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Abstract

We propose relaxed lower semicontinuity properties for set-valued mappings,

using weak τ -functions, and employ them to weaken known lower semicontinuity

assumptions to get enhanced Ekeland’s variational principle for Pareto minimizers

of set-valued mappings and underlying minimal-element principles. Our results

improve or recover recent ones in the literature when applied to their particular

cases.
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portant results in nonlinear analysis and optimization for the last three decades.

It proves to be a powerful tool in variational analysis and optimization-related

problems. A great number of generalizations of the EVP to more general prob-

lem settings and with less stringent assumptions have been obtained by many

authors. In its original form, the EVP says that if a scalar function f on a com-

plete metric space X is bounded from below and lower semicontinuous, then we

can get a strict minimum of a slight perturbation of f .

Recently many efforts have been made to weaken the lower semicontinuity

assumption by proposing generalized distances, additionally to the metric of X.

First of these proposals are the Tataru distance in Tataru [18] and the w-distance

in Kada et al. [9]. Then the τ -distance and τ -function were introduced in Suzuki

[17] and Lin and Du [14], respectively. The latter two distances are more gen-

eral than the former ones but are incomparable. In Khanh and Quy [10, 11]

the weak τ -function was proposed to encompass these two definitions and to ob-

tain improved formulations of the EVP for Pareto minimizers of a single-valued

mapping and for Kuroiwa’s minimizers of a set-valued mapping.

In the present paper, using the weak τ -function we first go into details to

have a clearer insight of various relaxed lower semicontinuity properties of a set-

valued mapping. Then imposing these semicontinuities we establish sufficient

conditions for the existence of minimal elements and strict minimal elements of

a set. From these results about underlying principles for the study of the EVP

stated for minimization problems, we easily get enhanced versions of the EVP

for approximate Pareto minimizers of a set-valued mapping. Our results either

improve or agree with recent ones in [1-6, 8, 13-16] (and many previous results in

the literature) when applied to the particular cases considered in those papers.

The layout of our paper is as follows. We recall needed notions and prelim-

inaries in the rest of this section. Various relaxed lower semicontinuities for a

set-valued mapping are discussed in Section 2, including several new definitions

proposed here. Section 3 is devoted to the main results about minimal elements

and enhanced versions of the EVP for approximate Pareto minimizers of multi-

valued mappings. In the last Section 4 we derive some consequences for special

cases of single-valued mappings to see more advantages of our results.

We recall some notions. If Y is a topological vector space ordered by a convex

cone K, then a subset D ⊆ Y is said to be quasibounded from below if there
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is a bounded subset M ⊆ Y such that D ⊆ M + K. D is called bounded from

below if there is y ∈ Y such that D ⊆ y + K. So boundedness (from below)

implies quasiboundedness (from below) but not vice versa as one can easily find

a counterexample. In the sequel we fix a point k0 ∈ K \ (−clK), where cl(.)

stands for the closure of the set (.). K is said to be closed in direction k0 if

K ∩ (z−R+k0) is closed for each z ∈ K. We use K+ to denote the positive polar

of convex cone K, i.e.

K+ := {y∗ ∈ Y ∗ : < y∗, k >≥ 0,∀k ∈ K}

and K] to denote the quasi-interior of K+, i.e.

K] := {y∗ ∈ Y ∗ : < y∗, k >> 0,∀k ∈ K \ (−K)}.

Now we pass to Pareto minimum notions. Let Y be a set partially ordered by

a transitive ordering ≤ and B ⊆ Y . Then y ∈ B is called a (Pareto) minimum of

B if z ≤ y for some z ∈ B implies y ≤ z. Very often Y is a linear space and an

order is defined by a convex cone K ⊆ Y and is denoted by ≤K . y ∈ B is said

to be a strict (Pareto) minimum of B if z 6≤ y (or z 6≤K y),∀z ∈ B \ {y}. We

denote by Min≤B (or MinKB) the collection of all the (Pareto) minima of B ⊆ Y

with respect to (wrt) the ordering ≤ (or by the convex cone K, respectively).

The notation SMin≤B (or SMinKB) is used for the set of all the strict minima

of B. Note that SMinKB ⊆ MinKB and if K is pointed, i.e. K ∩ (−K) = {0},
then we have equality. A subset B of Y is said to have the domination property

if, for any y ∈ B, there exists y′ ∈ Min≤B such that y′ ≤ y. B is said to have

the strict domination property if, for any y ∈ B, there exists y′ ∈ SMin≤B such

that y′ ≤ y. Note that B has the domination property if it is compact and ≤ is

defined by a closed convex cone K. B has the strict domination property if, in

addition, K is pointed.

Next we recall needed generalized distances. In this paper we use the following

generalized distance proposed in Khanh and Quy [10, 11].

Definition 1.1. Let (X, d) be a metric space. A function p : X × X → R+ is

said to be a weak τ -function if the following conditions hold, for x, y, z ∈ X,

(τ1) (triangle inequality) p(x, z) ≤ p(x, y) + p(y, z);
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(τ3) for any sequences {xn} and {yn} in X with limn→∞ sup{p(xn, xm) : m >

n} = 0 and limn→∞ p(xn, yn) = 0, one has limn→∞ d(xn, yn) = 0;

(τ4) p(x, y) = 0 and p(x, z) = 0 imply y = z.

Note that with the following additional condition

(τ2) (lower semicontinuity) ∀x ∈ X, p(x, .) is R+-lsc;

a weak τ -function becomes a τ -function introduced in Lin and Du [14]. Observe

further that (see Khanh and Quy [10, 11] all the recently introduced general-

ized distances: the w-distance, Tataru’s distance, τ -distance and τ -function are

particular cases of the weak τ -function. Example 2.1 in Khanh and Quy [11]

shows that being a weak τ -function may be strictly weaker than being a kind

of the mentioned distances. The main idea of omitting the lower semicontinu-

ity of p (i.e. condition (τ2)) is that to prove the EVP we can impose a relaxed

lower semicontinuity condition for the mapping F under consideration and p to-

gether instead of assuming the lower semicontinuity of F independently with the

available continuity of the metric.

