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1. INTRODUCTION

The quasivariational inclusion problem is a general model which was in-

troduced and studied recently, see [1-5, 11], to include many optimization-

related problems such as quasiequilibrium problems, quasivariational inequal-

ities, vector minimization problems, fixed-point and coincidence-point prob-

lems, etc.

On the other hand, spaces on which the considered problems are defined,

have also been an object to be generalized in order to make the problems

encompass a wide range of practical situations. A generalized convex space or

G-convex space [13] is very general. Its particular forms are a convex subset

of a topological vector space, a convex space [6], an S-contractive space, an

H-space, a Komiya convex space, a metric space with the Michael convex

structure, see [12] for more details.

The aim of this paper is to extend the quasivariational inclusion problem

to being defined on G-convex spaces and to establish sufficient existence con-

ditions under relaxed assumptions so that when applied even to particular

cases these conditions improve recent existing results. The paper is struc-

tured as follows. The remaining part of this section consists of the problem

setting and preliminaries. Section 2 is devoted to the main results. In Section

3 we deal with particular cases to compare in more details some recent results

with our sufficient conditions when applied to the corresponding special cases.

Definition 1.1 (i) (see [6]) A convex set A in a vector space is called a

convex space if it is equipped with a topology which includes the Euclidean

topology on convex hulls of any nonempty finite subsets of A.
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(ii) (see [13]) A generalized convex space or a G-convex space is a triple

(A, D, Γ) of a topological space A, a nonempty subset D of A and a general-

ized convex hull operator Γ from 〈D〉 (the set of all nonempty finite subsets

of D) into 2A (the space of all subsets of A) with nonempty values such that

(a) for each M, N ∈ 〈D〉, M ⊆ N implies Γ(M) ⊆ Γ(N);

(b) for each N ∈ 〈D〉 with |N | = n+ 1, there exists a continuous map

ΦN : ∆n −→ Γ(N) such that, for each J ∈ 〈N〉, ΦN(∆J) ⊂ Γ(J), where ∆n is

the n - simplex with the vertices being the unit vectors e1, e2, ..., en+1 which

form a basis of Rn+1 and ∆J is the face of ∆n corresponding to J ∈ 〈N〉.

If D = A we omit D writing simply (A, D). (Note that for N ∈ 〈D〉,

Γ(N) does not need to contain N and a convex space A becomes a G-convex

space (A, Γ) by setting Γ(N) = coN for N ∈ 〈A〉.)

(iii) (see [13]) for a G-convex space (A, D, Γ), a subset B of A is said to

be G-convex if, for each N ∈ 〈D〉, N ⊆ B implies Γ(N) ⊆ B. (Note that any

subset C ⊆ A\D is G-convex.)

(iv) for a G-convex space (A, D, Γ) and a nonempty subset B of A, the

G-convex hull of B, denoted by G-coB, is
⋂{C ⊆ A : C is a G-convex subset

of A containing B}.

Now, we pass to our problem setting. Let (A, Γ) be a G-convex space, A

being Hausdorff, Y and Z be (real) Hausdorff topological vector spaces,

B ⊆ Z be nonempty. Let Si: A −→ 2A, i = 1, 2, T : A −→ 2B, f :

B × A × A −→ 2Y and g : B × A −→ 2Y be multimaps (i.e. multivalued

maps). We consider the following two quasivariational inclusion problems
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(IP1) Find x̄ ∈ S1(x̄) such that,∀y ∈ S2(x̄),∀t ∈ T (x̄, y),

f(t, x̄, y) ⊆ g(t, x̄);

(IP2) Find x̄ ∈ S1(x̄) such that,∀y ∈ S2(x̄),∀t ∈ T (x̄, y),

f(t, x̄, y) ∩ g(t, x̄) 6= ∅.

