to N and

∆k is the face of ∆n corresponding to {yi0 , yi1 , ..., yik}.

(ii) We say that a set-valued mapping T : X → 2Z has the generalized

KKM property if, for each T -KKM mapping F : Y → 2Z , the family

{F (y) : y ∈ Y } has the finite intersection property, i.e. all finite

intersections of sets of this family are nonempty. By KKM(X,Y,Z )

we denote the class of all the mappings T : X → 2Z which enjoy the

generalized KKM property.

Later we will see that Definition 2.2 encompasses most of existing classes

of KKM-type mappings. The following simple lemma is needed for our ar-

guments in the sequel.

Lemma 2.2. Let (X,Y, Φ) be a GFC -space, Z be a topological space,

S : Y → 2X be a set-valued mapping, D be a S -subset of Y and T ∈
KKM(X, Y, Z). Then T |S(D) ∈ KKM(S(D), D, T (S(D))).

Proof. Assume that R : D → 2T (S(D)) is a T |S(D)-KKM mapping. Then,
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for each N = {y0, y1, ..., yn} ∈ 〈D〉 ⊆ 〈Y 〉 and each {yi0 , yi1 , ..., yik} ⊆ N ,

T (ϕN(∆k)) = T |S(D)(ϕN(∆k)) ⊆
k⋃

j=0

R(yij).

Define a set-valued mapping F : Y → 2Z by

F (y) =

{
R(y) if y ∈ D,

Z if otherwise.

Clearly F is a T -KKM mapping. Since T ∈ KKM(X, Y, Z), the family

{F (y) : y ∈ Y } has the finite intersection property. It follows that the family

{R(y) : y ∈ D} has this property too. Thus, the lemma is proved. �

3. KKM-TYPE THEOREMS

Throughout this section, if not otherwise specified, let (X,Y, Φ) be a

GFC-space, Z be a topological space, S : Y → 2X and F : Y → 2Z be

set-valued mappings and T ∈ KKM(X, Y, Z).

Theorem 3.1. Assume that Y is an S-subset of itself. Let the following

conditions hold

(i) T (S(Y )) is a compact subset (of Z );

(ii) F is T-KKM and transfer compactly closed-valued.

Then

T (S(Y )) ∩
⋂
y∈Y

F (y) 6= ∅.

Proof. We define a new set-valued mapping F̂ : Y → 2T (S(Y )) by, for

y ∈ Y , F̂ (y) = T (S(Y )) ∩ cclF(y). Then F̂ has clearly closed values in

T (S(Y )). We claim that F̂ is T -KKM. Indeed, for N = {y0, y1, ..., yn} ∈ 〈Y 〉
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and {yi0 , yi1 , ..., yik} ⊆ N , as F is T -KKM one has T (ϕN(∆k)) ⊆
⋃k

j=0 F (yij).

Since Y is an S -subset of Y, T (ϕN(∆k)) ⊆ T (S(Y )). Therefore

T (ϕN(∆k)) ⊆ T (S(Y )) ∩
⋃k

j=0 F (yij)

=
⋃k

j=0[T (S(Y )) ∩ F (yij)]

⊆
⋃k

j=0 F̂ (yij).

As T ∈ KKM (X, Y, Z), the family {F̂ (y) : y ∈ Y } = {F̂ (y) : y ∈ Y } has

the finite intersection property. Since this is a family of closed subsets of

compact set T (S(Y )), by Lemma 2.1 one has

T (S(Y )) ∩
⋂

y∈Y F (y) =
⋂

y∈Y (T (S(Y )) ∩ F (y))

=
⋂

y∈Y (T (S(Y )) ∩ cclF(y))

=
⋂

y∈Y F̂ (y) 6= ∅. �

Now we discuss particular cases of Theorem 3.1. Let (X, Φ) be an FC-

space, Z be a topological space, Y be a set, F : Y → 2Z , s : Y → X

and T ∈ KKM(X, Y, Z) be given. Following [7], F is called an s-KKM wrt

T if for each N = {y0, y1, ..., yn} ∈ 〈Y 〉 and each {yi0 , yi1 , ..., yik} ⊆ N ,

T (ϕs(N)(∆k)) ⊆
⋃k

j=0 F (yij), where ϕs(N) : ∆n → X is the mapping of the

family Φ, corresponding to {s(y0), s(y1), ..., s(yn)} in the definition of an FC-

space [6]. We define a GFC-space (X, Y, Φ) as follows: for N ∈ 〈Y 〉 and

{yi0 , yi1 , ..., yik} ⊆ N , as the corresponding mapping from Φ we take ϕs(N).