Concerning weak τ -functions we need the following fact which was proved in

Lin and Du [14] for the case where p is a τ -function. But condition (τ2) was not

used in the proof.

Lemma 1.1. Let p be a weak τ -function on a metric space X. If a sequence xn

satisfies the condition limn→∞ sup{p(xn, xm) : m > n} = 0, then xn is a Cauchy

sequence.

2. Relaxed Lower Semicontinuity Properties of Set-Valued Mappings

Recall that a set-valued mapping F : X → 2Y between two topological spaces is

said to be upper semicontinuous (usc) at x̄ ∈ X if for any open superset U of

F (x̄), there exists a neighborhood V of x̄ such that F (V ) ⊆ U . If furthermore

Y is ordered by a convex cone K, F is called upper K-continuous at x̄ ∈ X if

for any open superset U of F (x̄), there exists a neighborhood V of x̄ such that

F (V ) ⊆ U + K. Note that if F is usc at x̄ then F is upper K-continuous at x̄

but the converse is not true as shown by
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Example 2.1. Let X = Y = R, K = R+ and

F (x) =

[1, 2] if x 6= 0,

[0, 1] if x = 0.

Then F is upper R+-continuous, but F is not usc at x = 0.

From now on, if not otherwise stated, let X be a metric space, Y be a topo-

logical vector space ordered by a convex cone K ⊆ Y and k0 ∈ K \ (−clK).

F : X → 2Y is said to be K-lower semicontinuous (K-lsc) at x̄ (or K-level closed

at x̄) if, for e ∈ Y and xn → x̄, from xn ∈ {x ∈ X : F (x)∩ (e−K) 6= ∅} it follows

that x̄ belongs also to this e-level set. We say that F is K-lsc or K-level closed if

F is K-lsc at all points in domF := {x ∈ X : F (x) 6= ∅}, or what is the same if,

for all e ∈ Y , the e-level set is closed. It is clear also that F is K-epiclosed (i.e.

epiF := {(x, y) ∈ X × Y : y ∈ F (x) + K} is closed in X × Y ), then F is K-level

closed, but not vice versa.

Observe that if K is a closed convex cone and F : X → 2Y has domF = X,

then F is upper K-continuous only if F is K-lsc. Indeed, let xn ∈ {x ∈ X :

F (x) ∩ (e − K) 6= ∅} and xn → x̄. Let yn ∈ F (xn) ∩ (e − K). Suppose to the

contrary that F (x̄) ⊆ Y \ (e − K). By the upper K-continuity of F there is a

neighborhood U of x̄ such that F (U) ⊆ Y \ (e − K) + K. Then, for large n,

yn ∈ Y \ (e−K) + K. Consequently, yn 6∈ (e−K), a contradiction.

The following example ensures that the converse is false.

Example 2.2. Let X = R, Y = R2, K = R2
+ and

F (x) =

{(x, u) : u ≥ 1} if x ≤ 0,

{( 1

x
, u) : u ≥ −x

x + 1
} if x > 0.

Then it is not hard to see that F is K−lsc on R but it is not upper K-continuous

at x = 0.

A more relaxed notion of K-lower semicontinuity from above at a point x ∈
X is proposed in Chen et al. [7] for scalar single-valued functions. In Khanh

and Quy [10] we extended it to set-valued mappings, suitably for considering

Kuroiwa’s minima (Kuroiwa [12]) which are different from Pareto minima, as

follows: F is called K-lower semicontinuous from above (K-lsca) at x ∈ X if for

each convergent sequence xn → x with F (xn) ⊆ F (xn+1) + K, ∀n ∈ N (the set of
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the natural numbers), one has F (xn) ⊆ F (x) + K, ∀n ∈ N. As any definition for

a point is extended to a set, F is called K-lsca on A ⊆ X if F is K-lsca at all

x ∈ A. If A = domF we omit ”on A” in the statement.

Now we modify the mentioned definition of K-lower semicontinuity from above

in a natural way, replacing the order of subsets with inclusion relations by another

transitive relation (suitably for investigating Pareto minima). Since we investigate

only Pareto minima, not Kuroiwa’s minima, we retain the same term ”K-lsca”

without possible confusions.

Definition 2.1. F : X → 2Y is said to be K-lsca at x if for any convergent

sequence xn → x and any K-decreasing sequence yn ∈ F (xn) there exists y ∈
F (x) such that, for each n ∈ N, y ≤K yn.

Note that being K-lsca is more relaxed than satisfying the limiting monotonic-

ity condition defined in Bao and Mordukhovich [3], where y ∈ F (x) is replaced

by y ∈ MinKF(x). If p = d, F is K-lsca if and only if grF := {(x, y) ∈ X × Y :

y ∈ F (x)} satisfies condition (H2) in Göpfert et al. [8].

Proposition 2.1. Let K be closed. Then F : X → 2Y is K-lsca if either of the

following conditions holds

(i) F is upper K-continuous and compact-valued;

(ii) F is K-lsc and closed-valued;

(iii) F is K-lsc; F (x) has the domination property and MinKF (x) is closed for

every x ∈ domF ;

(iv) F is K-lsc; F (x) has the strict domination property and SMinKF (x) is

closed for every x ∈ domF .

Proof. Let {(xn, yn)} ⊆ grF with {yn} being a K-decreasing sequence and

xn → x.

(i) Let U be a basis of the neighborhoods of zero in Y and Un ∈ U be such

that, for each n, Un+1 ⊆ Un and, for each open superset U of F (x), there is n such

that F (x) + Un ⊆ U . The upper K-continuity of F yields an open neighborhood

Vn of x such that F (Vn) ⊆ F (x) + Un + K. We can assume that xn ∈ Vn for

all n. Hence zn ∈ F (x) + Un exists with zn ≤K yn. As F (x) is compact, there
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is tn ∈ F (x) such that tn − zn → 0 and tn → y for some y ∈ F (x) (using a

subsequence if needed). Consequently, zn → y. One has zn+q ≤K yn+q ≤K yn for

q ∈ N. Since K is closed, passing q →∞ one gets y ≤K yn, i.e. F is K-lsca.

