
SUBDIFFERENTIALS OF VALUE FUNCTIONS AND OPTIMALITY
CONDITIONS FOR SOME CLASSES OF DC AND BILEVEL INFINITE

AND SEMI-INFINITE PROGRAMS

N. DINH1, B. S. MORDUKHOVICH 2 and T. T. A. NGHIA3
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variables and contain, among other constraints, infinitely many of inequality constraints. These
problems reduce to semi-infinite programs in the case of finite-dimensional spaces of decision vari-
ables. We focus on DC infinite programs with objectives given as the difference of convex functions
subject to convex inequality constraints. The main results establish efficient upper estimates of cer-
tain subdifferentials of (intrinsically nonsmooth) value functions in DC infinite programs based on
advanced tools of variational analysis and generalized differentiation. The value/marginal functions
and their subdifferential estimates play a crucial role in many aspects of parametric optimization
including well-posedness and sensitivity. In this paper we apply the obtained subdifferential esti-
mates to establishing verifiable conditions for the local Lipschitz continuity of the value functions and
deriving necessary optimality conditions in parametric DC infinite programs and their remarkable
specifications. Finally, we employ the value function approach and the established subdifferential
estimates to the study of bilevel finite and infinite programs with convex data on both lower and
upper level of hierarchical optimization. The results obtained in the paper are new not only for the
classes of infinite programs under consideration but also for their semi-infinite counterparts.
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1 Introduction

This paper is devoted to the study of a broad class of parametric constrained optimization
problems in Banach spaces with objectives given as the difference of two convex functions
and constraints described by an arbitrary (possibly infinite) number of convex inequalities.
We refer to such problems as to parametric DC infinite programs, where the abbreviation
“DC” signifies the difference of convex functions, while the name “infinite” in this framework
comes from the comparison with the class of semi-infinite programs that involve the same
type of “infinite” inequality constraints but in finite-dimensional spaces; see, e.g., [10].
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Observe that the “infinite” terminology for constrained problems of this type has been
recently introduced in [6] for the case of nonparametric problems with convex objectives.

Our approach to the study of infinite DC parametric problems is based on consid-
ering certain generalized differential properties of marginal/value functions, which have
been recognized among the most significant objects of variational analysis and paramet-
ric optimization especially important for well-posedness, sensitivity, and stability issues in
optimization-related problems, deriving optimality conditions in various problems of opti-
mization and equilibria, control theory, viscosity solutions of partial differential equations,
etc.; see, e.g., [13, 14, 20] and the references therein.

We mainly focus in this paper on a special class of marginal functions defined as value
functions for DC problems of parametric optimization written in the form

µ(x) := inf
{
ϕ(x, y)− ψ(x, y)

∣∣ y ∈ F (x) ∩G(x)
}

(1.1)

with the moving/parameterized geometric constraints of the type

F (x) :=
{
y ∈ Y

∣∣ (x, y) ∈ Ω
}

(1.2)

and the moving infinite inequality constraints described by

G(x) :=
{
y ∈ Y

∣∣ ϕt(x, y) ≤ 0, t ∈ T
}
, (1.3)

where T is an arbitrary (possibly infinite) index set. As usual, suppose by convention that
inf ∅ = ∞ in (1.1) and in what follows.

Unless otherwise stated, we impose our standing assumptions: all the spaces under
consideration are Banach; the functions ϕ,ψ, and ϕt in (1.1) and (1.3) defined on X × Y

with their values in the extended real line IR := IR ∪ {∞} are proper, lower semicontinuous
(l.s.c.), and convex; the set Ω ⊂ X ×Y in (1.2) is closed and convex. We use the convention
that ∞−∞ = ∞ in (1.1), since we orient towards minimization.

It has been well recognized that marginal/value functions of type (1.1) are intrinsically
nonsmooth, even in the case of simple and smooth initial data. Our primary goal in this
paper is to investigate generalized differential properties of the value function µ(x) defined
in (1.1)–(1.3) and utilize them in deriving verifiable Lipschitzian stability and necessary
optimality conditions for parametric DC infinite programs and their remarkable specifica-
tions. Furthermore, we employ the obtained results for the value functions in the study of
a new class of hierarchical optimization problems called bilevel infinite programs, which are
significant for optimization theory and applications.

Since the value function µ(x) is generally nonconvex, despite the convexity of the initial
data in (1.1)–(1.3), we need to use for its study appropriate generalized differential construc-
tions for nonconvex functions. In this paper we focus on the so-called Fréchet subdifferential
and the two subdifferential constructions by Mordukhovich: the basic/limiting subdifferen-
tial and the singular subdifferential introduced for arbitrary extended-real-valued functions;
see [13] with the references and commentaries therein. These subdifferential constructions
have been recently used in [13, 14, 15, 16, 17] for the study and applications of value func-
tions in various classes of nonconvex optimization problems, mainly in the framework of
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Asplund spaces. We are not familiar with any results in the literature for the classes of op-
timization problems considered in this paper, where the specific structures of the problems
under consideration allow us to derive efficient results on generalized differential properties
of the value function given in (1.1)–(1.3) and then apply them to establishing stability and
necessary optimality conditions for such problems. The results obtained in this paper seem
to be new not only for infinite programs treated in general Banach space settings, but also
in finite-dimensional spaces, i.e., for semi-infinite programming.

The rest of the paper is organized as follows. In Section 2 we recall and briefly discuss
major constructions and preliminaries broadly used in the sequel. Section 3 is devoted to
necessary optimality conditions for nonparametric DC infinite programs in Banach spaces,
which are certainly of their own interest while playing a significant role in deriving the
main results of the next sections. Sections 4 and 5 contain the central results of the paper
that provide upper estimates first for the Fréchet subdifferential and then for the basic and
singular subdifferentials of the value function (1.1) in the general parametric DC framework
with the infinite convex constraints under consideration. These results are specified for the
class of convex infinite programs, which allows us to establish more precise subdifferential
formulas in comparison with the general DC case. As consequences of the upper estimates
obtained for the basic and singular subdifferentials of the value functions and certain fun-
damental results of variational analysis, we derive verifiable conditions of the local Lipschitz
continuity of the value functions and new necessary optimality conditions for these classes
of parametric infinite and semi-infinite programs.

The final Section 6 is devoted to applications of the results obtained in the preceding
sections to a major class of hierarchical optimization problems known as bilevel programming,
where the set of feasible solutions to the upper-level problem is built upon optimal solutions
to the lower-level problem of parametric optimization. We assume the convexity of the
initial data in both lower-level and upper-level problems, but—probably for the first time
in the literature—consider bilevel programs with infinitely many inequality constraints on
the lower-level of hierarchical optimization. Based on the value function approach to bilevel
programming and on the results obtained in the preceding sections, we derive verifiable
necessary optimality conditions for the bilevel programs under consideration, which are new
not only for problems with infinite constraints but also for conventional bilevel programs
with finitely many constraints in both finite and infinite dimensions.

Throughout the paper we use the standard notation of variational analysis; see, e.g.,
[13, 20]. Let us mention some of them often employed in what follows. For a Banach space
X, we denote its norm by ‖ · ‖ and consider the topologically dual space X∗ equipped with
the weak∗ topology w∗, where 〈·, ·〉 stands for the canonical pairing between X and X∗. The
weak∗ closure of a set in the dual space (i.e., its closure in the weak∗ topology) is denoted
by cl∗. The symbols IB and IB∗ stand, respectively, for the closed unit balls in the space in
question and its topological dual.

Given a set Ω ⊂ X, the notation bdΩ and coΩ signify the boundary and convex hull of
Ω, respectively, while cone Ω stands for the convex conic hull of Ω, i.e., for the convex cone
generated by Ω∪{0}. We use the symbol F : X →→ Y for a set-valued mapping defined on X
with its values F (x) ⊂ Y (in contrast to the standard notation f : X → Y for single-valued
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mappings) and denote the domain and graph of F by, respectively,

domF :=
{
x ∈ X

∣∣ F (x) 6= ∅} and gphF :=
{
(x, y) ∈ X × Y

∣∣ y ∈ F (x)
}
.

Given a set-valued mapping F : X →→ X∗ between X and X∗, recall that

Lim sup
x→x̄

F (x) :=
{
x∗ ∈ X∗

∣∣∣ ∃xk → x̄, ∃x∗k
w∗−−→ x∗ with x∗k ∈ F (xk), k ∈ IN

}
(1.4)

signifies the sequential Painlevé-Kuratowski outer/upper limit of F as x → x̄ with respect
to the norm topology of X and the weak∗ topology of X∗, where IN := {1, 2, . . .}. Further,
sequential Painlevé-Kuratowski inner/lower limit of F as x→ x̄ is defined by

Lim inf
x→x̄

F (x) :=
{
x∗ ∈ X∗

∣∣∣ ∀xk → x̄ ∃x∗k
w∗−−→ x∗ with x∗k ∈ F (xk), k ∈ IN

}
. (1.5)

Given an extended-real-valued function ϕ : X → IR, the notation

domϕ :=
{
x ∈ X

∣∣ ϕ(x) <∞
}

and epiϕ :=
{
(x, ν) ∈ X × IR

∣∣ ν ≥ ϕ(x)
}

is used, respectively, for the domain and the epigraph of ϕ. Depending on the context, the
symbols x Ω→ x̄ and x

ϕ→ x̄ mean that x→ x̄ with x ∈ Ω and x→ x̄ with ϕ(x) → ϕ(x̄) for
a set Ω ⊂ X and an extended-real-valued function ϕ : X → IR, respectively. Some other
notation are introduced below when the corresponding notions are defined.

2 Basic Definition and Preliminaries

Let us start with recalling some basic definitions and presenting less standard preliminary
facts for convex functions that play a fundamental role in this paper. Given ϕ : X → IR, we
always assume that it is proper, i.e., ϕ(x) 6≡ ∞ on X. The conjugate function ϕ∗ : X∗ → IR

to ϕ is defined by

ϕ∗(x∗) := sup
{
〈x∗, x〉 − ϕ(x)

∣∣ x ∈ X}
= sup

{
〈x∗, x〉 − ϕ(x)

∣∣ x ∈ domϕ
}
. (2.1)

For any ε ≥ 0, the ε-subdifferential (or approximate subdifferential if ε > 0) of a convex
function ϕ : X → IR at x̄ ∈ domϕ is

∂εϕ(x̄) :=
{
x∗ ∈ X∗∣∣ 〈x∗, x− x̄〉 ≤ ϕ(x)− ϕ(x̄) + ε for all x ∈ X

}
, ε ≥ 0. (2.2)

If ε = 0 in (2.2), the set ∂ϕ(x̄) := ∂0ϕ(x̄) is the classical subdifferential of convex anal-
ysis. As usual, the symbols ∂xϕ(x̄, ȳ) and ∂yϕ(x̄, ȳ) stand for the corresponding partial
subdifferentials of ϕ = ϕ(x, y) at (x̄, ȳ).