Note that in [1-5], for quasivariational inclusion problems defined in A be-

ing a topological vector space, weaker models with ”∀y ∈ S2(x̄),∀t ∈ T (x̄, y)”

replaced by ”∀y ∈ S2(x̄),∃t ∈ T (x̄, y)” or by ”∃t ∈ T (x̄, y),∀y ∈ S2(x̄)” were

also investigated. However, both the results and the proof techniques are

similar as for the above model. Therefore, in this paper we are concerned

only with the model of (IP1) and (IP2) for the sake of simple presentation.

With this remark the reader will be convinced that our two problems include

a wide range of optimization - related problems by refering to, e.g. [3, 4].

Definition 1.2 Let X, Y be topological spaces and F : X −→ 2Y .

(i) F is said to be upper semicontinuous (usc in short, respectively lower

semicontinuous, lsc in short) at x0 ∈ X if for every open subset U ⊇ F (x0)

(respectively, U ∩ F (x0) 6= ∅), there is a neighborhood N of x0 such that

∀x ∈ N, U ⊇ F (x)(respectively, U ∩ F (x) 6= ∅). F is called usc in A ⊆ X if

F is usc at ∀x ∈ A. If A = domF = {x ∈ X : F (x) 6= ∅} we omit ”in A” in

the saying. We adopt this convention for each property of a multimap.

(ii) F is called transfer open (respectively transfer closed) if for every

x ∈ X and y ∈ F (x) (respectively y /∈ F (x)), there is x ’ ∈ X such that y ∈

intF (x′) (respectively y /∈ clF (x′)).
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(iii) Let C ⊆ Y be a cone. F is termed C-usc (respectively C-lsc) at

x0 ∈ X if for every neighborhood V of 0 in Y, there is a neighborhood N of

x0 such that F (x) ⊆ F (x0) + U + C (respectively F (x0) ⊆ F (x) + U + C)

for every x ∈ N .

Note that F : X −→ 2Y is lsc at x0 if and if ∀xλ ∈ domF: xλ −→ x0,∀y ∈

F (x0),∃yλ ∈ F (xλ), yλ −→ y.

Lemma 1.1 (see [7]) Let X, Y be topological spaces and F : X −→ 2Y

be a multimap. Then the following two assertions are equivalent

(i) the inverse F−1 is transfer open and domF = X;

(ii) X =
⋃

y∈Y intF−1(y).

Lemma 1.2 Let (A, D, Γ) be a G-convex space and B ⊆ A be nonempty.

Then G-coB = {x ∈ A: ∃N ∈ 〈B〉, x ∈ G−coN}.

Proof. For every N ∈ 〈B〉, it is clear that G-coN ⊆ G−coB. Hence

B ⊆
⋃

N∈〈B〉
(G−coN) ⊆ G−coB.

Therefore, it suffices to show that the union in these inclusions, which is

now denoted by C, is G-convex. Assume that N0 ∈ 〈D〉 such that N0 ⊆ C.

By the definition of C, there is {N1, N2, ..., Nk} ∈ 〈B〉, such that N0 ⊆⋃k
i=1(G−coNi) ⊆ C. Since

⋃n
i=1 Ni ∈ 〈B〉, one has G−co(

⋃n
i=1 Ni) ⊆ C. As,

∀j = 1, 2, ..., k, G−coNj ⊆ G−co(
⋃k

i=1 Ni), one has further N0 ⊆ G−co(
⋃k

i=1 Ni).

Since each G-convex hull is G-convex, by Definition 1.1(iii), Γ(N0) ⊆ G-

co(
⋃k

i=1 Ni) ⊆ C. Hence, again by this definition, C is G-convex.
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We propose the following relaxed generalized convexity for multimaps in

G-convex spaces.

Definition 1.3 Let B, C be sets, (A, Γ) be a G-convex space and M ⊆ A.

Let f : B × A × A −→ 2C , g: B × A −→ 2C and T : A × A −→ 2B be

multimaps. f is called g-G-quasiconvex relative to T on M if, for any finite

subset N = {x1, x2, ..., xn} ∈ 〈M〉 and for any x ∈ G-coN , there is some

i ∈ {1, 2, ..., n} such that, ∀t ∈ T (x, xi),

f(t, x, xi) ⊆ g(t, x). (1)

A definition of the corresponding g-G-quasiconvexlikeness is obtained by

replacing (1) by f(t, x, xi) ∩ g(t, x) 6= ∅.