(ii) Let

T (yn) = {y ∈ F (x) : y ≤K yn}.

Then T (yn) is nonempty and closed for all n ∈ N. Indeed, since yn+q ≤K yn ,

xn+q ∈ {z : F (z) ∩ (yn − K) 6= ∅} for all q. By the closedness of this level set,

x ∈ {z : F (z) ∩ (yn −K) 6= ∅}, i.e. T (yn) 6= ∅. The closedness of T (yn) follows

directly from the closedness of F (x) and K. Furthermore, T (yn+1) ⊆ T (yn) for

all n ∈ N as yn+q ≤K yn. It follows that

∅ 6=
∞⋂

n=1

T (yn) ⊆ F (x),

i.e. there exists y ∈ F (x) with y ≤K yn for all n ∈ N.

(iii) Define

R(yn) := {y ∈ MinKF (x) : y ≤K yn}.

We claim that R(yn) is nonempty and closed for all n ∈ N. Indeed, for a fixed n

and each i ∈ N, as for part (ii) there is y∗ ∈ F (x) such that

y∗ ≤K yn.

As F (x) has the domination property, there is y ∈ MinKF (x) with y ≤K y∗.

Consequently, y ≤K yn, which implies that y ∈ R(yn). The closedness of R(yn)

follows directly from the closedness of MinKF (x) and K. We also have R(yn+1) ⊆
R(yn) for all n ∈ N. With the afore-mentioned properties we see that

∅ 6=
∞⋂

n=1

R(yn) ⊆ MinKF (x).

Then, there is y ∈ MinKF (x) with y ≤K yn for all n ∈ N.

(iv) We define

N(yn) := {y ∈ SMinKF (x) : y ≤K yn}

and argue similarly as for part (iii). �

The following example says that the converse to any assertion of Proposition

2.1 is not valid.
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Example 2.3. Let X = Y = R, K = R+ and F : X → 2Y be the multifunction

F (x) =

[1, 2] if x ≤ 0,

{(2 + x)−1} if x > 0.

Then F is R+-lsca, but F is not R+-lsc at x = 0.

Let X and Y be as above and p be a weak τ -function. A transitive relation

≤k0 in X × Y is defined by

(x2, y2) ≤k0 (x1, y1) if and only if y2 + k0p(x1, x2) ≤K y1.

If p = d, the metric of X, this relation is defined in Göpfert et al. [8]. For

A ⊆ X × Y and (x, y) ∈ A we denote by SA(x, y) the lower sector of A with

respect to ≤k0 , i.e.

SA(x, y) := {(x′, y′) ∈ A : (x′, y′) ≤k0 (x, y)}.

Definition 2.2. F is said to be (k0, K)-lsc at x if for each (x, y) ∈ grF , each

sequence {(xn, yn)} in grF with xn → x and (xn, yn) ≤k0 (x, y), there exists

y ∈ F (x) such that, (x, y) ≤k0 (x, y).

Note that F : X → 2Y is (k0, K)-lsc if and only if for each (x, y) ∈ grF , the

set {x′ ∈ X : ∃y′ ∈ F (x′), (x′, y′) ≤k0 (x, y)} is closed.

Definition 2.3. F is said to be (k0, K)-lsca at x if for any convergent sequence

xn → x and any ≤k0-decreasing sequence {(xn, yn)} in grF , there exists y ∈ F (x)

such that, for each n ∈ N, (x, y) ≤k0 (xn, yn).

Observe for the case where p = d that F is (k0, K)-lsca at x if and only if grF

satisfies condition (H1) stated in Göpfert et al. [8].

Proposition 2.2. When K is closed, F is (k0, K)-lsca if at least one of the

following conditions holds

(i) F is (k0, K)-lsc and closed-valued;

(ii) F is (k0, K)-lsc; F (x) has the dominattion property and MinKF (x) is closed

for every x ∈ domF ;

(iii) F is (k0, K)-lsc; F (x) has the strict domination property and SMinKF (x)

is closed for every x ∈ domF .
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Proof. Let {(xn, yn)} be a ≤k0-decreasing sequence in grF with xn → x.

(i) Let

T (xn, yn) := {y ∈ F (x) : y + k0p(xn, x) ≤K yn}

and argue similarly as for Proposition 2.1(ii).

(ii) Put

R(xn, yn) := {y ∈ MinKF (x) : y + k0p(xn, x) ≤K yn}.

and use a technique similar to that for Proposition 2.1(iii).

(iii) Set

N(xn, yn) := {y ∈ SMinKF (x) : y + k0p(xn, x) ≤K yn}

and reason similarly as for Proposition 2.1(iv). �

The converse to Proposition 2.2 is false as explained by the following example.

Example 2.4. Let X = [−2, 2], Y = R,K = R+, k0 = 1, p(x, y) = |x− y| and F

be single-valued and defined by

F (x) =

7 if x = 0,

x2 otherwise.

To check that F is (k0, K)-lsca at any x ∈ X, i.e. if xn → x and, for all n ∈ N,

yn+1 + |xn+1 − xn| ≤ yn, (2.1)

then

ȳ + |x̄− xn| ≤ yn (2.2)

for all n, where ȳ = F (x̄). We split the consideration into three subcases. If

x̄ 6= 0 and all xn 6= 0, then by the continuity of F , (2.2) is evidently satisfied. If

(xn, yn) = (0, 7) for some n, then (2.1) means that n = 1 and (xm, ym) = (0, 7)

for all m and then (2.2) is fulfilled. Finally if (x̄, ȳ) = (0, 7) then (2.1) holds only

if (xn, yn) = (0, 7) for all n and hence (2.2) holds too.

To see that F is not (k0, K)-lsc at x̄ = 0 take xn =
1

n
→ 0 = x̄ and (x, y) =

(2, 4). Then
1

n2
+ | 1

n
− 2| ≤ 4
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for all n, but 7 + |0− 2| 6≤ 4.

Proposition 2.3. Assume (τ2) and that K is closed in direction k0.