Then an s-KKM mapping wrt T acting on the FC-space (X, Φ) becomes a

T -KKM mapping acting on the GFC-space (X, Y, Φ), according to Definition

2.2(i). Therefore, Theorem 3.2 of [7] is special case of Theorem 3.1, where

S ≡ s. If in addition Y = X, S ≡ s ≡ I (the identity map) and T is

a compact mapping, our Theorem 3.1 collaps to Theorem 3.3 of [7] and

Theorem 3.2 of [9]. If a set-valued mapping is compactly closed-valued then

it is also transfer compactly closed-valued. So Theorem 3.1 includes properly

Theorem 3.1 of [7] and Theorem 3.1 of [9]. When (X, Y, Φ) = (X, Y, Γ) is a

G-convex space [25] and S ≡ I, our Theorem 3.1 implies Theorem 1 of [21],

where the assumption corresponding to our condition (ii) is more stringent.

Assume that X is a convex space, co(·) is the usual convex hull operator
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in this convex space, Y, Z, S and T are as at the beginning of this section.

In [2] F : Y → 2Z is called a generalized S-KKM mapping wrt T if, for any

N = {y0, y1, ..., yn} ∈ 〈Y 〉,

T (coS(N)) ⊆ F(N).

We define a GFC-space (X, Y, {ϕN}) as follows. Take s : Y → X which is any

fixed selection of S and, for any N = {y0, y1, ..., yn} ∈ 〈Y 〉, take ϕN : ∆n → X

by the definition ϕN(e) =
∑n

i=0 λis(yi) for all e =
∑n

i=0 λiei ∈ ∆n. Then

(X, Y, {ϕN}) is clearly a GFC-space. It is equally obvious that a set-valued

mapping F is S -KKM wrt T only if F is T -KKM by our Definition 2.2.

Consequently Theorem 4.3 of that paper is a true special case of our Theorem

3.1 with S (·) replaced by co(S(·)) .

The compactness condition (i) in Theorem 3.1 can be replaced by a co-

ercivity condition as follows.

Theorem 3.2. Assume that

(i1) for each compact subset D ⊆ X, T (D) is compact ;

(i2) there is a compact subset K of Z such that for each N ∈ 〈Y 〉, there is

an S-subset LN of Y, containing N with either S(LN) or S(LN) being

compact and

T (S(LN)) ∩
⋂

y∈LN

cclF(y) ⊆ K;

(ii) F is T-KKM and transfer compactly closed-valued.

Then

T (S(Y )) ∩
⋂
y∈Y

F (y) 6= ∅.

Proof. (a) First, assume that F is compactly closed-valued. Suppose ab

absurdo that

Z = [T (S(Y )) ∩
⋂
y∈Y

F (y)]c = T (S(Y ))
c
∪

⋃
y∈Y

F (y)c.
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Then the compact set K (in (i2)) has an open covering K ∩ T (S(Y ))
c
, {K ∩

F (y)c}y∈Y and hence there is N ∈ 〈Y 〉 such that

K ⊆ T (S(Y ))
c
∪

⋃
y∈N F (y)c

⊆ T (S(LN))
c
∪

⋃
y∈N F (y)c.

By assumption (i2),

Kc ⊆ T (S(LN))
c
∪

⋃
y∈LN

F (y)c.

Therefore,

Z = K ∪Kc ⊆ T (S(LN))
c
∪

⋃
y∈LN

F (y)c.

So

T (S(LN)) ∩
⋂

y∈LN
F (y) = ∅.

We consider now the first case of assumption (i2). We apply Theorem 3.1

to GFC-space (S(LN), LN , Φ) with Z, S, T, F replaced by T (S(LN)), S|LN
,

T |S(LN ) and F1 : LN → 2T (S(LN )), where F1(y) = T (S(LN)) ∩ F (y). We see

that LN is an S|LN
-subset of itself. Moreover, clT (S(LN ))T |S(LN )(S|LN

(LN)) is

compact by (i1) and (i2), where clT (S(LN )) stands for the closure in T (S(LN)).