If A is a convex subset of a vector space and G-coN is the usual convex

hull of N, then the g-G-quasiconvexity and g-G-quasiconvexlikeness collapse

respectively to the g-quasiconvexity and g-quasiconvexlikeness defined in [3].

If, more particular, T (x, y) = {x} and g(t, x) = K (x ) with K (x ) being a con-

vex cone, these notions become the strong type 1 and type 2 (respectively)

K -diagonal quasiconvexities proposed in [8].

The following fixed-point theorem is the main tool for proving our results.

Theorem 1.3 (see [9, Theorem 1]) Let (A, Γ) be a G-convex space and Q:

A −→ 2A be a multimap satisfying the conditions

(i) A =
⋃

y∈A intQ−1(y);

(ii) there is a nonempty compact subset D of A such that, for each N ∈
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〈A〉, there exists a compact G-convex subset LN of A, containing N so that

LN ∩ (A\
⋃

y∈LN

intQ−1(y)) ⊆ D.

Then, G-coQ(.) has a fixed point in A.

2. MAIN RESULTS

For problems (IP1) and (IP2) we set

E = {x ∈ A : x ∈ S1(x)}.

Theorem 2.1 Assume for problem (IP1) that there are h: B×A×A −→ 2Y

and k : B × A −→ 2Y such that the following conditions hold

(i) E is nonempty and closed, S2(x) 6= ∅ and G−coS2(x) ⊆ S1(x) for

each x ∈ A\E;

(ii) for (x, y) ∈ E × S2(x), if h(t, x, y) ⊆ k(t, x) ∀t ∈ T (x, y) then

f(t, x, y) ⊆ g(t, x), ∀t ∈ T (x, y);

(iii) for each x ∈ E, h is k -G-quasiconvex relative to T on S2(x);

(iv) S−1
2 and H−1 are transfer open, where H : A −→ 2A is defined by

H(x) = {y ∈ S2(x) : ∃t ∈ T (x, y), h(t, x, y) 6⊆ k(t, x)};

(v) there is a nonempty compact subset D of A such that, for each N ∈

〈A〉, there exists a compact G-convex subset LN of A containing N so that,

∀x ∈ LN\D, ∃y ∈ LN : x ∈ intS−1
2 (y), and that, ∀x ∈ S1(x) ∩ (LN\D),

∃y ∈ LN : x ∈ intH−1(y).

Then (IP1) is solvable.

Proof. Since E 6= ∅, reasoning ab absurdo, suppose ∀z ∈ E, ∃y ∈ S2(x),∃t ∈
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T (x, y),

f(t, x, y) 6⊆ g(t, x). (2)

Let Φ, Ψ, P : A −→ 2A be defined by

Φ(x) =

 H(x) if x ∈ E,

S2(x) if x ∈ A\E,

Ψ(x) = {y ∈ S2(x) : ∃t ∈ T (x, y), f(t, x, y) 6⊆ g(t, x)} ,

P (x) = {y ∈ A : ∃t ∈ T (x, y), h(t, x, y) 6⊆ k(t, x)} . (3)

By (2) and assumption (ii), ∅ 6= Ψ(x) ⊆ H(x),∀x ∈ E. Hence, by (i),

Φ(x) 6= ∅,∀x ∈ A. For any y ∈ A, one has

Φ−1(y) = [E ∩H−1(y)] ∪ [(A \ E) ∩ S−1
2 (y)]

= H−1(y) ∪ [(A \ E) ∩ S−1
2 (y)].

So there are two possibilities for x ∈ Φ−1(y). If x ∈ H−1(y), then by (iv),

there is y′ ∈ A such that

x ∈ intH−1(y′) ⊆ intΦ−1(y′).