(i) If F is K-lsc at x̄, then F is (k0, K)-lsc at x̄.

(ii) If F is K-lsca at x̄, then F is (k0, K)-lsca at x̄.

Proof. (i) Let (x, y) and (xn, yn) in grF be such that xn → x̄ and (xn, yn) ≤k0

(x, y) for all n ∈ N. By (τ2), for each i ∈ N, there exists Q(i) ∈ N such that,

∀q > Q(i),

p(x, xq) ≥ p(x, x̄)− 1/i.

Therefore,

yq + k0(p(x, x̄)− 1/i) ≤K yq + k0p(x, xq) ≤K y.

Hence xq ∈ {x′ ∈ X : F (x′) ∩ (y − k0(p(x, x̄)− 1/i)−K) 6= ∅}. As F is K-lsc at

x̄ and xq → x̄, x̄ belongs to this level set as well, i.e. there exists ȳ ∈ F (x̄) such

that

ȳ + k0(p(x, x̄)− 1/i) ≤K y.

The closedness of K in direction k0 implies that

ȳ + k0p(x, x̄) ≤K y,

i.e. F is (k0, K)-lsc at x̄.

(ii) Let {(xn, yn)} in grF be a ≤k0-decreasing sequence with xn → x̄. Since F

is K-lsca at x̄ and {yn} is clearly ≤K-decreasing, there exists ȳ ∈ F (x̄) such that

ȳ ≤K yn for every n ∈ N. It follows that, ∀n, q ∈ N,

ȳ + k0p(xn, xn+q) ≤K yn+q + k0p(xn, xn+q) ≤K yn.

Hence

k0p(xn, xn+q) ≤K yn − ȳ.

Then (τ2) and the closedness of K in direction k0 give

k0p(xn, x̄) ≤K yn − ȳ,

i.e. F is (k0, K)-lsca at x̄. �
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Note that Proposition 2.3(ii) was proved in Göpfert et al. [8] for the case,

where p is the metric of X. Reexamining Example 2.4 it is not hard to see that

F is not K-lsca at 0 although it is (k0, K)-lsca. The following example ensures a

similar situation for being K-lsc.

Example 2.5. Let X = Y = R,K = R+, k0 = 1, p(x, y) = |x − y| and f be a

single-valued function defined by

f(x) =


2 if x = 0,
1

|x|+ 1
otherwise.

Then direct checking shows that f is (k0, K)-lsc on X but not K-lsc at 0.

In the sequel we also say that grF satisfies the property of (k0, K)-lower

semicontinuity from above instead of saying that F is (k0, K)-lsca (on domF ).

Sometimes we concern a subset A ⊆ X × Y , instead of dealing with the graph of

a set-valued mapping, and then we may impose that A satisfies the property of

(k0, K)-lower semicontinuity from above.

3. Enhanced Versions of Ekeland’s Variational Principle

From now on we fix a point z∗ ∈ K+ such that z∗(k0) = 1 (the existence of

such a z∗ is guaranteed by the separation theorem). We use PX to denote the

projection from X × Y on X. A subset A ⊆ X × Y is said to be ≤k0-complete

if, for every ≤k0-decreasing sequence {(xn, yn)} in A with {xn} being a Cauchy

sequence, xn → x̄ for some x̄ in X. Note that if X is complete then any A ⊆ X×Y

is ≤k0-complete.

Theorem 3.1 (Minimal elements). Let X, Y , K, k0, p, z∗ and ≤k0 be as above.

Assume that A ⊆ X × Y satisfies the property of (k0, K)-lower semicontinuity

from above and, for some (x0, y0) ∈ A, SA(x0, y0) is nonempty, ≤k0-complete and

z∗(PY (SA(x0, y0))) is bounded from below. Then there exists (x̄, ȳ) ∈ SA(x0, y0)

such that, if (x, y) ∈ A with (x, y) ≤k0 (x̄, ȳ), then x = x̄ and z∗(y) = z∗(ȳ).

Moreover, if z∗ ∈ K] then, for (x, y) ∈ A with (x, y) ≤k0 (x̄, ȳ), one has

(x, y) = (x̄, ȳ).

Proof. We note first that if SA(x∗, y∗) = ∅ for some (x∗, y∗) ∈ SA(x0, y0), then

(x̄, ȳ) = (x∗, y∗) is a required point. Considering now an arbitrarily fixed (x, y) ∈
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SA(x0, y0) we can assume that SA(x, y) 6= ∅. Let x′ ∈ PX(SA(x, y)). Then there

exists y′ ∈ PY (SA(x0, y0)) such that (x′, y′) ≤k0 (x, y). Hence

k0p(x, x′) ≤K y − y′.

Since z∗(PY (SA(x0, y0))) is bounded from below, we have

p(x, x
′
) ≤ z∗(y)− z∗(y

′
) ≤ z∗(y)− inf{z∗(v) : v ∈ PY (SA(x0, y0))}.

Then

sup{p(x, x′) : x′ ∈ PX(SA(x, y))} < +∞.

Starting with (x0, y0), let us construct a sequence {(xn, yn)} ⊆ SA(x0, y0) in

the following way: having (xn, yn) ∈ SA(xn−1, yn−1) we take a point (xn+1, yn+1) ∈
SA(xn, yn) such that

p(xn, xn+1) ≥ 1
2
sup{p(xn, x

′) : x′ ∈ PX(SA(xn, yn))}. (3.1)

We obtain in this way a sequence {(xn, yn)} ⊆ SA(x0, y0) such that, for all

n ∈ N, (xn+1, yn+1) ≤k0 (xn, yn). Hence PX(SA(xn+1, yn+1)) ⊆ PX(SA(xn, yn)).

Now, let us show that there are two cases for the sequence {(xn, yn)}: either

sup{p(xn0 , x
′) : x′ ∈ PX(SA(xn0 , yn0))} = 0 for some n0 or there exists a subse-

quence {(xnk
, ynk

)} satisfying limk→∞ sup{p(xnk
, x′) : x′ ∈ PX(SA(xnk

, ynk
))} =

0.