Observe the following useful representation [11] of the epigraph of the conjugate function
(2.1) to a l.s.c. convex function ϕ : X → IR via the ε-subdifferentials (2.2) of ϕ at any point
x ∈ domϕ of the domain:

epiϕ∗ =
⋃
ε≥0

{(
x∗, 〈x∗, x〉+ ε− ϕ(x)

)∣∣∣ x∗ ∈ ∂εϕ(x)
}
. (2.3)
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Further, it is well known in convex analysis that the conjugate epigraphical rule

epi
(
ϕ1 + ϕ2

)∗ = cl∗
(
epiϕ∗1 + epiϕ∗2

)
(2.4)

is satisfied for any l.s.c. convex functions ϕi : X → IR, i = 1, 2, where the weak∗ closure
operation on the right-hand side of (2.4) can be omitted provided that one of the functions
ϕi is continuous at some point x̄ ∈ domϕ1 ∩ domϕ2. More general results in this direction
implying the fundamental subdifferential sum rule have been recently established in [1]. We
summarize them in the following lemma broadly employed in this paper.

Lemma 2.1 (refined epigraphical and subdifferential rules for convex function).
Let ϕi : X → IR, i = 1, 2, be l.s.c. and convex, and let domϕ1 ∩ domϕ2 6= ∅. Then the
following conditions are equivalent:

(i) The set epiϕ∗1 + epiϕ∗2 is weak∗ closed in X∗ × IR.
(ii) The refined conjugate epigraphical rule holds:

epi
(
ϕ1 + ϕ2

)∗ =
(
epiϕ∗1 + epiϕ∗2

)
.

Furthermore, we have the subdifferential sum rule

∂(ϕ1 + ϕ2)(x̄) = ∂ϕ1(x̄) + ∂ϕ2(x̄), x̄ ∈ domϕ1 ∩ domϕ2, (2.5)

provided that the afore-mentioned equivalent conditions are satisfied.

Since the above definitions and results are given for any extended-real-valued (l.s.c. and
convex) functions, they encompass the case of sets by considering the indicator function
δ(x; Ω) of a set Ω ⊂ X equal to 0 when x ∈ Ω and ∞ otherwise. In this way, the normal
cone to a convex set Ω at x̄ ∈ Ω is defined by

N(x̄; Ω) := ∂δ(x̄; Ω) =
{
x∗ ∈ X∗∣∣ 〈x∗, x− x̄〉 ≤ 0 for all x ∈ Ω

}
. (2.6)

In what follows we also use projections of the normal cone (2.6) to convex sets in product
spaces. Given Ω ⊂ X × Y and (x̄, ȳ) ∈ Ω, we define the corresponding projections by

NX

(
(x̄, ȳ); Ω

)
:=

{
x∗ ∈ X∗∣∣ ∃ y∗ ∈ Y ∗ such that (x∗, y∗) ∈ N

(
(x̄, ȳ); Ω

)}
,

NY

(
(x̄, ȳ); Ω

)
:=

{
y∗ ∈ Y ∗

∣∣ ∃x∗ ∈ Y ∗ such that (x∗, y∗) ∈ N
(
(x̄, ȳ); Ω

)}
.

(2.7)

Next we drop the convexity assumptions and consider, following [13], certain coun-
terparts of the above subdifferential constructions for arbitrary proper extended-real-valued
functions on Banach spaces. Given ϕ : X → IR and ε ≥ 0, define the analytic ε-subdifferential
of ϕ at x̄ ∈ domϕ by

∂̂εϕ(x̄) :=
{
x∗ ∈ X∗

∣∣∣ lim inf
x→x̄

ϕ(x)− ϕ(x̄)− 〈x∗, x− x̄〉
‖x− x̄‖

≥ −ε
}
, ε ≥ 0, (2.8)

and let for convenience ∂̂εϕ(x̄) := ∅ of x̄ /∈ domϕ. Note that if ϕ is convex, the analytic
ε-subdifferential (2.8) admits the representation

∂̂εϕ(x̄) =
{
x∗ ∈ X∗∣∣ 〈x∗, x− x̄〉 ≤ ϕ(x)− ϕ(x̄) + ε‖x− x̄‖ for all x ∈ domϕ

}
, (2.9)
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which is different from the ε-subdifferential of convex analysis (2.2) when ε > 0. If ε = 0,
then ∂̂ϕ(x̄) := ∂̂0ϕ(x̄) in (2.8) is known as the Fréchet (or regular, or viscosity) subdifferential
of ϕ at x̄ and reduces in the convex case to the classical subdifferential of convex analysis.

However, it turns out that in the nonconvex case neither the Fréchet subdifferential
∂̂ϕ(x̄) nor its ε-enlargements (2.8) satisfy required calculus rules, e.g., the inclusion “⊂”
in (2.5) needed for optimization theory and applications. Moreover, it often happens that
∂̂ϕ(x̄) = ∅ even for nice and simple nonconvex functions as, e.g., for ϕ(x) = −|x| at x̄ = 0.
The picture dramatically changes when we employ the sequential regularization of (2.8)
defined via the Painlevé-Kuratowski outer limit (1.4) by

∂ϕ(x̄) := Lim sup
x
ϕ→x̄
ε↓0

∂̂εϕ(x) (2.10)

and known as the basic (or limiting, or Mordukhovich) subdifferential of ϕ at x̄ ∈ domϕ. It
reduces to the subdifferential of convex analysis (2.2) as ε = 0 and, in contrast to ∂̂ϕ(x̄)
from (2.8), satisfies useful calculus rules in general nonconvex settings.

In particular, full/comprehensive calculus holds for (2.10) in the framework of Asplund
spaces, which are Banach spaces whose separable subspaces have separable duals. This is
a broad class of spaces including every Banach space admitting a Fréchet smooth renorm
(hence every reflexive space), every space with a separable dual, etc.; see [13, 18] for more
details on this remarkable class of spaces. Note that we can equivalently put ε = 0 in (2.10)
for l.s.c. functions on Asplund spaces.

It is also worth observing that the basic subdifferential (2.10) is often a nonconvex set
in X∗ (e.g., ∂ϕ(0) = {−1, 1} for ϕ(x) = −|x|), while vast calculus results and applica-
tions of (2.10) and related constructions for sets and set-valued mappings are based on
variational/extremal principles of variational analysis that replace the classical convex sep-
aration in nonconvex settings. We refer the reader to [13, 14, 20, 21], with the extensive
commentaries and bibliographies therein, for more details and discussions. Let us empha-
size that most of the results obtained in this paper do not require the Asplund structure of
the spaces in question and hold in arbitrary Banach spaces.

An additional subdifferential construction to (2.10) is needed to analyze non-Lipschitzian
extended-real-valued functions ϕ : X → IR. It is defined by

∂∞ϕ(x̄) := Lim sup
x
ϕ→x̄

λ, ε↓0

λ∂̂εϕ(x) (2.11)

and is known as the singular (or horizontal) subdifferential of ϕ at x̄ ∈ domϕ. We have
∂∞ϕ(x̄) = {0} if ϕ is locally Lipschitzian around x̄, while the singular subdifferential (2.11)
shares calculus and related properties of the basic subdifferential (2.10) in non-Lipschitzian
settings. Given an arbitrary set Ω ⊂ X with x̄ ∈ Ω and applying (2.10) and (2.11) to the
indicator function ϕ(x) = δ(x; Ω) of Ω, we get

N(x̄; Ω) := ∂δ(x̄; Ω) = ∂∞δ(x̄; Ω),

where the latter general normal cone reduces to (2.6) if Ω is convex.

Finally in this section, recall an extended notion of inner semicontinuity for a general
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class of marginal/value functions defined by

µ(x) := inf{ϑ(x, y)
∣∣ y ∈ S(x)

}
, (2.12)

where ϑ : X × Y → IR and S : X →→ Y . Denote

M(x) :=
{
y ∈ S(x)

∣∣ µ(x) = ϑ(x, y)
}

(2.13)

the argminimum mapping generated by the marginal function (2.12). Given ȳ ∈M(x̄) and
following [15], we say that M(·) in (2.13) is µ-inner semicontinuous at (x̄, ȳ) if for every
sequence xk

µ→ x̄ as k →∞ there is a sequence of yk ∈M(xk), k ∈ IN , which contains a sub-
sequence converging to ȳ. This property is an extension of the more conventional notion of
inner/lower semicontinuity for general multifunctions (see, e.g., [13, Definition 1.63] and the
commentaries therein), where the convergence xk

µ→ x̄ is replaced by xk → x̄. In this paper
we apply the defined µ-inner semicontinuity property to argminimum mappings generated
by the marginal/value functions (1.1) for the infinite DC programs under consideration.
Observe that the µ-inner semicontinuity assumption on the afore-mentioned argminimum
mapping in the results obtained in Sections 5 can be replaced by a more relaxed µ-inner
semicompactness requirement imposed on this mapping by the expense of weakening the
resulting inclusions, which involve then all the points from the reference argminimum set;
cf. [13, 15, 16] for similar devices in different settings. For brevity, we do not present the
results of the latter type in this paper.

3 Optimality Conditions for DC Infinite Programs

In this section we consider a general class of nonparametric DC infinite programs with
convex constraints of the type:{

minimize ϑ(x)− θ(x) subject to
ϑt(x) ≤ 0, t ∈ T, and x ∈ Θ,

(3.1)

where T is a (possibly infinite) index set, where Θ ⊂ X is a closed convex subset of a
Banach space X, and where ϑ : X → IR, θ : X → IR, and ϑt : X → IR are proper, l.s.c.,
convex functions. One can see that (3.1) is a nonparametric version of the infinite DC
problem of parametric optimization defined in (1.1)–(1.3), which are of our primary concern
in this paper. The results obtained in this section establish necessary optimality conditions
for the nonparametric DC problem (3.1) and deduce from them some calculus rules for
the initial data of (3.1) involving infinite constraints. These new results are certainly of
independent interest in both finite and infinite dimensions, while the main intention of this
paper is to apply them to the study of subdifferential properties of the value function in
the parametric infinite DC problem (1.1)–(1.3); this becomes possible due to the intrinsic
variational structures of the subdifferentials under consideration.

Denote the set of feasible solutions to (3.1) by

Ξ := Θ ∩
{
x ∈ X

∣∣ ϑt(x) ≤ 0 for all t ∈ T
}
. (3.2)
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Further, let IRT be the product space of λ = (λt| t ∈ T ) with λt ∈ IR for all t ∈ T , let ĨRT

be collection of λ ∈ IRT such that λt 6= 0 for finitely many t ∈ T , and let ĨRT+ be the positive
cone in ĨRT defined by

ĨRT+ :=
{
λ ∈ ĨRT

∣∣ λt ≥ 0 for all t ∈ T
}
. (3.3)

Observe that, given u ∈ IRT and λ ∈ ĨRT and denoting suppλ := {t ∈ T | λt 6= 0}, we have

λu :=
∑
t∈T

λtut =
∑

t∈suppλ

λtut.