If x ∈ (A\E) ∩ S−1
2 (y), (iv) implies also the existence of y′ ∈ A such that

x ∈ (A\E) ∩ intS−1
2 (y′) ⊆ int[((A\E) ∩ S−1

2 (y′)) ∪ H−1(y′)] = intΦ−1(y′).

Consequently, Φ−1 is transfer open and hence A =
⋃

y∈A intΦ−1(y) by Lemma

2.1.

We claim that assumption (ii) of Theorem 1.3 is satisfied for Q = Φ with

D and LN obtained from assumption (v) of this theorem. let x ∈ LN and,

∀y ∈ LN ,
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x /∈ intΦ−1(y). (4)

Suppose to the contrary that x /∈ D. If x ∈ A\E, assumption (v) yields

y ∈ LN with x ∈ intS−1
2 (y) ∩ (A\E) ⊆ intΦ−1(y) as A\E is open. This

contradicts (4). If x ∈ E, then x ∈ S1(x)∩(LN\D) and (v) gives y ∈ LN with

x ∈ intH−1(y) ⊆ intΦ−1(y), a contradiction again. Thus, both assumptions

of Theorem 1.3 are fulfilled.

Finally, suppose there exists x0 ∈ A such that x0 ∈ G−coΦ(x0). If

x0 ∈ A\E, x0 ∈ G−coS2(x0) ⊆ S1(x0), i.e, x0 ∈ E, which is impossible. If

x0 ∈ E, then x0 ∈ G−coH(x0). By Lemma 2.2, N ∈ 〈H(x0)〉 ⊆ 〈S2(x0)〉

exists such that x0 ∈ G−coN. According to assumption (iii), one has xi ∈ N

such that, ∀t ∈ T (x0, xi), h(t, x0, xi) ⊆ k(t, x0). This contradiction with the

fact that xi ∈ H(x0) completes the proof.

Now we go further into details of the assumptions of Theorem 2.1 to see

that although they look seemingly complicated, they are in fact relaxed and

satisfied in many situations which are often met. We begin with assumption

(iii).

Proposition 2.2 Let A, B, Y and T be as in problem (IP1). Let h:

B × A × A −→ 2Y and k : B × A −→ 2Y . Assume that for each x ∈ A,

h(t, x, x) ⊆ k(t, x) for all t ∈ T (x, x) and the set

Ux = {y ∈ A : ∃t ∈ T (x, y), h(t, x, y) 6⊆ k(t, x)}

is G-convex. Then h is k-G-quasiconvex relative to T on A.

Proof. Suppose to the contrary the existence of N ∈ 〈A〉 and x ∈ G−coN

such that, ∀xi ∈ N , ∃t ∈ T (x, xi), h(t, x, xi) 6⊆ k(t, x). Then N ⊆ Ux and,

9



as Ux is G-convex, x ∈ Ux, i.e. h(t, x, xi) 6⊆ k(t, x) for some t ∈ T (x, x), a

contradiction.

Passing to the transfer openness assumption we have

Proposition 2.3 Let A, T be as in problem (IP1) and h, k, H be defined

as in Theorem 2.1. For y ∈ A, if S−1
2 (y) is open and the set

Vy = {x ∈ A : ∀t ∈ T (x, y), h(t, x, t) ⊆ k(t, x)}

is closed, then H−1(y) is open. Hence, if this is satisfied for all y ∈ A, H−1

is transfer open.

Proof. For y ∈ A we have H−1(y) = S−1
2 (y) ∩ P−1(y), where P is defined by

(3). We also have

P−1(y) = {x ∈ A: ∃t ∈ T (x, y), h(t, x, y) 6⊆ k(t, x)}

= A\Vy,

which is open. By the assumption, H−1 is open.

To ensure the closedness of Vy we have

Proposition 2.4 Let A, T, h, k, and Vy be defined as in Proposition 2.3.