Indeed, suppose sup{p(xn, x
′) : x′ ∈ PX(SA(xn, yn))} ≥ δ for some δ > 0 and

every n ∈ N. Then, by (3.1),

1

2
δk0 ≤K k0p(xn, xn+1) ≤K yn − yn+1,

which implies that
1

2
δ ≤ z∗(yn)− z∗(yn+1).

Adding these relations from 0 to n− 1, we obtain

1

2
nδ ≤ z∗(y0)− z∗(yn) ≤ z∗(y0)− inf{z∗(v) : v ∈ PY (SA(x0, y0))},

which yields a contradiction as n → +∞.

Case 1 (sup{p(xn0 , x
′) : x′ ∈ PX(SA(xn0 , yn0))} = 0 for some n0). By (τ4)

there exists (x̄, y∗) ∈ SA(xn0 , yn0) such that PX(SA(xn0 , yn0)) = {x̄}. Hence
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PX(SA(x̄, y∗)) = {x̄}.
Case 2 (there exists a subsequence {(xnk

, ynk
)} satisfying limk→∞ sup{p(xnk

, x′) :

x′ ∈ PX(SA(xnk
, ynk

))} = 0). Since limk→∞ sup {p(xnk
, xnm) : nm > nk} = 0,

Lemma 1.1 implies that {xnk
} is a Cauchy sequence and then xnk

→ x̄ for some

x̄ ∈ X as SA(x0, y0) is ≤k0-complete. By the property of (k0, K)-lower semicon-

tinuity from above there exists y∗ ∈ Y such that (x̄, y∗) ∈ A and, for each k ∈ N,

(x̄, y∗) ≤k0 (xnk
, ynk

).

Now we show that
⋂

k∈N PX(SA(xnk
, ynk

)) = {x̄}. It is easy to see that x̄ ∈⋂
k∈N PX(SA(xnk

, ynk
)). If w ∈

⋂
k∈N PX(SA(xnk

, ynk
)), then limk→∞ p(xnk

, w) =

0. We have limk→∞ sup{p(xnk
, xnm) : m > k} = 0 as well. From (τ3) it follows

that limk→∞ d(xnk
, w) = 0, i.e. w = x̄. Hence, we also have PX(SA(x̄, y∗)) = {x̄}

as for Case 1.

Starting with t0 = y∗, we construct a sequence tn ∈ PY (SA(x̄, y∗)) as follows:

having tn ∈ PY (SA(x̄, tn−1)), we take tn+1 ∈ PY (SA(x̄, tn)) such that

z∗(tn+1) ≤ inf{z∗(t) : t ∈ PY (SA(x̄, tn))}+
1

n + 1
.

The sequence {(x̄, tn)} is clearly≤k0-decreasing. Again by the property of (k0, K)-

lower semicontinuity from above, there exists ȳ ∈ Y such that (x̄, ȳ) ∈ A and

(x̄, ȳ) ≤k0 (x̄, tn) for every n ∈ N.

Of course (x̄, ȳ) ∈ SA(x0, y0). If (x, y) ∈ A and (x, y) ≤k0 (x̄, ȳ), then x = x̄

as PX(SA(x̄, ȳ)) = {x̄}. Since (x, y) ≤k0 (x̄, tn), we have y ∈ PY (SA(x̄, tn)) for

every n ∈ N. Therefore, ∀n ≥ 1,

0 ≤ p(x̄, x) ≤ z∗(ȳ)− z∗(y) ≤ z∗(tn)− inf{z∗(t) : t ∈ PY (SA(x̄, tn−1))} ≤
1

n
,

whence z∗(y) = z∗(ȳ).

Moreover, if z∗ ∈ K], we have y = ȳ, as ȳ − y ∈ K and z∗(ȳ − y) = 0. �

Theorem 3.2 (Strict minimal element). Additionally to the assumptions of The-

orem 3.1, for each x ∈ X, impose that {y′ : (x, y′) ∈ A} has the strict domination

property. Then there exists (x̄, ȳ) ∈ SA(x0, y0) with ȳ ∈ SMinK{y′ : (x̄, y′) ∈ A}
and (x̄, ȳ) ∈ SMink0A, i.e. if (x, y) ∈ A and (x, y) ≤k0 (x̄, ȳ), then (x, y) = (x̄, ȳ).

Proof. Theorem 3.1 implies the existence of (x̄, y∗) ∈ SA(x0, y0) with the prop-

erty that if (x, y) ∈ A and (x, y) ≤k0 (x̄, y∗) then x = x̄. For (x̄, y∗), as

{y′ : (x̄, y′) ∈ A} has the strict domination property, there is ȳ ∈ SMinK{y′ :
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(x̄, y′) ∈ A} such that ȳ ≤K y∗. Let us show that (x̄, ȳ) is a desired element. Of

course (x̄, ȳ) ∈ SA(x0, y0). Let (x, y) ∈ A and (x, y) ≤k0 (x̄, ȳ). Since ȳ ≤K y∗,

(x, y) ≤k0 (x̄, y∗), which implies that x = x̄, (x̄, y) ∈ A and (x̄, y) ≤k0 (x̄, ȳ).

Hence y ≤K ȳ. By the definition of SMinK{.}, one gets ȳ = y. �

Remark 3.1. We note that for every (x0, y0) ∈ A, the condition SA(x0, y0) 6= ∅
in Theorems 3.1 and 3.2 is satisfied if 0 ∈ K and p(x0, x0) = 0, since (x0, y0) ∈
S(x0, y0). A special case is: K is pointed and p is a metric. Theorem 3.1 brings

some improvements to Theorem 1 and Corollary 5 of Göpfert et al. [8].

Theorem 3.3 (An enhanced Ekeland’s variational principle). Let X, Y , K,

k0, p and ≤k0 be as in Theorem 3.1. Consider a set-valued mapping F : X → 2Y

which is quasibounded from below and (k0, K)-lsca. Assume that (x0, y0) ∈ grF

and SgrF(x0, y0) is nonempty and ≤k0-complete. Then, for any ε > 0 and λ > 0,

there exists (x̄, ȳ) ∈ grF such that

(i) ȳ − y0 +
ε

λ
p(x0, x̄)k0 ≤K 0;

(ii) y − ȳ +
ε

λ
p(x̄, x)k0 6≤K 0 for all (x, y) ∈ grF with x 6= x̄.