The following qualification condition plays a crucial role in deriving necessary optimality
conditions for DC infinite programs considered in this section obtained in the so-called
qualified (Karush-Kuhn-Tucker) form with a nonzero Lagrange multiplier corresponding to
the cost function ϑ− θ. Furthermore, this qualification condition/requirement endures the
validity of new calculus rules involving the infinite data of (3.1).

Definition 3.1 (closedness qualification condition). We say that the triple (ϑ, ϑt,Θ)
satisfies the closedness qualification condition, CQC in brief, if the set

epiϑ∗ + cone
{ ⋃
t∈T

epiϑ∗t
}

+ epi δ∗(·; Θ)

is weak∗ closed in the space X∗ × IR.

If the plus term ϑ in cost function (3.1) is continuous at some point of the feasible set
Ξ in (3.2), then the CQC requirement of Definition 3.1 holds provided that the set

cone
{ ⋃
t∈T

epiϑ∗t
}

+ epi δ∗(·; Θ) is weak∗ closed

in X∗ × IR (see [12]), or if the conical set cone(domϑ − Ξ) is a closed subspace of X; see
[5, 6] for more details. Note also that the dual qualification conditions of the CQC type
have been introduced and broadly used in [1, 5, 6, 7, 8, 12] and other publications of these
authors for deriving duality results, stability and optimality conditions, and generalized
Farkas-like relationships in various constrained problems of convex and DC programming.
Furthermore, it has been proved in the afore-mentioned papers that the qualification condi-
tions of the CQC type strictly improved more conventional primal constraint qualifications
of the nonempty interior and relative interior types for problems considered therein.

The next result establishes new necessary optimality conditions for the DC infinite
program (3.1) under the CQC requirement introduced in Definition 3.1. In what follows we
use the set of active constraint multipliers defined by

A(x̄) :=
{
λ ∈ ĨRT+

∣∣ λtϑt(x̄) = 0 for all t ∈ suppλ
}
. (3.4)

Theorem 3.2 (qualified necessary optimality conditions for DC infinite pro-
grams). Let x̄ ∈ Ξ ∩ domϑ be a local minimizer to problem (3.1) satisfying the CQC
requirement. Then we have the inclusion

∂θ(x̄) ⊂ ∂ϑ(x̄) +
⋃

λ∈A(x̄)

[ ∑
t∈suppλ

λt∂ϑt(x̄)
]

+N(x̄; Θ). (3.5)
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Proof. Taking a local minimizer x̄ ∈ Ξ ∩ domϑ to (3.1), we suppose without loss of
generality that x̄ ∈ dom θ and that ∂θ(x̄) 6= ∅; otherwise (3.5) holds trivially. By (2.2) with
ε = 0 there is x∗ ∈ X∗ satisfying

θ(x)− θ(x̄) ≥ 〈x∗, x− x̄〉 for all x ∈ X.

This implies that the reference local minimizer x̄ to (3.1) is also a local minimizer to the
convex infinite program:{

minimize ϑ̃(x) := ϑ(x)− 〈x∗, x− x̄〉 − θ(x̄)
subject to ϑt(x) ≤ 0, t ∈ T, and x ∈ Θ.

(3.6)

Since (3.6) is convex, its local minimizer x̄ is a global solution to this problem, i.e.,

ϑ̃(x̄) ≤ ϑ̃(x) for all x ∈ Ξ.

By [6, Lemma 4] the latter is equivalent to the inclusion(
0,−ϑ̃(x̄)

)
∈ cl∗

(
epi ϑ̃∗ + cone

[ ⋃
t∈T

epiϑ∗t
]

+ epi δ∗(·; Θ)
)
.

Observing from the structure of ϑ̃ in (3.6) that epi ϑ̃∗ = (−x∗, θ(x̄) − 〈x∗, x̄〉) + epiϑ∗, we
get therefore the relationship(

0,−ϑ̃(x̄)
)
∈

(
− x∗, θ(x̄)− 〈x∗, x̄〉

)
+ cl∗

(
epiϑ∗ + cone

[ ⋃
t∈T

epiϑ∗t
]

+ epi δ∗(·; Θ)
)
. (3.7)

Furthermore, the equivalence (i)⇐⇒(ii) in Lemma 2.1 ensures, under the assumed CQC
condition, that (3.7) is equivalent to(

x∗,−ϑ̃(x̄)− θ(x̄) + 〈x∗, x̄〉
)
∈

(
epiϑ∗ + cone

[ ⋃
t∈T

epiϑ∗t
]

+ epi δ∗(·; Θ)
)
. (3.8)

Now applying the subdifferential representation (2.3) to each of the conjugate functions ϑ∗,
ϑ∗t as t ∈ T , and δ∗(·; Θ), taking then into account the construction of the convex cone
“cone ” in (3.8) as well as the structure of the positive cone ĨRT+ in (3.3), and noting that
−θ̃(x̄)− θ(x̄) + 〈x∗, x̄〉 = 〈x∗, x̄〉 − ϑ(x̄), we find

ε ≥ 0, u∗ ∈ ∂εϑ(x̄), λ ∈ ĨRT+, εt ≥ 0, u∗t ∈ ∂εtϑt(x̄) as t ∈ T, γ ≥ 0, and v∗ ∈ ∂δγ(x̄; Θ)

satisfying the following relationships:
x∗ = u∗ +

∑
t∈T

λtu
∗
t + v∗,

〈x∗, x̄〉 − ϑ(x̄) = 〈u∗, x̄〉+ ε− ϑ(x̄) +
∑
t∈T

λt

[
〈u∗t , x̄〉+ εt − 〈ϑ∗t , x̄〉

]
+〈v∗, x̄〉+ γ − δ(x̄; Θ).

(3.9)

Since x̄ ∈ Θ, the first equality in (3.9) allows us to reduce the second one therein to

ε+
∑
t∈T

λtεt −
∑
t∈T

λtϑt(x̄) + γ = 0. (3.10)
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The feasibility of x̄ to problem (3.1) and the above choice of (ε, λt, γ) imply the relationships

ε ≥ 0, γ ≥ 0, λt ≥ 0, and λtϑt(x̄) ≤ 0 for all t ∈ T,

and therefore we get from (3.10) that in fact ε = 0, γ = 0, λtϑt(x̄) = 0, and λtεt = 0 for all
t ∈ T . Furthermore, the latter allows us to conclude that εt = 0 for all t ∈ suppλ. Thus

u∗ ∈ ∂ϑ(x̄), u∗t ∈ ∂ϑt(x̄), and v∗ ∈ ∂δ(x̄; Θ) = N(x̄; Θ),

and so the first equality in (3.9) can be written as

x∗ ∈ ∂ϑ(x̄) +
∑

t∈suppλ

λt∂ϑt(x̄) +N(x̄; Θ) with λtϑt(x̄) = 0 for t ∈ suppλ. (3.11)

This justifies (3.5) and completes the proof of the theorem. 4

Let us next present two useful consequences of Theorem 3.2 that provide new calculus
rules in the framework of (3.1) involving infinite constraints in both finite and infinite
dimensions. As above, we use the set of active constraint multipliers A(x̄) defined in (3.4).

Corollary 3.3 (subdifferential sum rule involving convex infinite constraints).
Let x̄ ∈ Ξ be any feasible solution to problem (3.1) with θ(x) ≡ 0 and ϑ(x̄) < ∞, and let
(ϑ, ϑt,Θ) satisfy all the assumptions of Theorem 3.2 including the CQC condition. Then

∂
(
ϑ+ δ(·; Ξ)

)
(x̄) ⊂ ∂ϑ(x̄) +

⋃
λ∈A(x̄)

[ ∑
t∈suppλ

∂ϑt(x̄)
]

+N(x̄; Θ). (3.12)

Proof. For each x∗ ∈ ∂(ϑ+ δ(·; Ξ))(x̄) with x̄ ∈ Ξ ∩ domϑ we have

ϑ(x)− ϑ(x̄) ≥ 〈x∗, x− x̄〉 whenever x ∈ Ξ,

which means by the construction of Ξ in (3.2) that x̄ is a (global) minimizer to the following
DC infinite program:{

minimize ϑ(x)− θ̃(x) with θ̃(x) := 〈x∗, x− x̄〉+ ϑ(x̄)
subject to ϑt(x) ≤ 0 for all t ∈ T, and x ∈ Θ.

(3.13)

Applying Theorem 3.2 to problem (3.13) and taking into account the structure of the linear
function θ̃ therein, we get from (3.5) that

∂θ̃(x̄) =
{
x∗

}
⊂ ∂ϑ(x̄) +

⋃
λ∈A(x̄)

[ ∑
t∈suppλ

∂ϑt(x̄)
]

+N(x̄; Θ),

which gives (3.12) and completes the proof of the corollary. 4

The next corollary provides a constructive upper estimate of the normal cone to the
feasible constraint set Ξ from (3.2) in terms of the initial data of (3.2) and the set of active
constraint multipliers (3.4).
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Corollary 3.4 (upper estimate of the normal cone to convex infinite constraints).
Assume that ϑt and Θ satisfy the assumptions of Theorem 3.2 with the condition CQC
specified as follows:

the set
{

cone
[ ⋃
t∈T

epiϑ∗t
]

+ epi δ∗(·; Θ)
}

is weak∗ closed in X∗ × IR.

Then for any x̄ ∈ Ξ we have the inclusion

N(x̄; Ξ) ⊂
⋃

λ∈A(x̄)

[ ∑
t∈suppλ

∂ϑt(x̄)
]

+N(x̄; Θ).

Proof. Follows from Corollary 3.3 by letting ϑ(x) ≡ 0 therein. 4

The final result of this section concerns establishing an improved version of Theorem 3.2
in the case the convex infinite program given by{

minimize ϑ(x) subject to
ϑt(x) ≤ 0, t ∈ T, and x ∈ Θ,

(3.14)

which is of course a particular case of the DC infinite program (3.1). The next theorem shows
that the specification of condition (3.5) in this case is not only necessary but also sufficient
for optimality in (3.14) under the CQC requirement introduced in Definition 3.1 above.
The result obtained is a refinement of the corresponding condition established recently in
[6] under a more restrictive constraint qualification.

Theorem 3.5 (necessary and sufficient optimality conditions for convex infinite
programs). Let x̄ ∈ Ξ be a feasible solution to problem (3.14) with ϑ(x̄) < ∞, and let all
the assumptions of Theorem 3.2 be satisfied. Then x̄ is optimal to (3.14) if and only if there
is λ ∈ ĨRT+ such that the following generalized Karush-Kuhn-Tucker (KKT) condition holds:

0 ∈ ∂ϑ(x̄) +
⋃

λ∈A(x̄)

[ ∑
t∈suppλ

∂ϑt(x̄)
]

+N(x̄; Θ), (3.15)

where the set of active constraint multipliers is given in (3.4).