To check the remaining assumption (ii) of Theorem 3.1, we observe that F1

has compactly closed-values in T (S(LN)) and T |S(LN ) ∈KKM(S(LN), LN , T (S(LN)))

(by Lemma 2.2). To see that F1 is T |S(LN )-KKM let N∗ ∈ 〈LN〉 and

{yi0 , yi1 , ..., yik} ⊆ N∗. Then, since LN is an S|LN
-subset of LN ,

T |S(LN )(ϕN∗(∆k)) ⊆ T (ϕN∗(∆k))

⊆ T (S(LN)) ∩
⋃k

j=0 F (yij)

=
⋃k

j=0 F1(yij),

i.e. F1 is T |S(LN )-KKM. Making use of Theorem 3.1 yields

∅ 6= clT (S(LN ))(T |S(LN )(S|LN
(LN))) ∩

⋂
y∈LN

F1(y)
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⊆ T (S(LN)) ∩
⋂

y∈LN
F (y),

a contradiction.

Now consider the second case of (i2). By (i1), T (S(LN)) is compact.

Then its closed subset T (S(LN)) is compact as well. Therefore we can apply

Theorem 3.1 as for the first case of (i2).

(b) If F is transfer compactly closed-valued, we consider F̂ defined by

F̂ (y) = cclF(y) and apply part (a) together with Lemma 2.1. �

Since our Definition 2.2 of a T -KKM mapping includes many definitions

of KKM type mappings as discussed after Theorem 3.1, it is easy to see that

Theorem 3.2 has true special cases as follows. When applied to the particular

case, where X = Y and S ≡ I, Theorem 3.2 improves Theorem 3.3 of [9].

If (X, Y, Φ) = (X, Y, Γ) is a G-convex space and S ≡ I then Theorem 3.2

implies Theorem 3 of [21].

For S -KKM mappings with respect to T and the class S-KKM(X, Y, Z)

defined in [2] we have the following consequence which is Theorem 5.1 of [2].

Corollary 3.3 Let X, Y be convex spaces and Z be a Hausdorff topological

space. Let S : Y → 2X , F : Y → 2Z and T ∈ S-KKM(X, Y, Z). Let the

following conditions hold

(a) S(C) is compact and convex for each compact convex subset C of Y ;

(b) for each compact subset D ⊆ X, T (D) is compact ;

(c) F is an S-KKM mapping wrt T and compactly closed-valued ;

(d) there is a nonempty compact convex subset L of Y and a compact subset

K of Z such that
⋂

y∈L F (y)) ⊆ K.

Then

T (coS(Y)) ∩
⋂
y∈Y

F (y) 6= ∅.
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Proof. We apply Theorem 3.2 with the second case of assumption (i2).

For LN required in this assumption we simply take LN = co(L ∪N), where

L is given in assumption (d). �

The condition that F is T -KKM, imposed in Theorems 3.1 and 3.2, can

be replaced by other assumptions which may be easier to check in some cases

as follows.

Theorem 3.4 Let G, M : Y → 2Z be additionally given. Assume that Y

is an S-subset of itself. Assume further that

(i) T (S(Y )) is compact ;

(ii1) F is transfer compactly closed-valued ;

(ii2) for each y ∈ Y , G(y) ⊆ F (y) and T (S(y)) ⊆ M(y);

(ii3) for each z ∈ Z, Y \M−1(z) an S-subset of Y wrt Y \G−1(z).

Then

T (S(Y ) ∩
⋂
y∈Y

F (y) 6= ∅.

Proof. It suffices to check that F is T -KKM. Suppose the existence of

N ∈ 〈Y 〉 and {yi0 , yi1 , ..., yik} ⊆ N such that T (ϕN(∆k)) 6⊆
⋃k

j=0 F (yij), i.e.

x ∈ ϕN(∆k)) and z ∈ T (x) exist such that z /∈ F (yij) for each j = 0, 1, ..., k.

Then

{yi0 , yi1 , ..., yik} ⊆ N ∩ (Y \F−1(z)) ⊆ N ∩ (Y \G−1(z)).

By (ii3), ϕN(∆k) ⊆ S(Y \M−1(z)) and hence there exists y ∈ Y \M−1(z)

such that x ∈ S(y). Consequently, z ∈ T (S(y)) ⊆ M(y), contradicting the

fact that y ∈ Y \M−1(z). �
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Note that Theorem 3.4 of [7] is a consequence of Theorem 3.4 for the case

where Y = X and S ≡ I.

Finally, the compactness in condition (i) can be weakened to a coercivity

assumption as follows.