If (x0, y0) is an εk0-minimizer of F (i.e. y + εk0 6≤K y0, for all y ∈ ImF := {y ∈
F (x) for some x ∈ X}), then x̄ can be chosen to satisfy p(x0, x̄) ≤ λ.

Proof. Applying Theorem 3.1 with grF , εk0 and 1
λ
p in the places of A, k0 and

p, respectively, one sees the existence of (x̄, ȳ) ∈ grF satisfying (i) and (ii). If

p(x0, x̄) > λ, we would have

ȳ + εk0 ≤K ȳ +
ε

λ
p(x0, x̄)k0 ≤K y0,

which contradicts the fact that (x0, y0) is an εk0-minimizer. �

Theorem 3.4 (An enhanced Ekeland’s variational principle). Let X, Y , K, k0,

p and ≤k0 be as in Theorem 3.1. Assume that K is closed, p satisfies (τ2) and F

is quasibounded from below and K-lsca. Assume further that (x0, y0) ∈ grF and

SgrF(x0, y0) is nonempty and ≤k0-complete. Then, the conclusions of Theorem

3.3 also hold.

Proof. Proposition 2.3(ii) implies that F is (k0, K)-lsca. Apply now Theorem
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3.3 to complete the proof. �

Theorem 3.5 (An extended version of the EVP). Impose additionally to the

assumptions of Theorem 3.3, that for every x ∈ domF , F (x) has the strict dom-

ination property. Then there exists (x̄, ȳ) ∈ grF satisfying

(i’) ȳ − y0 +
ε

λ
p(x0, x̄)k0 ≤K 0, with ȳ ∈ SMinKF (x̄);

(ii’) y − ȳ +
ε

λ
p(x̄, x)k0 6≤K 0 for all (x, y) ∈ grF with (x, y) 6= (x̄, ȳ).

If (x0, y0) is an εk0-minimizer of F then x̄ can be chosen such that p(x0, x̄) ≤ λ.

Proof. The usage of Theorem 3.2 with A = grF , εk0 in the place of k0 and 1
λ
p

in the place of p, yields (x̄, ȳ) ∈ grF satisfying (i’) and (ii’). The second assertion

was checked in Theorem 3.3. �

Note that (ii’) of Theorem 3.5 is strictly stronger than (ii) of Theorem 3.3.

Assertions like (ii’) were discussed first in Bao and Mordukhovich [2, 3] with

additional assumptions. The following example shows the essentialness of the

strict domination property of F (x).

Example 3.1. Let X = R, Y = R2, K = {(a, b) : a ∈ R, b ≥ 0}, k0 = (0, 1),

z∗(a, b) = b, p(x1, x2) = |x2 − x1| and

F (x) =

 {(a, b) : a ≥ 0, b ≥ −1} if x = 0,

{(0, 0)} otherwise.

We see that the assumptions of Theorem 3.3 are fulfilled and x̄ = 0, ȳ = (0,−1)

satisfy (ii) but not (ii’) of Theorem 3.5. The reason is that F (x) does not have

the strict domination property. If now K = {(a, b) : a ≥ 0, b ≥ 0)} then F (x)

does, and in fact this point (x̄, ȳ) meets condition (ii’). If, we retain the same K

as at the beginning but modify F (0) as {(a, b) : a ≥ 0, b ≥ a2 − 1}, then F (x)

also has the mentioned property and (x̄, ȳ) does not violate (ii’).

Theorem 3.6 (An extended version of the EVP). Let X, Y , K, k0, p and ≤k0

be as in Theorem 3.1. Assume (τ2), that K is closed, pointed and that F is quasi-

bounded from below, upper K-continuous and nonempty-compact-valued. Assume

further that (x0, y0) ∈ grF and SgrF(x0, y0) is nonempty and ≤k0-complete. Then
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we have the same conclusions of Theorem 3.5.

Proof. By Proposition 2.2(i) F is K-lsca. Then Proposition 2.4(ii) yields that F

is (k0, K)-lsca. On the other hand, for x ∈ domF , F (x) has the strict domination

property. Applying Theorem 3.5 achieves the proof. �

Remark 3.2. For the special case where X is complete and p = d, Theorem 3.6

improves Corollary 3.2 of Li and Zhang [13], where F is assumed to be bounded

from below. It brings some improvements also to Theorem 3.1 of Chen and Huang

[6] as well as Corollary 3.1 of Li and Zhang [13], where F is required additionally

to be usc.

The following example indicates that Theorem 3.6 is more advantegeous than

Theorem 3.1 of Chen and Huang [6].

Example 3.2. Let X = Y = R, p(x, y) = |y − x|, K = R+, k0 = 1, (x0, y0) =

(
1

2
, 0) and

F (x) =

[−1, 1] if x = 0,

[0, 2] if x 6= 0.

Then F is not usc at 0 and Theorem 3.1 of Chen and Huang [6] is not applicable.

But all the assumptions of Theorem 3.6 are fulfilled. Direct calculations show

that (x̄, ȳ) = (0,−1) ∈ grF satisfies (i’) and (ii’).

The next examples give cases where Theorem 3.5 is more suitable for appli-

cation than Corollary 3.2 of Li and Zhang [13], Theorem 3.1 of Chen and Huang

[6] and also the above Theorem 3.6.

Example 3.3. Let X, Y, p, K, k0 and (x0, y0) be as in Example 3.2 and

F (x) =

[−1, 1) if x = 0,

[0, +∞) if x 6= 0.

Then F is not usc and F (x) is noncompact for x 6= 0. Hence all Corollary 3.2

of Li and Zhang [13], Theorem 3.1 of Chen and Huang [6] and our Theorem 3.6

do not work. However, the conditions imposed in Theorem 3.5 are met. Direct

computations ensure that (x̄, ȳ) = (0,−1) ∈ grF fulfils (i’) and (ii’).