Proof. The necessary of the generalized KKT condition (3.15) for the optimality to (3.14)
follows immediately from Theorem 3.2 with θ(x) ≡ 0. To justify the sufficiency part
of the theorem by conventional arguments in convex optimization (with no qualification
conditions), assume that inclusion (3.15) holds with some λ ∈ A(x̄); the latter implies,
in particular, that ∂ϑt(x̄) 6= ∅ whenever t ∈ suppλ. Then we find x∗ ∈ X∗ such that
−x∗ ∈ N(x̄; Θ) and

x∗ ∈ ∂ϑ(x̄) +
∑

t∈suppλ

∂ϑt(x̄) ⊂ ∂
(
ϑ+

∑
t∈T

λtϑt

)
(x̄). (3.16)

Construction (2.2) of the convex subdifferential yields by (3.16) that

ϑ(x) +
∑
t∈T

λtϑt(x) ≥ ϑ(x̄) +
∑
t∈T

λtϑt(x̄) + 〈x∗, x− x̄〉 ≥ 0 for all x ∈ X. (3.17)
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Since λtϑt(x̄) = 0 for all t ∈ T while λ ∈ A(x̄) due to (3.4) and since −x∗ ∈ N(x̄; Θ), we
get from (3.17) and the normal cone construction (2.6) that

ϑ(x) +
∑
t∈T

λtϑt(x)− ϑ(x̄) ≥ 〈x∗, x− x̄〉 ≥ 0 for all x ∈ Θ,

which implies in turn the inequality

ϑ(x) ≥ ϑ(x) +
∑
t∈T

λtϑt(x) ≥ ϑ(x̄) whenever x ∈ Ξ

by (3.2) and (3.3). The latter justifies the (global) optimality of x̄ to the convex infinite
program (3.14) and thus completes the proof of theorem. 4

4 Fréchet Subgradients of Value Functions in Parametric DC

Infinite Programs

This and the next sections are devoted to the main topic of our study in the paper: gen-
eralized differential properties of the value functions for parametric DC infinite programs
defined in (1.1)–(1.3). As discussed in Section 1, marginal/value functions of this type are
intrinsically nonsmooth, and our primary goal is to obtain constructive upper estimates
of their subgradient sets, i.e., subdifferentials. Despite the convexity of the initial data in
(1.1)–(1.3), the value function (1.1) is generally nonconvex due to the DC nature of para-
metric optimization problems under consideration, and thus it requires the usage of the
appropriate subdifferentials of nonconvex functions.

The main result of this section provides an efficient upper estimate for the Fréchet
subdifferential ∂̂µ(x̄) of the value function (1.1) in terms of the initial data in (1.1)–(1.3)
and the associated Lagrange/KKT multipliers. We derive this estimate using a variational
approach: by reducing the calculus issue to a nonparametric infinite optimization problem
and employing further necessary optimality conditions for such problems established in
Section 3. This device is based on the intrinsic variational nature of Fréchet subgradients.

In the next theorem and subsequent results we strongly employ the CQC condition from
Definition 3.1 applied to the triple (ϕ,ϕt,Ω) in the parametric problem (1.1)–(1.3): the set

epiϕ∗ + cone
( ⋃
t∈T

epiϕ∗t
)

+ epi δ∗(·; Ω) is weak∗ closed in X∗ × Y ∗ × IR. (4.1)

We also need the following three constructions associated with (1.1)–(1.3): the argminimum
mapping M : X →→ Y defined by

M(x) :=
{
y ∈ F (x) ∩G(x)

∣∣ µ(x) = ϕ(x, y)− ψ(x, y)
}
, (4.2)

the constraint set in (1.2) and (1.3) given by

Γ := Ω ∩
{
(x, y) ∈ X × Y

∣∣ ϕt(x, y) ≤ 0 for all t ∈ T
}
, (4.3)

and the set of KKT multipliers dependent on (x̄, ȳ) ∈ gphM for M in (4.2) and on y∗ ∈ Y ∗:

Λ(x̄, ȳ, y∗) :=
{
λ ∈ ĨRT+

∣∣∣ y∗ ∈ ∂yϕ(x̄, ȳ) +
∑

t∈suppλ

λt∂yϕt(x̄, ȳ) +NY

(
(x̄, ȳ); Ω

)
,

λtϕt(x̄, ȳ) = 0 for all t ∈ suppλ
}
.

(4.4)
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Theorem 4.1 (upper estimate for the Fréchet subdifferential of value functions
in DC programs). In addition to the standing assumptions of Section 1, suppose that
domM 6= ∅ in (4.2) and that the CQC qualification condition (3.1) is satisfied. Then, given
any point (x̄, ȳ) ∈ gphM ∩ dom ∂ψ and a number γ > 0, we have the inclusion

∂̂µ(x̄) ⊂
⋂

(x∗,y∗)∈∂ψ(x̄,ȳ)

{
∂xϕ(x̄, ȳ)− x∗ +

⋃
λ∈Λ(x̄,ȳ,y∗)

[ ∑
t∈suppλ

λt∂xϕt(x̄, ȳ)
]}

+NX

(
(x̄, ȳ); Ω

)
+ γIB∗.

(4.5)

Proof. Fix (x̄, ȳ) ∈ gphM ∩ dom ∂ψ, u∗ ∈ ∂̂µ(x̄), and (x∗, y∗) ∈ ∂ψ(x̄, ȳ). Then pick an
arbitrary number γ > 0. By definition (2.8) of the Fréchet subdifferential of µ at x̄ as ε = 0
there is η > 0 such that

µ(x)− µ(x̄)− 〈u∗, x− x̄〉+ γ‖x− x̄‖ ≥ 0 for all x ∈ x̄+ ηIB. (4.6)

Since µ(x̄) = ϕ(x̄, ȳ)−ψ(x̄, ȳ) by the choice of ȳ ∈M(x̄) and since µ(x) ≤ ϕ(x, y)−ψ(x, y)
for all (x, y) ∈ Γ due to (1.1)–(1.3) and (4.3), we get from (4.6) by taking into account
inequality (2.2) with ε = 0 defining the subgradient (x∗, y∗) ∈ ∂ψ(x̄, ȳ) that

0 ≤ ϕ(x, y)− ϕ(x̄, ȳ)− ψ(x, y) + ψ(x̄, ȳ)− 〈u∗, x− x̄〉+ γ‖x− x̄‖
≤ ϕ(x, y)− ϕ(x̄, ȳ)− 〈u∗ + x∗, x− x̄〉 − 〈y∗, y − ȳ〉+ γ‖x− x̄‖

for all (x, y) ∈ Ω ∩ [(x̄+ ηIB)× Y ] with ϕt(x, y) ≤ 0 as t ∈ T . Consider the function

ϑ(x, y) := ϕ(x, y)− ϕ(x̄, ȳ)− 〈u∗ + x∗, x− x̄〉 − 〈y∗, y − ȳ〉+ γ‖x− x̄‖, (4.7)

which is clearly proper, l.s.c., and convex on X × Y . It follows from (4.6) and (4.7) that
(x̄, ȳ) is a solution to the (unconstrained) convex infinite program{

minimize ϑ(x, y) subject to
ϕt(x, y) ≤ 0 as t ∈ T, (x, y) ∈ Ω ∩

[
(x̄+ ηIB)× Y

]
.

(4.8)

It follows from Lemma 4.2, the rather technical proof of which is postponed and presented
after the proof of the theorem, that the qualification condition (4.1) imposed in this theorem
implies the fulfillment of the CQC requirement from Definition 3.1 for the corresponding
data of (4.8), i.e., that the set

epiϑ∗ + cone
[ ⋃
t∈T

epiϕ∗t
]

+ epi δ∗
(
·; Ω ∩ [(x̄+ ηIB)× Y ]

)
(4.9)

is weak∗ closed in the space X∗ × Y ∗ × IR. Thus applying the optimality conditions from
Theorem 3.5 to problem (4.8), we find λ ∈ ĨRT+ such that

0 ∈ ∂ϑ(x̄, ȳ) +
∑

t∈suppλ

λt∂ϕt(x̄, ȳ) +N
(
(x̄, ȳ); Ω ∩ [(x̄+ ηIB)× Y ]

)
with λtϕt(x̄, ȳ) = 0 for all t ∈ suppλ.

(4.10)

It easily follows from the subdifferential sum rule in (2.5) of Lemma 2.1 applied to the
indicator functions δ((x̄, ȳ); Ω) and δ((x̄, ȳ); (x̄+ ηIB)× Y ) that

N
(
(x̄, ȳ); Ω ∩ [(x̄+ ηIB)× Y ]

)
= N

(
(x̄, ȳ); Ω

)
.
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Indeed, (x̄, ȳ) is an interior point of the set (x̄+ηIB)×Y , and thus the indicator function of
this set is continuous at (x̄, ȳ). Further, it follows from the construction of ϑ(x, y) in (4.7)
and from the subdifferential sum rule of convex analysis (2.5) that

∂ϑ(x̄, ȳ) = ∂ϕ(x̄, ȳ) + (−u∗ − x∗,−y∗) + (ηIB∗)× {0}.

Substituting the latter relationships into (4.10) and taking into account that

∂ϕ(x̄, ȳ) ⊂ ∂xϕ(x̄, ȳ)× ∂yϕ(x̄, ȳ) and ∂ϕt(x̄, ȳ) ⊂ ∂xϕt(x̄, ȳ)× ∂yϕt(x̄, ȳ), (4.11)

we arrive at the following two inclusions:
u∗ ∈ ∂xϕ(x̄, ȳ)− x∗ +

∑
t∈suppλ

λt∂xϕt(x̄, ȳ) +NX

(
(x̄, ȳ); Ω

)
+ γIB∗,

y∗ ∈ ∂yϕ(x̄, ȳ) +
∑

t∈suppλ

λt∂yϕt(x̄, ȳ) +NY

(
(x̄, ȳ); Ω

) (4.12)

with λtϕt(x̄, ȳ) = 0 for all t ∈ suppλ. Using finally construction (4.4) of the KKT multipli-
ers, we deduce from (4.12) the desired upper estimate (4.5) and thus complete the proof of
the theorem provided that Lemma 4.2 is justified. 4

Let us now justify the afore-mentioned technical lemma used in the proof of Theorem 4.1.

Lemma 4.2 (relationship between qualification conditions). Let the qualification
condition (4.1) imposed in Theorem 4.1 be satisfied. Then we have the CQC condition (4.9)
for the nonparametric convex problem (4.8) with the cost function ϑ defined in (4.7).