Theorem 3.5 Let G, M : Y → 2Z be additionally given. Let (ii1), (ii2),

(ii3) and the following conditions hold

(i1) for each compact subset D of X, T (D) is compact ;

(i2) there is compact subset K of Z such that for each N ∈ 〈Y 〉, there is an

S-subset LN of Y containing N so that S(LN) is compact and

T (S(LN)) ∩
⋂

y∈LN

cclF(y) ⊆ K.

Then

T (S(Y ) ∩
⋂
y∈Y

F (y) 6= ∅.

The proof is similar to that of Theorems 3.2 and 3.4 and hence omitted.

Remark 3.1. Applying Lemma 2.5 of [7] it is easy to see that even for

the special case where Y = X and S ≡ I, Theorem 3.5 improves Theorem

3.2 of [8].

4. COINCIDENCE THEOREMS AND GEOMETRIC VERSIONS

In this section we establish coincidence theorems and some their geo-

metric versions. These results are either equivalent to or consequences of

KKM-type theorems obtained in the preceding section. So generalized KKM

properties are essentially employed.
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Let (X,Y, Φ) be a GFC-space, Z be a topological space, S : Y → 2X

be such that Y is an S-subset of itself and T ∈ KKM(X, Y, Z) be such that

T (S(Y )) is compact. Our first purpose is to demonstrate the equivalence

between each of Theorems 4.1 - 4.3 below and Theorem 3.4.

Theorem 4.1 Let A, B and C be subsets of Y × Z with B ⊆ A. Let the

following conditions hold

(i) F̃ is transfer compactly open-valued, where F̃ : Y → 2Z is defined by

F̃ (y) = {z ∈ Z : (y, z) /∈ A} for all y ∈ Y ;

(ii) for each y ∈ Y , {y} × T (S(y)) ⊆ C;

(iii) for each z ∈ Z, the set {y ∈ Y : (y, z) /∈ C} is an S-subset of Y wrt the

set {y ∈ Y : (y, z) /∈ B}.

Then, there exist ẑ ∈ T (S(Y ) such that Y × {ẑ} ⊆ A.

Theorem 4.2 Let H, P, Q : Z → 2Y be given. Let the following conditions

hold

(i) H−1 has transfer compactly open values and H(z) 6= ∅ for each z ∈
T (S(Y )) ;

(ii) for each z ∈ Z, H(z) ⊆ P (z);

(iii) for each z ∈ Z, Q(z) is an S-subset of Y wrt P (z).

Then, there exists a coincidence point (x̂, ŷ, ẑ) for S, Q, T, i.e. x̂ ∈ S(ŷ),

ŷ ∈ Q(ẑ) and ẑ ∈ T (x̂).

Theorem 4.3 Let P, Q : Z → 2Y and F : Y → 2Z be given. Let the

following conditions hold

(i) F is transfer compactly closed-valued and F−1(z) 6= Y for each z ∈
T (S(Y )) ;
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(ii) for each y ∈ Y , Z\P−1(y) ⊆ F (y);

(iii) for each z ∈ Z, Q(z) is an S-subset of Y wrt P (z).

Then, there is a coincidence point (x̂, ŷ, ẑ) for S, Q, T .

Proof. Theorem 3.4⇒ Theorem 4.1. Define set-valued mappings F, G, M :

Y → 2Z by, for y ∈ Y ,

F (y) = {z ∈ Z : (y, z) ∈ A},
G(y) = {z ∈ Z : (y, z) ∈ B},
M(y) = {z ∈ Z : (y, z) ∈ C}.

By (i), F (y) is transfer compactly closed-valued. G(y) ⊆ F (y) as B ⊆ A and

T (S(y)) ⊆ M(y) for each y due to (ii). The last assumption (ii3) of Theorem

3.4 is nothing else than (iii). now that all the conditions hold, this theorem

confirms the existence of ẑ ∈ T (S(Y )) such that ẑ ∈ F (y) for each y ∈ Y ,

i.e. Y × {ẑ} ⊆ A.

Theorem 4.1 ⇒ Theorem 4.2. Set A = (Y ×Z)\graphH, B = (Y ×Z)\graphP

and C = (Y × Z)\graphQ. We check the assumptions of Theorem 4.1. For

y ∈ Y , F̃ (y) = {z ∈ Z : (y, z) /∈ A} = H−1(y) and hence F̃ is transfer

compactly open-valued by (i) of Theorem 4.2. (ii) implies that B ⊆ A.