Example 3.4. Let X = R, Y = R2, k0 = (0, 1), p(x1, x2) = |x2 − x1|, x0 = 0 and
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y0 = (1, 1). Let

F (x) =

 {(a, b) : 0 ≤ a ≤ 2, a2 − 1 ≤ b ≤ 3} if x = 0,

(0, 0) otherwise,

K = {(a, b) : a ∈ R, b ≥ 0)}.

Then F is not usc and K is not pointed, but Theorem 3.5 is applicable since its

assumptions are satisfied, while the other results mentioned in Example 3.3 are

not in use. In fact x̄ = 0, ȳ = (0,−1) satisfies (i’) and (ii’).

Similarly as for Theorem 3.6, but using Proposition 2.1(iv) instead of Propo-

sition 2.1(i), we obtain

Theorem 3.7 (An extended version of the EVP). Let X, Y , K, k0, p and ≤k0 be

as in Theorem 3.1. Assume that K is closed, p satisfies (τ2), F is quasibounded

from below, K-lsc, F (x) has the strict domination property and SMinKF (x) is

closed for every x ∈ domF . Assume further that (x0, y0) ∈ grF and SgrF(x0, y0)

is nonempty and ≤k0-complete. Then the conclusions of Theorem 3.5 are still

valid.

Note that Theorem 3.7 includes properly Theorem 3.2 of Bao and Mor-

dukhovich [2], where additional conditions that p = d and K is pointed are

imposed. A case where Theorem 3.7 is more suitable for application than many

recent known results is given as follows.

Example 3.5. Let X,Y, p, K, k0 and (x0, y0 be as in Example 3.4 and

F (x) =

 {(a, b) : a ≥ 0, b ≥ a2 − 1} if x = 0,

(0, 0) otherwise.

Then K is not pointed and F (0) is noncompact. Then both the results encoun-

tered in Example 3.4 and Theorem 3.2 of Bao and Mordukhovich [2] cannot be ap-

plied, but Theorem 3.7 can be. It is easy to check directly that (x̄, ȳ) = (0, (0, 0))

satisfies (i’) and (ii’).

Theorem 3.8 (An extended version of the EVP). Let X, Y , K, k0, p and

≤k0 be as in Theorem 3.1. Assume that K is closed, p satisfies (τ2), F is qua-

sibounded from below, K-lsca and F (x) has the strict domination property for
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every x ∈ domF . Assume further that (x0, y0) ∈ grF is such that SgrF(x0, y0)

is nonempty and ≤k0-complete. Then we have the same conclusions of Theorem

3.5.

Proof. Argue similarly as in the proof of Theorem 3.6, using Proposition 2.4(ii)

and Theorem 3.5. �

Remark 3.3. (i) The condition that F is K-lsca and F (x) has the strict domina-

tion property imposed in Theorem 3.8 is easily seen to be equivalent to the lim-

iting monotonicity condition assumed in Theorem 3.5 of Bao and Mordukhovich

[3] (and recalled after Definition 2.1). Hence, when applied to the case where

p = d, Theorem 3.8 improves that Theorem 3.5, since we omit the assumption

that F is K-level closed.

(ii) Applying assertions of Propositions 2.1 - 2.3, different from those applied

in Theorems 3.6 - 3.8, we can get other new versions of the EVP, similar to these

theorems.

4. Some Consequences for Single-Valued Cases

In this section we apply our main results to single-valued cases. To have

a generalization of a linear space Y , which is similar to the extended real line

R ∪ {+∞}, we add to Y an additional element, denoted also by +∞, with the

usual rules for addition and multiplication with reals. We avoid indeterminate

expressions like 0.(+∞) and adopt that y ≤K +∞,∀y ∈ Y . Now we consider a

mapping f : X → Y ∪ {+∞} and denote domf := {x ∈ X : f(x) 6= +∞}. We

say that f is proper if domf 6= emptyset. We use now the relation ≤k0 on domf

by the definition

x2 ≤k0 x1 ⇔ f(x2) + k0p(x1, x2) ≤K f(x1).

The following corollary is a direct consequence of Theorem 3.3.

Corollary 4.1. Let X, Y, p, K and k0 be as specified in Section 3, with the ad-

ditional completeness of X. Assume that f : X → Y ∪ {+∞} be proper and

quasibounded from below. Let S(x):={x′ ∈ X : f(x′) + k0p(x, x′) ≤K f(x)} be

closed for every x ∈ X. Then for every x0 ∈ domf with S(x0) 6= ∅ there exists

v ∈ X such that, ∀x 6= v,

f(v) + k0p(x0, v) ≤K f(x0), (4.1)
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f(x) + k0p(v, x) 6≤K f(v). (4.2)

Proof. Since S(x) is closed for all x ∈ X, f is (k0, K)-lsca. Applying Theorem

3.3 we have (4.1) and (4.2). �

This corollary properly includes Corollary 2 of Göpfert et al. [8], since p 6= d

and f may not be bounded from below.

The following corollary is a direct consequence of Corollary 4.1.

Corollary 4.2. Let X, Y,K, p, k0 and f be as in Corollary 4.1, with K be-

ing closed in the direction k0 and (τ2) being satisfied. Assume that if xn ∈
domf, xn → x and f(xn) is ≤K decreasing, then f(x) ≤K f(xn),∀n ∈ N. As-

sume further that x0 ∈ domf and S(x0) 6= ∅. Then there exists v ∈ X such that,

∀x 6= v, (4.1) and (4.2) hold.

If f is not only quasibounded from below but also bounded from below and

p = d, this corollary coincides with Corollary 3 of Göpfert et al. [8].

Corollary 4.3. Let X, Y, K and k0 be as specified in Section 3, with the ad-

ditional completeness of X and closedness of K. Let p be a τ -function and Φ:

X ×X → Y ∪ {+∞} satisfy the assumptions

(i) there is x0 ∈ X such that Φ(x0, x0) = 0 and Φ(x0, .) is K-lsca and quasi-

bounded from below;

(ii) if Φ(x, z) ∈ −K and Φ(z, y) ∈ −K, then

Φ(x, y) ≤ Φ(x, z) + Φ(z, y).