Proof. The arguments below are mainly based on the refined epigraphical rule for conjugate
functions from Lemma 2.1(ii). First using the data defined in the proof of Theorem 4.1,
construct the real-valued function

ξ(x, y) := −ϕ(x̄, ȳ)− 〈u∗ + x∗, x− x̄〉 − 〈y∗, y − ȳ〉+ γ‖x− x̄‖,

which is obviously convex and continuous on X×Y with ϑ = ϕ+ ξ. Substituting the latter
into the qualification (4.9) and using several times the epigraphical rule from Lemma 2.1
with taking into account that the indicator function δ(·; (x̄ + ηIB∗) × Y ) is continuous at
(x̄, ȳ), we conclude that the set in (4.9) reduces to

epiϕ∗ + cone
[ ⋃
t∈T

epiϕ∗t
]

+ epi δ∗(·; Ω) + epi
[
ξ + δ

(
·; (x̄+ ηIB)× Y

)]∗
. (4.13)

On the other hand, the qualification condition (4.1) implies by Lemma 2.1 that

epi
(
ϕ+ δ(·; Γ)

)∗ = epiϕ∗ + cone
[ ⋃
t∈T

epiϕ∗t
]

+ epi δ∗(·; Ω) (4.14)

for the constraint set Γ defined in (4.3). Substituting (4.14) into (4.13) and using Lemma 2.1
again, we observe that the set in (4.9) equals to

epi
(
ϕ+ δ(·; Γ) + ξ + δ(·; (x̄+ ηIB)× Y )

)∗
,
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which is weak∗ closed in the space X∗ × Y ∗ × IR as the epigraph of the conjugate function
to the proper, l.s.c., convex function ϕ+ δ(·; Γ) + ξ + δ(·; (x̄+ ηIB)× Y ). This justifies the
qualification condition (4.9) and completes the proof of the lemma. 4

Next we derive an easy consequence of Theorem 4.1 that establishes new necessary opti-
mality conditions for parametric DC infinite programs. In the terminology of [14, Chapter 5],
these conditions are of the upper subdifferential type for minimization problems, since they
employ all upper subgradients of the cost function −ψ, which reduce to (lower) subgradients
of ψ, in the DC setting under consideration; see more discussions in [14] for general (not
particularly DC) minimization problems.

Corollary 4.3 (necessary conditions for parametric DC infinite programs from
Fréchet subgradients of value functions). Given a parameter value x̄ ∈ domM in
(4.2), let ȳ be an optimal solution to the parametric DC problem

minimize ϕ(x̄, y)− ψ(x̄, y) subject to y ∈ F (x) ∩G(x), (4.15)

where F and G are defined in (1.2) and (1.3), respectively, under the standing assumptions
made. Suppose in addition that ∂̂µ(x̄) 6= ∅ for the value function (1.1) and that the quali-
fication condition (4.1) is satisfied. Then for each (x∗, y∗) ∈ ∂ψ(x̄, ȳ) and γ > 0 there are
u∗ ∈ X∗ and λ ∈ ĨRT+ from (3.3) such that we have the relationships

u∗ + x∗ ∈ ∂xϕ(x̄, ȳ) +
∑

t∈suppλ

λt∂xϕt(x̄, ȳ) +NX

(
(x̄, ȳ); Ω

)
+ γIB∗,

y∗ ∈ ∂yϕ(x̄, ȳ) +
∑

t∈suppλ

λt∂yϕt(x̄, ȳ) +NY

(
(x̄, ȳ); Ω

)
,

λtϕt(x̄, ȳ) = 0 for all t ∈ suppλ.

(4.16)

Proof. This follows direction from inclusion (4.5) in Theorem 4.1 with ∂̂µ(x̄) 6= ∅ due to
the construction of the KKT multiplier set (4.4). 4

The most restrictive and not easily verifiable assumption in Corollary 4.3 is that of
∂̂µ(x̄) 6= ∅. In fact it holds on the dense set of parameters if the space X is Asplund; see,
e.g., [13, Corollary 2.29]. However, the Fréchet subdifferential may often be empty (even
in simple finite-dimensional settings) at individual points of the domains for nonconvex
functions; see discussions in Section 2. It is worth mentioning here that the restrictive
assumption ∂̂µ(x̄) 6= ∅ can be dropped with keeping necessary optimality conditions for
DC infinite programs similar to those in Corollary 4.3, which are valid for every parameter
x̄ ∈ domM ; see Theorem 5.10. This is derived from the upper estimates for the limiting
(basic and singular) subdifferentials of the value function obtained in the next section.

5 Basic and Singular Subgradients of Value Functions in

Parametric DC Infinite Programs

This section is devoted to establishing verifiable upper estimates for the basic subdifferential
(2.10) and the singular subdifferential (2.11) of the value function (1.1) and deriving from
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them necessary optimality conditions for the DC infinite programs under consideration. We
start with upper estimates for the basic subdifferential of the value function in (1.1)–(1.3)
and obtain two independent results in this direction.

The first result provides a tight upper estimate for the basic subdifferential of (1.1)
under the following rather restrictive assumption on the minus term ψ in the cost function
of (1.1) introduced and needed in this paper for proper convex functions.

Definition 5.1 (inner subdifferential stability). We say that a proper convex function
ψ : X → IR is inner subdifferentially stable at x̄ ∈ domψ if

Lim inf
x
domψ→ x̄

∂ψ(x) 6= ∅, (5.1)

where Lim inf stands for the Painlevé-Kuratowski inner limit (1.5).

If ψ is w∗-continuously Gâteaux differentiable around x̄ ∈ int(domψ)—i.e., it is Gâteaux
differentiable on a neighborhood of x̄ including this point, and its Gâteaux derivative op-
erator dψ : X → X∗ is continuous with respect to the weak∗ topology of X∗—then the
“Lim inf” in (5.1) reduces to the singleton {dψ(x̄)} in any Banach space. The next proposi-
tion relaxes the smoothness assumption in the neighborhood of x̄ provided that the closed
unit ball IB∗ in X∗ is weak∗ sequentially compact. This latter property holds for general
classes of Banach spaces X; in particular, for those admitting an equivalent norm Gâteaux
differentiable at nonzero points, for weak Asplund spaces (including every Asplund space
and every weakly compactly generated space, and hence every reflexive and every separa-
ble space), etc. We refer the reader to [9] for more information on this property and the
afore-mentioned classes of Banach spaces.

Proposition 5.2 (sufficient conditions for inner subdifferential stability). Let X
be a Banach space such that the closed unit ball IB∗ is weak∗ sequentially compact in X∗,
and let ψ be convex, continuous, and Gâteaux differentiable at x̄ ∈ int(domψ). Then ψ is
inner subdifferentially stable at x̄.

Proof. Take any sequence xk → x̄ as k → ∞ and suppose that it entirely belongs to U .
Employing the well-known boundedness of the subdifferential mapping ∂ψ(·) around x̄ (see,
e.g., [18, Proposition 1.11]) and using the assumed weak∗ sequential compactness of the
dual ball IB∗, we conclude that every subset of the set

V ∗ :=
{
x∗ ∈ X∗∣∣ ∃x ∈ U with x∗ ∈ ∂ψ(x)

}
contains a subsequence converging in the weak∗ topology of X∗. Then picking any sequence
of subgradients x∗k ∈ ∂ψ(xk), we assume with no loss of generality that there is x∗ ∈ X∗

such that x∗k
w∗→ x∗ as k → ∞. It follows directly from (2.2) that x∗ ∈ ∂ψ(x̄). Since

ψ is continuous and Gâteaux differentiable at x̄, we have from convex analysis [18] that
∂ψ(x̄) = {dψ(x̄)}, and therefore x∗k

w∗→ dψ(x̄) as k → ∞. By definition of the inner limit
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(1.5) the latter ensures (5.1) and thus justifies the inner subdifferential stability of ψ at x̄
under the assumptions made. 4

It is not hard to give various examples of functions, which are not differentiable at the
reference point while inner subdifferentially stable at it. Such functions can be constructed
in the following general way. Take a proper closed convex subset Ω of a Gâteaux smooth
space X, a point x̄ ∈ bd Ω, and a function θ(x) that is convex, continuous, and Gâteaux
differentiable on an open set containing x̄. Then define ψ : X → IR by

ψ(x) =

{
θ(x) if x ∈ Ω,
∞ otherwise.

(5.2)

It follows from Proposition 5.2 that Lim inf ∂ψ(x) in (5.1) reduces to {dθ(x̄)}. Note that

∂ψ(x̄) = dθ(x̄) +N(x̄; Ω)

by the subdifferential sum rule (2.5) held due to the continuity of θ. Observe also that, by
our convention that ∞−∞ = ∞, a boundary domain point x̄ ∈ bd(domψ) can give a local
minimizer to the DC function ϕ− ψ provided that domϕ ⊂ domψ.

Remark 5.3 (inner subdifferential stability in finite dimension). Note that any
function ψ(x) constructed in the way of (5.2) is extended-real-valued around the reference
point x̄ ∈ domψ. This choice is motivated by the following observation: if ψ is a convex
function defined on IRn with int(domψ) 6= ∅, then “Lim inf” in (5.1) is empty at any point
x̄ ∈ int(domψ) where ∂ψ(x̄) is not a singleton, i.e., where ψ is not differentiable; in this
case Gâteaux and Fréchet derivatives agree at x̄. Indeed, this follows from the well-known
fact in finite-dimensional convex analysis (see, e.g., [19, Theorem 25.5]) that such a function
ψ is differentiable in the classical sense on a dense subset of int(domψ) and, moreover, its
subdifferential at x̄ ∈ int(domψ) admits the representation

∂ψ(x̄) = co
{

lim
k→∞

∇ψ(xk)
∣∣ ψ is differentiable at xk → x̄

}
via the classical gradients ∇ψ(x) on the afore-mentioned dense subset; see, e.g., [19, The-
orem 25.6]. Taking into account Proposition 5.2 and the automatic continuity of convex
functions on the interior of their domains in finite dimensions by [19, Theorem 10.1], we thus
conclude that the inner subdifferential stability of ψ at x̄ ∈ int(domψ) ⊂ IRn is equivalent
to its differentiability at this point. It is not the case for x̄ ∈ bd(domψ) as shown in (5.2).

Now we are ready to formulate and prove a tight upper estimate for the basic subdif-
ferential of the value function in (1.1)–(1.3) under the inner subdifferential stability of the
minus function ψ in (1.1).