The set {y ∈ Y : (y, z) /∈ C} = Q(z) is an S-subset of Y wrt the set

{y ∈ Y : (y, z) /∈ C} = P (z). Now suppose, to the contrary of the conclusion,

that for each y ∈ Y and z ∈ T (S(y)), y /∈ Q(z), i.e. (y, z) ∈ C. This means

{y} × T (S(y)) ⊆ C and consequently all the assumptions of Theorem 4.1

are fulfilled. So, ẑ ∈ T (S(Y )) exists such that Y × {ẑ} ⊆ A, i.e. H(ẑ) = ∅
contradicting assumption (i).

Theorem 4.2 ⇒ Theorem 4.3. Choose H : Z → 2Y by setting H(z) =

Y \ F−1(z) to see that all the assumptions of Theorem 4.2 are satisfied.

Theorem 4.3 ⇒ Theorem 3.4. Define P, Q : Z → 2Y by, for z ∈ Z,

P (z) = Y \G−1(z), Q(z) = Y \M−1(z).

By (ii2), Z \ P−1(y) = G(y) ⊆ F (y). Assumption (ii3) implies (iii) of Theo-

rem 4.3. Now suppose to the contrary of the conclusion of Theorem 3.4 that,
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for each z ∈ T (S(Y )), z /∈
⋂

y∈Y F (y), i.e. F−1(z) 6= Y and all the assump-

tions of Theorem 4.3 are satisfied. For a coincidence point (x̂, ŷ, ẑ) existing

by this theorem we see that ẑ ∈ T (S(ŷ)) and ŷ ∈ Q(ẑ) = Y \ M−1(ẑ), i.e.

ẑ /∈ M(ŷ), contradicting (ii2). �

Note that when applied to the particular case where Y = X (and we have

an FC-space) and S ≡ I, Theorems 4.1 - 4.3 slightly improve Theorems 4.1

- 4.3 of [7].

Similarly as for KKM-type theorems the compactness of T (S(Y ) can be

relaxed to a coercivity assumption as follows.

Theorem 4.4 (X, Y, Φ), Z, S and T be as specified at the beginning of

Section 4 except the compactness of T (S(Y ))). Let (ii), (iii) of Theorem 4.2

and the following conditions hold

(i) H−1 has transfer compactly open values and H(z) 6= ∅ for each z ∈ Z;

(iv1) for each compact subset D of X, T (D) is compact;

(iv2) there is a compact subset K of Z such that for each N ∈ 〈Y 〉, there

is an S-subset LN of Y containing N such that S(LN) is compact and

T (S(LN)) \K ⊆
⋃

y∈LN
cintH−1(y).

Then, coincidence points exist for S, Q and T .

Proof. By (i) and the compactness of K we have N ∈ 〈Y 〉 such that

K =
⋃
y∈Y

(K ∩ cintH−1(y)) ⊆
⋃
y∈N

cintH−1(y).

Hence, assumption (iv2) implies that

T (S(LN)) ⊆ K ∪ (T (S(LN)) \K) ⊆
⋃

y∈LN

cintH−1(y).
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Then

T (S(LN)) =
⋃

y∈LN

(cintH−1(y)∩T(S(LN))) =
⋃

y∈LN

intT(S(LN))(H
−1(y)∩T(S(LN))).

Define new set-valued mapping H1, P1, Q1 : T (S(LN)) → 2LN by

H1(z) = H(z) ∩ LN , P1(z) = P (z) ∩ LN , Q1(z) = Q(z) ∩ LN .

It is easy to see that all the assumptions of Theorem 4.2 are satisfied with

(S(LN), LN , Φ), T (S(LN)), S|LN
, T |S(LN ), H1, P1, Q1 in the places of (X, Y, Φ),

Z, S, T, H, P and Q, respectively. By this theorem a point (x̂, ŷ, ẑ) ∈
S(LN) × LN × T (S(LN)) exists such that x̂ ∈ S|LN

(ŷ), ŷ ∈ Q1(ẑ) and

ẑ ∈ T |S(LN )(x̂). This point is also a required point of Theorem 4.4. �

Note that, for the case Y = X (and we have an FC-space) and S ≡ I,

Theorems 4.4 becomes Theorems 4.4 of [7].

The theorems established in this paper can be employed to develop suf-

ficient conditions for the solution existence in various general optimization -

related problems. We leave this development to our forthcoming paper.
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