Then there exists v ∈ X such that, ∀x 6= v,

(a) Φ(x0, v) ∈ −K, if p(x0, x0) = 0.

(b) Φ(v, x) + k0p(v, x) 6∈ −K.

Proof. Set f(.) = Φ(x0, .). Then the assumptions of Theorem 3.4 are clearly

satisfied. Hence, this theorem gives v ∈ X such that, ∀x 6= v, (4.1), (4.2) hold.

As f(x0) = Φ(x0, x0) = 0, (4.1) implies that Φ(x0, v) ∈ −K. For any x ∈
X \ {v}, if Φ(v, x) 6∈ −K then (b) is fulfilled. If Φ(v, x) ∈ −K, (4.2) implies that

Φ(x0, x)− Φ(x0, v) + k0p(v, x) 6∈ −K,
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and (ii) yields

Φ(v, x) + k0p(v, x) 6∈ −K.

�

Corollary 4.4 (Lin and Du [14]). Let X be a complete metric space and p be a

τ -function. Let f : X → R ∪ {+∞} be proper, R+-lsca and bounded from below.

Let ϕ: R → (0,∞) be nondecreasing. Then there exists v ∈ X such that, ∀x 6= v,

p(v, x) > ϕ(f(v))(f(v)− f(x)).

Proof. Setting Φ(x, y) = ϕ(f(x))(f(y) − f(x)) we see that, ∀x ∈ X, Φ(x, .) is

proper, R+-lsca, bounded from below and Φ(x, x) = 0. We claim that Φ satisfies

(ii) of Corollary 4.3. Indeed, if Φ(x, z) ≤ 0 and Φ(z, y) ≤ 0 then

f(y) ≤ f(z) ≤ f(x).

Hence, as ϕ(f(z)) ≤ ϕ(f(x)),

Φ(x, z) + Φ(z, y) ≥ ϕ(f(x))(f(z)− f(x)) + ϕ(f(x))(f(y)− f(z))

= Φ(x, y).

Now applying Corollary 4.3 with k0 = 1 one obtains v ∈ X such that, ∀x 6= v,

Φ(v, x) + p(v, x) > 0.

Therefore

p(v, x) > ϕ(f(v))(f(v)− f(x)). �

Corollary 4.5. Let X, p, f and ϕ be as in Corollary 4.4. Let ε > 0 and x0 ∈ X

satisfy f(x0) ≤ infx∈X f(x) + ε. Then v ∈ X exists such that, ∀x 6= v,

(i) 0 ≤ f(x0)− f(v) ≤ ε, if p(x0, x0) = 0;

(ii) εp(v, x) > ϕ(f(v))(f(v)− f(x)).

Proof. Set Φ(x, y) = ϕ(f(x))(f(y)−f(x)). Taking εp for p in Corollary 4.4 gives

(ii) and Φ(x0, v) ≤ 0. Hence, f(x0)− f(v) ≥ 0. Since f(x0) ≤ infx∈X f(x) + ε ≤
f(v) + ε, we obtain (i). �

For the special case, where p is a w-distance, Corollary 4.5 coincides with

Theorem 2.4 of Lin and Du [15].

Corollary 4.6. Let X, Y, K, p and k0 be as in Corollary 4.3. Let x0 ∈ X, ε > 0

and Φ: X ×X → Y satisfy the conditions
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(i) Φ(x0, x0) = 0 and z∗(Φ(x0, .)) is bounded from below;

(ii) Φ(x0, .) is K-lsca;

(iii) Φ(x, y) ≤ Φ(x, z) + Φ(z, y) for any x, y, z ∈ X.

Then there exists v ∈ X such that, ∀x 6= v,

(a) Φ(x0, v) + εk0p(x0, v) ∈ −K, if p(x0, x0) = 0;

(b) Φ(v, x) + εk0p(v, x) 6∈ −K.

Proof. Setting f(.) = Φ(x0, .) we see that f(x0) = 0 and f(.) is K-lsca. Applying

now Theorem 3.1 with A = grf yields v ∈ X such that, ∀x 6= v,

f(x) + k0p(v, x) 6∈ f(v)−K.

Consequently, by (iii), we arrive at (b). Conclusion (a) is obvious. �

Note that Corollary 4.6 contains properly Theorem 3.1 of Ansari [1] (since in

this theorem p is a w-distance, and (i) is required to be fulfilled for all x ∈ X),

Theorem 1 of Bianchi et al. [5] (since in that theorem p = d, (i) is required to be

fulfilled for all x ∈ X and (ii) is replaced by the condition that Ψ(x, .) is K-lsc

for all x ∈ X) and Theorem 2.1 of Bianchi et al. [4], which is the special case

with Y = R of the mentioned Theorem 1.

Corollary 4.7. Let X, Y, K, p and k0 be as specified in Section 3, with the

additional closedness of K and (τ2). Let Ψ: X ×X → Y satisfy conditions (ii)

and (iii) of Corollary 4.6.

Define a binary relation ≤′k0
on X by

y ≤′k0
x ⇔ y = x or y ≤k0 x.

Assume that there exists a nonempty subset M of X such that

(i) M is ≤′k0
complete;

(ii) there exists x0 ∈ M such that Ψ(x0, x0) = 0 and z∗(Ψ(x0, .)) is bounded

from below.

Then ≤′k0
is a quasi-order and there exists v ∈ X such that, for all x 6= v,
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(1) {y ∈ M : y ≤′k0
v} = {v};

(2) Ψ(x0, v) + εp(x0, v)k0 ∈ −K, if p(x0, x0) = 0;

(3) Ψ(v, x) + εp(v, x)k0 6∈ −K.

This corollary is derived directly from Corollary 4.7 and properly includes

Theorems 2.1 - 2.2 of Lin and Du [16]. Furthermore applying Theorem 3.3 we

obtain also Theorem 3.1 of that paper.
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