Theorem 5.4 (basic subgradients of value functions in DC programs under inner
subdifferential stability). In addition to the standing assumptions, suppose that the
argminimum mapping M(·) in (4.2) is µ-inner semicontinuous at (x̄, ȳ) ∈ gphM , that ψ in
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(1.1) is inner subdifferentially stable at (x̄, ȳ), and that the qualification condition (4.1) is
satisfied. Then given any (x∗, y∗) ∈ Lim inf

(x,y)
domψ→ (x̄,ȳ)

∂ψ(x, y), we have the inclusion

∂µ(x̄) ⊂ ∂xϕ(x̄, ȳ)− x∗ +
⋃

λ∈Λ(x̄,ȳ,y∗)

[ ∑
t∈suppλ

λt∂xϕt(x̄, ȳ)
]

+NX

(
(x̄, ȳ); Ω

)
(5.3)

with the set of KKT multipliers Λ(x̄, ȳ, y∗) defined in (4.4).

Proof. To justify inclusion (5.3) for any fixed (x∗, y∗) ∈ Lim inf
(x,y)

domψ→ (x̄,ȳ)

∂ψ(x, y), pick an

arbitrary basic subgradient u∗ ∈ ∂µ(x̄) and by definition (2.10) find sequences εk ↓ 0,
xk

µ→ x̄, and u∗k ∈ ∂̂εkµ(xk) satisfying u∗k
w∗→ u∗ as k → ∞. Then applying definition (2.8)

to the εk-subgradient u∗k ∈ ∂̂εkµ(xk) for any fixed k ∈ IN , we get ηk > 0 such that

〈u∗k, x− xk〉 ≤ µ(x)− µ(xk) + 2εk‖x− xk‖ whenever x ∈ xk + ηkIB. (5.4)

Since the argminimum mapping M(·) is µ-inner semicontinuous at (x̄, ȳ) and since xk
µ→ x̄,

there is a sequence of yk ∈ M(xk) that contains a subsequence converging to ȳ; we can
assume that yk → ȳ for all k →∞. Taking (x∗, y∗) fixed in the theorem and using definition
(1.5) of the inner limit, for the chosen sequence (xk, yk) we find a sequence of subgradients
(x∗k, y

∗
k) ∈ ∂ψ(xk, yk) such that (x∗k, y

∗
k)

w∗→ (x∗, y∗) as k → ∞. It follows from (5.4), from
definitions (4.2) of the argminimum mapping M(·) and (4.3) of the feasible solution set Γ
to (1.1)–(1.3), and from the subdifferential construction (2.2) that

〈u∗k, x− xk) ≤ ϕ(x, y)− ψ(x, y)− ϕ(xk, yk) + ψ(xk, yk) + 2εk
(
‖x− xk‖+ ‖y − yk‖

)
≤ ϕ(x, y)− ϕ(xk, yk)− 〈x∗k, x− xk〉 − 〈y∗k, y − yk〉
+2εk

(
‖x− xk‖+ ‖y − yk‖) for all (x, y) ∈ Γ ∩

(
(xk, yk) + ηkIB

)
.

The latter implies in turn that the relationship

〈u∗k + x∗k, x− xk〉+ 〈y∗k, y − yk〉 ≤ ϕ(x, y)− ϕ(xk, yk) + 2εk
(
‖x− xk‖+ ‖y − yk‖

)
valid for all such (x, y), which can be written via the analytic ε-subdifferentials (2.8) as

(u∗k + x∗k, y
∗
k) ∈ ∂̂2εk

(
ϕ+ δ(·; Γ)

)
(xk, yk) for all k ∈ IN. (5.5)

Passing to the limit in (5.5) as k → ∞ and taking into account the weak∗ convergence
(u∗k + x∗k, y

∗
k)

w∗→ (u∗ + x∗, y∗), we get from definition (2.10) of the basic subdifferential that

(u∗ + x∗, y∗) ∈ ∂
(
ϕ+ δ(·; Γ)

)
(x̄, ȳ). (5.6)

Since the function ϕ + δ(·; Γ) is obviously convex on X × Y , the basic subdifferential in
(5.6) reduces to the subdifferential (2.2) as ε = 0 of convex analysis on the Banach space in
question; see [13, Theorem 1.93]. Further, the subdifferential sum rule from Corollary 3.3
held under the assumed qualification condition (4.1) gives

∂
(
ϕ+ δ(·; Γ)

)
(x̄, ȳ) ⊂ ∂ϕ(x̄, ȳ) +

⋃
λ∈A(x̄,ȳ)

[ ∑
t∈suppλ

λt∂ϕt(x̄, ȳ)
]

+N
(
(x̄, ȳ); Ω

)
(5.7)
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with A(x̄, ȳ) = {λ ∈ ĨRT+| λtϕt(x̄, ȳ) = 0 for all t ∈ suppλ}. Substituting now (5.7) into
(5.6) and taking into account relationships (4.11) between the full and partial subdifferen-
tials of convex functions, we arrive at the inclusions

u∗ ∈ ∂xϕ(x̄, ȳ)− x∗ +
∑

t∈suppλ

λt∂xϕt(x̄, ȳ) +NX

(
(x̄, ȳ); Ω

)
,

y∗ ∈ ∂yϕ(x̄, ȳ) +
∑

t∈suppλ

λt∂yϕt(x̄, ȳ) +NY

(
(x̄, ȳ); Ω

)
for some λ ∈ A(x̄, ȳ), which imply (5.3) due to construction (4.4) of the KKT multiplier set
Λ(x̄, ȳ, y∗). This completes the proof of the theorem. 4

As discussed above, the inner subdifferential stability of the minus function ψ required in
Theorem 5.4 is a rather restrictive assumption. In the next theorem we replace it by much
more flexible assumption on ψ that holds, in particular, for any continuous convex functions.
The upper estimate for the basic subdifferential of the value function (1.1) obtained under
this assumption is less precise than in Theorem 5.4 while is still sufficient for the majority
of applications including those in this paper. The new condition is formulated as follows.

Definition 5.5 (subdifferential boundedness). We say that a proper convex function
ψ : X → IR is subdifferentially bounded around x̄ ∈ domψ if for any sequences εk ↓ 0
and xk

domψ→ x̄ as k → ∞ there is a sequence of x∗k ∈ ∂εkψ(xk), k ∈ IN , such that the set
{x∗k| k ∈ IN} is bounded in X∗.

Of course, this definition can be applied to nonconvex functions as well (which is not
needed in this paper) if we appropriately modify the constructions of the ε-subdifferentials
(2.2). The following sufficient condition for the subdifferential boundedness is entirely based
on the local Lipschitzian property of ψ around x̄ that is a consequence of just the usual
continuity at the reference point in the convex setting.

Proposition 5.6 (sufficient condition for subdifferential boundedness of convex
functions). Let ψ : X → IR be a convex function, which is continuous at x̄ ∈ int(domψ).
Then ψ is subdifferentially bounded around this point.

Proof. It is well known in convex analysis that the continuity of a convex function ψ at
the reference point x̄ ∈ int(domψ) yields that ψ is locally Lipschitzian around x̄; see, e.g.,
[18, Proposition 1.6]. On the other hand, the local Lipschitz continuity of ψ around x̄

easily implies by (2.2) with ε = 0 that the subdifferential sets ∂ψ(x) are uniformly bounded.
Furthermore, ∂ψ(x) ⊂ ∂εψ(x) for any ε > 0. Now taking arbitrary sequences εk ↓ 0 and

xk
domψ→ x̄ as k →∞, we have x∗k ∈ ∂εkψ(xk) for any sequence of subgradients x∗k ∈ ∂ψ(xk),

k ∈ IN . This justifies the subdifferential boundedness of ψ. 4

The following theorem provides a result largely independent of Theorem 5.4. The upper
estimate (5.8) obtained below reduces to (5.3) in Theorem 5.4 if the minus function ψ in (1.1)
is Gâteaux differentiable at (x̄, ȳ) and the closed unit balls in X∗ and Y ∗ are sequentially
weak∗ compact in X∗. Observe that Theorem 5.7 is free of the restrictive (in the nonsmooth
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case) requirement on the inner subdifferential stability of ψ providing however a less precise
estimate of ∂µ(x̄) when ψ is not Gâteaux differentiable at the reference point (x̄, ȳ). The
proof of Theorem 5.7 is significantly different and more involved in comparison with that of
Theorem 5.4. In particular, we use below the fundamental Brøndsted-Rockafellar theorem
on subdifferential density in convex analysis, which is a predecessor and convex counterpart
of the seminal Ekeland variational principle in variational analysis.

Theorem 5.7 (basic subgradients of value functions in DC programs under sub-
differential boundedness). In addition to the standing assumptions, suppose that for
both spaces X and Y the dual unit balls are sequentially weak∗ compact in X∗ and Y ∗, re-
spectively, that the argminimum mapping M(·) in (4.2) is µ-inner semicontinuous at some
point (x̄, ȳ) ∈ gphM , that ψ in (1.1) is subdifferentially bounded around (x̄, ȳ), and that the
qualification condition (4.1) is satisfied. Then we have the upper estimate

∂µ(x̄) ⊂ ∂xϕ(x̄, ȳ) +
⋃

(x∗,y∗)∈∂ψ(x̄,ȳ)

{
− x∗ +

⋃
λ∈Λ(x̄,ȳ,y∗)

[ ∑
t∈suppλ

λt∂xϕt(x̄, ȳ)
]}

+NX

(
(x̄, ȳ); Ω

) (5.8)

with the set of KKT multipliers Λ(x̄, ȳ, y∗) defined in (4.4).

Proof. Pick any u∗ ∈ ∂µ(x̄) and similarly to the proof of Theorem 5.4 find sequences
εk ↓ 0, xk

µ→ x̄, and u∗k ∈ ∂̂εkµ(xk) satisfying u∗k
w∗→ u∗ as k →∞. Then we get ηk ↓ 0 such

that inequality (5.4) holds and, by the assumed µ-inner semicontinuity of M(·), obtain a
sequence of yk ∈M(xk) converging to ȳ as k →∞.

Select further νk > 0 satisfying 2
√
νk < ηk. Taking into account that νk ↓ 0 and

(xk, yk) → (x̄, ȳ) as k →∞ and employing the subdifferential boundedness condition imposed
on ψ, we find a sequence of (x∗k, y

∗
k) ∈ ∂νkψ(xk, yk), k ∈ IN , such that the set {(x∗k, y∗k) ∈

X∗ × Y ∗| k ∈ IN} is bounded. The assumed sequential weak∗ compactness of the dual
balls in X∗ and Y ∗ allows us to select a subsequence of {(x∗k, y∗k)} that weak∗ converges
(with no relabeling) to some (x∗, y∗) ∈ X∗ × Y ∗ as k → ∞. The well-known closed-graph
property of subdifferential and ε-subdifferential mappings in convex analysis (see, e.g., [23,
Theorem 2.4.2]) implies that (x∗, y∗) ∈ ∂ψ(x̄, ȳ). Similarly to the proof of Theorem 5.4 we
derive from (5.4) the inequality

〈u∗k + x∗k, x− xk〉+ 〈y∗k, y − yk〉 − νk ≤ ϕ(x, y)− ϕ(xk, yk) + 2εk
(
‖x− xk‖+ ‖y − yk‖

)
held for all (x, y) ∈ Γ ∩

(
(xk, yk) + ηkIB

)
with Γ ⊂ X × Y given in (4.3). This implies that

(u∗k + x∗k, y
∗
k) ∈ ∂νkϑk(xk, yk), k ∈ IN, (5.9)

via the ε-subdifferentials (2.2) of the proper, l.s.c., and convex function ϑk : X × Y → IR

constructed for each k ∈ IN in the form

ϑk(x, y) : = ϕ(x, y) + δ
(
(x, y); Γ ∩ [(xk, yk) + ηkIB]

)
−ϕ(xk, yk) + 2εk

(
‖x− xk‖+ ‖y − yk‖

)
.