Then Vy is closed if one of the following conditions holds

(i) T (·, y) and h(·, ·, y) are lsc and k has a closed graph;

(ii)Y is a locally convex space; k has the form k(t, x) = k1(t, x) + K with

K ⊆ Y being a closed convex cone ; T (·, y) is lsc, h(·, ·, y) is K-lsc and k1 is

K-usc and compact-valued.

Proof. (i) Let xγ ∈ Vy, xγ −→ x0. Then by the assumption, ∀t0 ∈ T (x0, y),
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∀v0 ∈ h(t0, x0, y),∃tγ ∈ T (xγ, y): tγ −→ t0,∃vγ ∈ h(tγ, xγ, y) ⊆ k(tγ, xγ) :

vγ −→ v0. Since the graph of k is closed, v0 ∈ k(t0, x0). Hence, ∀t0 ∈

T (x0, y), h(t0, x0, y) ⊆ k(t0, x0), i.e. x0 ∈ Vy.

(ii) Suppose the existence of xγ ∈ Vy, xγ −→ x0 but x0 /∈ Vy, i.e., ∃t0 ∈

T (x0, y), h(t0, x0, y) 6⊆ k1(t0, x0) + K. Then there is h0 ∈ h(t0, x0, y) such

that 0 /∈ k1(t0, x0)+K−h0 =: M . Since k1(t0, x0) is compact, Y \M is open.

Consequently there exists a neighborhood U of 0 such that U ⊆ Y \M . As

Y is a locally convex space we can assume that U is convex and U = -U.

Then

(−1
2
U − 1

2
U)∩ (k1(t0, x0)+K−h0) = ∅. (5)

By the lower semicontinuity of T (·, y) and K -lower semicontinuity of h(·, ·, y),

there is tγ ∈ T (xγ, y) : tγ −→ t0 such that, for all γ,

h(t0, x0, y) ⊆ h(tγ, xγ, y)+ 1
2
U +K. (6)

As xγ ∈ Vy, h(tγ, xγ, y) ⊆ k1(tγ, xγ) + K. The K -upper semicontinuity of k1

in turn implies that, for all γ,

k1(tγ, xγ) ⊆ k1(t0, x0) + 1
2
U + K. (7)

(6) and (7) imply that, ∀h ∈ h(t0, x0, y),

(−1
2
U − 1

2
U) ∩ (k1(t0, x0) + K − h) 6= ∅,

contradicting (5).

Theorem 2.1 together with Theorem 2.5 below are easily modified to

become corresponding results for the other variants of problems (IP1), (IP2)

mentioned in Section 1.

Observe that E is closed if S1 has closed graph (but not vice versa) and

that assumption (v) of Theorem 3.1 becomes an usual coercivity assumption
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if A is a convex subset of a real topological vector space. Therefore, taking

into account Propositions 2.2 and 2.3 one sees that Theorem 2.1 includes

Theorems 3.1 and 3.3 of [3] and Theorem 2.1 of [4].

Passing to problem (IP2) we have the following result.

Theorem 2.5 Impose the assumptions of Theorem 2.1 with the following

replacements : h(t, x, y) ⊆ k(t, x) replaced by h(t, x, y) ∩ k(t, x) 6= ∅; the gen-

eralized quasiconvexity is replaced by the generalized quasiconvexlikeness and

H is replaced by H1 defined as

H1(x) = {y ∈ S2(x) : ∃t ∈ T (x, y), h(t, x, y) ∩ k(t, x) = ∅}.

Then problem (IP2) has solutions.

By the similarity we omit the proofs of this theorem and of the conditions

below for its assumptions to hold, corresponding to Propositions 2.2 - 2.4.

Notice that Vy is now replaced by V1
y = {x ∈ A : ∀t ∈ T (x, y), h(t, x, y) ∩

k(t, x) 6= ∅}. Corresponding to Proposition 2.4, conditions for the closedness

of V1
y are given in the following.

Proposition 2.6 Let A, T, h, k be as in Proposition 2.4 and V1
y be as

above. Then each of the following conditions is sufficient for V1
y to be closed.