(5.10)
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Applying now to the elements in (5.9), for each k ∈ IN , the afore-mentioned Brøndsted-
Rockafellar density theorem (see, e.g., [18, Theorem 3.17]), we find pairs (x̃k, ỹk) ∈ domϑk
and (x̃∗k, ỹ

∗
k) ∈ ∂ϑk(x̃k, ỹk) satisfying the estimates

‖x̃k − xk‖+ ‖ỹk − yk‖ ≤
√
νk and ‖x̃∗k − (u∗k + x∗k)‖+ ‖ỹ∗k − y∗k‖ ≤

√
νk. (5.11)

It follows from the latter relationships, constructions (2.2) and (5.10), and the choice of νk
with 0 < 2

√
νk < ηk that

〈x̃∗k, x− x̃k〉+ 〈ỹ∗k, y − ỹk〉 ≤ ϑk(x, y)− ϑk(x̃k, ỹk) ≤ ϕ(x, y)− ϕ(x̃k, ỹk)
+2εk

(
‖x− xk‖+ ‖y − yk‖

)
− 2εk

(
‖x̃k − xk‖+ ‖ỹk − yk‖

)
≤ ϕ(x, y)− ϕ(x̃k, ỹk) + 2εk

(
‖x− x̃k‖+ ‖y − ỹk‖

)
for all (x, y) ∈ Γ ∩

(
(xk, yk) + ηkIB

)
, which yields the inclusions

(x̃∗k, ỹ
∗
k) ∈ ∂̂2εk

(
ϕ+ δ(·; Γ)

)
(x̃k, ỹk), k ∈ IN, (5.12)

via the analytic ε-subdifferentials (2.8) of the convex l.s.c. function ϕ+ δ(·; Γ).
It easily follows from the convergences (xk, yk) → (x̄, ȳ), (u∗k + x∗k, y

∗
k)

w∗→ (u∗ + x∗, y∗)
and from the norm estimates in (5.11) that

(x̃k, ỹk) → (x̄, ȳ) and (x̃∗k, ỹ
∗
k)

w∗→ (u∗ + x∗, y∗) as k →∞.

Thus passing to the limit in (5.12) as k → ∞ and using construction (2.10) of the basic
subdifferential, we arrive at inclusion (5.6) as in the proof of Theorem 5.4, where the basic
subdifferential agrees with the subdifferential of convex analysis (2.2) with ε = 0 due to the
convexity of the function ϕ+ δ(·; Γ). Proceeding finally as in the proof of Theorem 5.4 by
employing the subdifferential sum rule from Corollary 3.3 held under the assumed qualifi-
cation condition (4.1), we justify (5.8) and complete the proof of the theorem. 4

Our next results gives an upper estimate for the singular subdifferential (2.11) of the
value function in the general parametric DC infinite program (1.1)–(1.3) under considera-
tion. This is a singular counterpart of Theorem 5.7 that particularly plays a crucial role
in establishing the local Lipschitz continuity of the value function and deriving necessary
optimality conditions for (1.1)–(1.3); see below.

Theorem 5.8 (singular subgradients of value functions in DC programs). Suppose
that the assumptions of Theorem 5.7 are satisfied with replacing the qualification condition
(4.1) by the following one: the set

cone
[ ⋃
t∈T

epiϕ∗t
]

+ epi δ∗(·; Ω) is weak∗ closed in X∗ × Y ∗ × IR. (5.13)

Assume in addition that Γ ⊂ domϕ for the set of feasible solutions Γ defined in (4.3). Then

∂∞µ(x̄) ⊂
⋃

λ∈Λ∞(x̄,ȳ)

[ ∑
t∈suppλ

λt∂xϕt(x̄, ȳ)
]

+NX

(
(x̄, ȳ); Ω

)
, (5.14)
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where the set of singular multipliers in (5.14) is defined by

Λ∞(x̄, ȳ) :=
{
λ ∈ ĨRT+

∣∣∣ 0 ∈
∑

t∈suppλ

λt∂yϕt(x̄, ȳ) +NY

(
(x̄, ȳ); Ω

)
,

λtϕt(x̄, ȳ) = 0 for all t ∈ suppλ
}
.

(5.15)

Proof. Take any singular subgradient u∗ ∈ ∂∞µ(x̄) and by definition (2.11) find sequences

λk ↓ 0, εk ↓ 0, xk
µ→ x̄, u∗k ∈ ∂̂εkµ(xk) with λku

∗
k
w∗→ u∗ as k →∞.

Following the corresponding arguments of Theorem 5.7, we select sequences

νk ↓ 0 as k →∞, yk ∈M(xk), and (x∗k, y
∗
k) ∈ ∂νkψ(xk, yk), k ∈ IN,

such that the one of {(x∗k, y∗k)} weak∗ converges in X∗ × Y ∗ to some (x∗, y∗) ∈ ∂ψ(x̄, ȳ).
Further, the application of the Brøndsted-Rockafellar theorem to the function ϑk(x, y) from
(5.10) gives us sequences of (x̃k, ỹk) ∈ domϑk and (x̃∗k, ỹ

∗
k) ∈ ∂ϑk(x̃k, ỹk) satisfying the

estimates in (5.11) and the subdifferential inclusions (5.12) for all k ∈ IN . Since the function
ϕ+ δ(·; Γ) is convex, its analytic ε-subdifferential in (5.12) can be written in form (2.9). By
the assumption on Γ ⊂ domϕ we therefore have from (5.12) that

〈x̃∗k, x− x̃k〉+ 〈ỹ∗k, y − ỹk〉 ≤ ϕ(x, y)− ϕ(x̃k, ỹk) + 2εk
(
‖x− x̃k‖+ ‖y − ỹk‖

)
for all (x, y) ∈ Γ and k ∈ IN . The latter implies, by picking any γ > 0 and using the l.s.c.
of ϕ around (x̄, ȳ), that

λk
[
〈x̃∗k, x− x̃k〉+ 〈ỹ∗k, y − ỹk〉

]
≤ λk

[
ϕ(x, y)− ϕ(x̃k, ỹk) + 2εk

(
‖x− x̃k‖+ ‖y − ỹk‖

)]
≤ λk

[
ϕ(x, y)− ϕ(x̄, ȳ) + γ + 2εk

(
‖x− x̃k‖+ ‖y − ỹk‖

)]
for all (x, y) ∈ Γ and all k ∈ IN sufficiently large. Passing there to the limit as k → ∞
and taking into account that the sequence {ỹ∗k} is bounded in Y ∗, that λk ↓ 0, and that

λkx̃
∗
k
w∗→ u∗ by (5.11), we get the relationship

〈u∗, x− x̄〉 ≤ 0 for all (x, y) ∈ Γ,

which is equivalent to (u∗, 0) ∈ N((x̄, ȳ); Γ) by (2.6). Applying now the normal cone calculus
from Corollary 3.4 valid under the assumed qualification condition (5.13), we arrive at

(u∗, 0) ∈
⋃

λ∈A(x̄,ȳ)

[ ∑
t∈suppλ

λt∂ϕt(x̄, ȳ)
]

+N
(
(x̄, ȳ); Ω

)
with A(x̄, ȳ) = {λ ∈ ĨRT+| λtϕt(x̄, ȳ) = 0, t ∈ suppλ}. The latter yields (5.14) with Λ∞(x̄, ȳ)
defined in (5.15) by using the arguments similar to the proof of the last part of Theorem 5.4.
This completes the proof of the theorem. 4

Next we obtain efficient applications of the upper estimates for the basic and singular
subdifferentials of the value function µ(·) given in Theorem 5.4 and Theorem 5.7 to the
local Lipschitz continuity of µ(·) and necessary optimality conditions for the parametric
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DC infinite (and hence also semi-infinite) programs (1.1)–(1.3). These two types of results
(Lipschitz stability and optimality conditions) are very much interrelated and are both
based on the two fundamental issues in variational analysis and generalized differentiation
in the framework of Asplund spaces [13]:

(a) nonemptiness of the basic subdifferential for locally Lipschitzian functions;
(b) full subdifferential characterization of Lipschitz continuity.

We summarize these results in the following lemma, with more specific references and
comments in the lines of its proof. Note that for any Asplund space X the dual ball IB∗

is sequentially weak∗ compact in X∗, i.e., we meet the requirements of Theorem 5.4 and
Theorem 5.7 assuming that the spaces X and Y in (1.1)–(1.3) are Asplund.

Lemma 5.9 (nonemptiness of the basic subdifferential and subdifferential char-
acterization of Lipschitz continuity in Asplund spaces). Let X be Asplund, and let
ϕ : X → IR be finite at x̄. Then the following hold:

(i) ∂ϕ(x̄) 6= ∅ provided that ϕ is locally Lipschitzian around x̄ ∈ int(domϕ).
(ii) ϕ is locally Lipschitzian around x̄ ∈ int(domϕ) if and only if it is l.s.c. around this

point, the singular subdifferential of ϕ is trivial at x̄, i.e.,

∂∞ϕ(x̄) = {0}, (5.16)

and for any sequences λk ↓ 0, xk
ϕ→ x̄, and x∗k ∈ λk∂̂ϕ(xk) as k ∈ IN we have the implication[

x∗k
w∗→ 0

]
=⇒

[
‖x∗k‖ → 0

]
as k →∞. (5.17)

Proof. Assertion (i) is established in [13, Corollary 2.25] as a direct consequence of the
extremal principle. The Lipschitzian characterization in (ii) is a combination of the two
results from [13]: Theorem 3.52 where the local Lipschitz continuity is characterized via the
simultaneous fulfillment of (5.16) and the so-called “sequential normal epi-compactness”
(SNEC) property of l.s.c. functions, and Corollary 2.39 where the SNEC property is char-
acterized in terms (5.17). In general, assertion (ii) of the theorem is a consequence of the
coderivative characterization of the Lipschitz-like/Aubin property of set-valued mapping
given in [13, Theorem 4.10]. Observe that the SNEC part (5.17) of this lemma holds auto-
matically in finite dimensions, where the local Lipschitz continuity of l.s.c. functions is thus
fully characterized by (5.16); cf. [20, Therem 9.13 and Theorem 9.40]. 4

Now based on Lemma 5.9 and the subdifferential estimates of Theorems 5.4 and 5.7,
we obtain verifiable conditions for the local Lipschitz continuity of the value function µ(·)
in (1.1)–(1.3) and necessary optimality conditions for the class of parametric DC infinite
programs under consideration. Recall that a set-valued mapping S : X →→ Y is Lipschitz-like
around (x̄, ȳ) ∈ gphS if there are ` ≥ 0 and neighborhoods U of x̄ and V of ȳ such that

S(x) ∩ V ⊂ S(u) + `‖x− u‖IB for all x, u ∈ U.