(i) T (·, y) and h(·, ·, y) are usc and compact-valued and k has a closed

graph;

(ii)Y is a locally convex space; k has the form k(t, x) = k1(t, x) + K with
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K ⊆ Y being a closed convex cone; T (·, y) is usc and compact-valued, h(·, ·, y)

and k1are K - usc and k1 has compact-values.

With these propositions, it is easy to see that Theorem 2.5 improves

Theorem 3.2 and 3.4 of [3] and Theorem 2.1 of [4] when it is applied to the

particular cases considered in [3, 4]. The following example shows that The-

orems 2.1 and 2.5 contain properly the mentioned recent results.

Example 2.1 Let A = [-1, 1], Y = Z = R+, T (x, y) ≡ R, g(t, x) ≡ (−∞, 0),

S1(x) =


[−1, x] if − 1 ≤ x ≤ −0.5,

(0, 1) if − 0.5 < x < 0,

(0, x) if 0 ≤ x ≤ 1,

S2(x) =


[−1, x) if − 1 ≤ x ≤ −0.5,

(0, 1) if − 0.5 < x < 0,

(0, x) if 0 ≤ x ≤ 1,

f(t, x, y) =

 [0, 1] if 0 ≤ y ≤ 1,

{−xy} if − 1 ≤ y < 0.

Then for y = -1, Vy = V1
y = [-1, 0) are not closed. Taking arbitrarily

N = {x1, x2, ..., xn} ⊆ (0, 1), for every x ∈ coN and i ∈ {1, 2, ..., n} one

sees that ∀t ∈ T (x, xi), f(t, x, xi) ⊆ Y \g(t, x), i.e. f is neither g-quasiconvex

relative to T on A nor g-quasiconvexlike relative to T on A. Hence, The-

orems 3.1 - 3.4 of [3] cannot be applied. Moreover, for any x ∈ [0, 1], any

t ∈ T (x, x), f(t, x, x) ⊆ Y \g(t, x). So Theorem 2.1 of [4] cannot be employed

either.
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Now we check the assumptions of Theorems 2.1 and 2.5 with h = f and

k = g. (v) and (i) are satisfied since A is compact and E = [-1, -0.5]. For

(iii), taking any x ∈ E, N ∈ 〈S2(x)〉 = 〈[−1, x)〉, x0 ∈ coN, xi ∈ N and

t ∈ T (x0, xi) one has f(t, x0, xi) ⊆ g(t, x0). To verify assumption (iv) one

easily computes the following preimages:

S−1
2 (y) =


(y,−0.5) if − 1 ≤ y < −0.5,

∅ if − 0.5 ≤ y ≤ 0,

(−0.5, 0) ∪ (y, 1] if 0 < y ≤ 1,

H−1(y) = S−1
2 (y) ∩ {x ∈ A : ∃t ∈ T (x, y), f(t, x, y) 6⊆ g(t, x)}

=

 S−1
2 (y) ∩ [−1, 1] if 0 ≤ y ≤ 1,

S−1
2 (y) ∩ [0, 1] if − 1 ≤ y < 0,

=

 ∅ if − 1 ≤ y ≤ 0,

(y, 1] if 0 < y ≤ 1,

to see that these sets are open in A for all y ∈ A. Furthermore it is eas-

ily seen that H−1
1 (y) = H−1(y) for all y ∈ A. Thus Theorems 2.1 and 2.5 say

that both the problems (IP1) and (IP2) have solutions.

3. PARTICULAR CASES

As mentioned in Section 1, our problems (IP1) and (IP2) (and their mod-

ified weaker models) include many quasivariational inclusion problems, qua-

siequilibrium problems, etc, considered recently in the literature, since both

the formulation and the involved spaces are general. Therefore, we can derive
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from Theorems 2.1 and 2.5 consequences for special cases to include many

recent results. In Section 2 we mentioned several theorems of [3, 4] as exam-

ples (these theorems were shown in [3, 4] to contain many other results, see

also [5, 11]).

In this section we derive several theorems for cases of G-convex spaces

and convex spaces of [8, 10] also as examples. Let (A, Γ) be a G-convex

space, Y be a Hausdorff topological vector space, F : A× A −→ 2Y and C:

A −→ 2Y . Consider the following problems

(I) Find x̄ ∈ A such that, ∀y ∈ A,

F (x̄, y) ⊆ C(x̄);

(II) Find x̄ ∈ A such that, ∀y ∈ A,

F (x̄, y) ∩ C(x̄) 6= ∅;

(III) Find x̄ ∈ A such that, ∀y ∈ A,

F (x̄, y) 6⊆ −intC(x̄);

(IV) Find x̄ ∈ A such that, ∀y ∈ A,

F (x̄, y) ∩ (−intC(x̄)) = ∅.

In [8], problems (I) - (IV) were studied for the case where A is convex

space. The following problem

(II’) Find x̄ ∈ A such that, ∀y ∈ A,

F (x̄, y) 6⊆ C(x̄),
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where C: A −→ 2Y , was investigated in [10] for the case where (A, Γ) is a

G-convex space. By setting C(x) = Y \C(x), problem (II’) becomes problem

(II).

Corollary 3.1 Assume the existence of H: A×A −→ 2Y and K: A −→ 2Y

such that

(i) for x, y ∈ A, H(x, y) ⊆ K(x) implies F (x, y) ⊆ C(x);

(ii) H is K-G-quasiconvex relative to T, where T (x) = {x}; (iii) H−1 is

transfer open, where H: A −→ 2A is defined by

H(x) = {y ∈ A: H(x, y) 6⊆ K(x)};

(iv) there is a nonempty compact subset D of A such that for each N ∈

〈A〉, there exists a compact G-convex subset LN of A, containing N so that,

∀x ∈ LN\D, ∃y ∈ LN , x ∈ intH−1(y).

Then Problem (I) has solutions.

Corollary 3.1 is the special case of Theorem 2.1 with A ≡ B, f(t, x, y) =

F (x, y), g(t, x) = C(x), h(t, x, y) = H(x, y) and k(t, x) = K(x). This corol-

lary contains properly Theorem 4.2 and Corollary 4.2 of [8], where A is a

convex space and the assumptions are stronger.

Corollary 3.2 Assume for Problem (II ) the conditions of Corollary 3.1 with

the following modifications : ′′quasiconvex ′′ in (ii) is replaced by ′′quasiconvex-

like ′′; ′′H(x, y) 6⊆ K(x)′′ in (iii) is replaced by ′′H(x, y) ∩K(x) = ∅′′ and (i)

is replaced by ′′for x, y ∈ A, H(x, y)∩K(x) 6= ∅ implies F (x, y)∩C(x) 6= ∅′′.

Then Problem (II) is solvable.
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This corollary is derived from Theorem 2.5 with the same setting as for

Corollary 3.1. It includes Theorem 4.6 of [8] and Theorems 3.3 - 3.4 of [10]

(the convexity assumption in (iii) here is more relaxed than in [10]).

Corollary 3.3 Assume for Problem (III) the conditions(ii), (iii) and (iv) and

replace (i) by ′′for x, y ∈ A, H(x, y)∩K(x) 6= ∅ implies F (x, y) 6⊆ −intC(x)′′.

Then Problem (III) has a solution.

To prove this corollary simply set B, f, h, k as for Corollary 3.1 and

g(x, y) = Y \-intC(x) in Theorem 2.5. This corollary contains Theorem 4.8

of [8].

Corollary 3.4 Impose for Problem (IV) assumptions(ii), (iii) and (iv) as

in Corollary 3.1 and replace (i) by ′′for x, y ∈ A, H(x, y) ⊆ K(x) implies

F (x, y) ∩ (−intC(x)) = ∅ ′′. Then Problem (IV) is solvable.

To prove this corollary set B, f, h, k and g as for Corollary 3.3 into The-

orem 2.1. This corollary includes Theorem 4.10 of [8].
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