This property has been well recognized in nonlinear analysis and optimization as the most
natural extension of the classical Lipschitz continuity to set-valued mappings, which is
equivalent to the metric regularity and linear openness properties of the inverse S−1.
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Theorem 5.10 (Lipschitz continuity of value functions and necessary optimality
conditions for parametric DC infinite programs.) Let in the assumptions of Theo-
rem 5.8 the parameter space X be Asplund (which implies the weak∗ sequential compactness
of the unit ball in X∗) and suppose in addition that{ ⋃

λ∈Λ∞(x̄,ȳ)

[ ∑
t∈suppλ

λt∂xϕt(x̄, ȳ)
]

+NX

(
(x̄, ȳ); Ω

)}
=

{
0
}

(5.18)

with the set of singular multipliers defined in (5.15). Then the value function µ(·) is locally
Lipschitzian around x̄ provided that it is l.s.c. around this point (which is ensured by the
inner semicontinuity of of M(·) around (x̄, ȳ)) in each of the following cases:

(a) either X is finite dimensional,
(b) or both ϕ and ψ are continuous at (x̄, ȳ) and the mapping F (x) ∩ G(x) given in

(1.2) and (1.3) is Lipschitz-like around (x̄, ȳ).

If furthermore the qualification condition (4.1) holds, then we have the following necessary
optimality conditions for the minimizer ȳ to the parametric DC infinite program (4.15):
there are (x∗, y∗) ∈ ∂ψ(x̄, ȳ), u∗ ∈ X∗, and λ ∈ ĨRT+ from (3.3) satisfying the relationships

u∗ + x∗ ∈ ∂xϕ(x̄, ȳ) +
∑

t∈suppλ

λt∂xϕt(x̄, ȳ) +NX

(
(x̄, ȳ); Ω

)
,

y∗ ∈ ∂yϕ(x̄, ȳ) +
∑

t∈suppλ

λt∂yϕt(x̄, ȳ) +NY

(
(x̄, ȳ); Ω

)
,

λtϕt(x̄, ȳ) = 0 for all t ∈ suppλ.

(5.19)

Proof. If (5.18) holds, then ∂∞µ(x̄) = {0} by Theorem 5.8. We can easily check by defini-
tions that the lower semicontinuity of µ(·) around x̄ follows from the inner semicontinuity
of M(·) around (x̄, ȳ). Thus the local Lipschitz continuity of µ(·) around x̄ in case (a) of the
theorem follows directly from condition (5.16) of Lemma 5.9(ii), since the SNEC property
(5.17) is automatic in finite-dimensional spaces.

In the Asplund case (b) of the theorem, observe that the continuity assumptions on
the convex functions ϕ and ψ at (x̄, ȳ) imply their Lipschitz continuity around this point.
Then we employ [15, Theorem 5.2(i)], which ensures the SNEC property (5.17) of the
value function µ(·) in (1.1) at the point x̄ provided that the cost function ϕ − ψ is locally
Lipschitzian around (x̄, ȳ) and the constraint mapping F (·) ∩G(·) is Lipschitz-like around
this point. Thus we conclude from Lemma 5.9(ii) that the value function µ(·) is locally
Lipschitzian around x̄ under the assumptions imposed in case (b) of the theorem.

If furthermore the qualification condition (4.1) is satisfied, then we can use the upper
estimate (5.8) for the basic subdifferential of the value function µ(·) obtained in Theorem 5.7.
Since ∂µ(x̄) 6= ∅ by Lemma 5.9(i), the right-hand side of (5.8) is nonempty as well. Taking
into account construction (4.4) of the KKT multiplier set Λ(x̄, ȳ, y∗), we arrive at the
necessary optimality conditions (5.19) and complete the proof of the theorem. 4

Note that verifiable pointwise conditions ensuring the Lipschitz-like property of the
constraint mapping F (x)∩G(x) imposed in case (b) of Theorem 5.10 easily follow from [13,
Theorem 4.37] in the case of finitely many inequalities in (1.3). In particular, in the case
of smooth functions ϕt this property holds for such constraint systems under the classical
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Mangasarian-Fromovitz constraint qualification; see [13, Corollary 4.39]. The case of infinite
constraints in (1.3) is more challenging and requires further investigation.

All the results obtained above can be specified for the two remarkable subclasses of the
general DC programs (1.1)–(1.3): convex infinite programs with ψ = 0 in (1.1) and concave
infinite programs with ϕ = 0 in (1.1). In this way we do not observe any special phenomena
for the case of concave programming in comparison with the general DC case, while the
specifications of all the results derived in Sections 4 and 5 by putting ϕ = 0 therein seem to
be new for this important and nonconventional class of infinite and semi-infinite programs.

The convex case is different from this viewpoint: it does provide specific results, which
are improvements of those for the general case of DC infinite programs. First of all, for
convex programs we do not need imposing any subdifferential inner semicontinuity and/or
subdifferential boundedness conditions and the corresponding requirements on the sequen-
tial weak∗ compactness of the dual balls in the results of Section 5. Furthermore, the value
function in (1.1)–(1.3) happens to be convex when ψ = 0, and thus both the Fréchet subd-
ifferential ∂̂µ(x̄) in Section 4 and the basic subdifferential ∂µ(x̄) in Section 5 reduce to the
subdifferential of convex analysis for which the condition ∂µ(x̄) 6= ∅ imposed, in particular,
in Corollary 4.3 is not restrictive. We refer the reader to [5], where a comprehensive study of
the latter condition is given for some important special classes of convex infinite programs.

Finally, the case of convex infinite programs allows us to establish the following precise
formula for computing the subdifferential ∂µ(x̄) of the value function in (1.1)–(1.3) with
ψ = 0, which does not have analogs in the general framework of DC infinite programs.

Theorem 5.11 (precise formula for computing subgradients of value functions
in convex infinite programming). Let ψ = 0 in problem (1.1)–(1.3) formulated in arbi-
trary Banach spaces, where the other data of this problem satisfy the standing assumptions
of Section 1 that imply the convexity of the value function µ(·). Suppose also that the qualifi-
cation condition (4.1) holds and that domM 6= ∅ for the argminimum mapping M(·) defined
in (4.2) with ψ = 0. Then given any (x̄, ȳ) ∈ gphM , the subdifferential of µ(·) at x̄ in the
sense of convex analysis is computed by

∂µ(x̄) =
{
x∗ ∈ X∗

∣∣∣ (x∗, 0) ∈ ∂ϕ(x̄, ȳ) +
⋃

λ∈A(x̄,ȳ)

[ ∑
t∈suppλ

λt∂ϕt(x̄, ȳ)
]

+N
(
(x̄, ȳ); Ω

)}
,

(5.20)

where the set A(x̄, ȳ) of active constraint multipliers at (x̄, ȳ) is defined by

A(x̄, ȳ) :=
{
λ ∈ ĨRT+

∣∣ λtϕt(x̄, ȳ) = 0 for all t ∈ suppλ
}
. (5.21)

Proof. It is not hard to derive from the definition of convexity that the value function
µ(·) in (1.1)–(1.3) as ψ = 0 is convex under the standing convexity assumptions on the
initial data of this problem; see, e.g., [2, Lemma 4.2.2], where it is done in the case when
F (x) ∩G(x) is a constant set. Let us first justify the inclusion “⊂” in (5.20).

Take any x∗ ∈ ∂µ(x̄) and get by the subdifferential definition of convex analysis that

µ(x)− µ(x̄) ≥ 〈x∗, x− x̄〉 for any x ∈ X,
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which corresponds to (4.6) in the proof of Theorem 4.1 with γ = 0 and η = ∞ therein.
Taking this into account and repeating the proof of Theorem 4.1 till using the partial
subdifferential representations in (4.11) not needed now, we get

(x∗, 0) ∈ ∂ϕ(x̄, ȳ) +
⋃

λ∈A(x̄,ȳ)

[ ∑
t∈suppλ

λt∂ϕt(x̄, ȳ)
]

+N
(
(x̄, ȳ); Ω

)
,

which justifies the inclusion “⊂” in (5.20).
To prove the opposite inclusion, take any x∗ ∈ X∗ such that (x∗, 0) belongs to the

right-hand side of (5.20) and thus find λ ∈ A(x̄, ȳ), (u∗, v∗) ∈ ∂ϕ(x̄, ȳ), (u∗t , v
∗
t ) ∈ ∂ϕt(x̄, ȳ),

and (ũ∗, ṽ∗) ∈ N((x̄, ȳ); Ω) such that

(x∗, 0) = (u∗, v∗) +
∑

t∈suppλ

λt(u∗t , v
∗
t ) + (ũ∗, ṽ∗). (5.22)

Then using (5.21), definition (4.3) of the feasible solution set Γ, and the underlying defini-
tions of convex analysis for the subgradients and normals in (5.22), we have

ϕ(x, y)− µ(x̄) = ϕ(x, y)− ϕ(x̄, ȳ) ≥ 〈u∗, x− x̄〉+ 〈v∗, y − ȳ〉,
0 ≥ λtϕt(x, y)− λtϕt(x̄, ȳ) ≥ λt〈u∗t , x− x̄〉+ λt〈v∗t , y − ȳ〉, t ∈ suppλ,
0 ≥ 〈ũ∗, x− x̄〉+ 〈ṽ∗, y − ȳ〉 for all (x, y) ∈ Γ.

The latter inequalities together with representation (5.22) immediately imply that

ϕ(x, y) + δ
(
(x, y); Γ

)
− µ(x̄) ≥ 〈x∗, x− x̄〉 for all (x, y) ∈ X × Y,

which gives µ(x) − µ(x̄) ≥ 〈x∗, x − x̄〉 for all x ∈ X due to the construction of the value
function µ(·) in (1.1)–(1.3) with ψ = 0. Therefore x∗ ∈ ∂µ(x̄), and we thus justify the
inclusion “⊃” in (5.20) and complete the proof of the theorem. 4

In the next section we give efficient applications of the latter theorem and other results
of this paper to a new class of hierarchical optimization problems labeled as bilevel infinite
programs. The necessary optimality conditions obtained in this way essentially improve
known results even for standard bilevel programs with finitely many constraints in both
finite-dimensional and infinite-dimensional spaces.

6 Applications to Bilevel Programming

Bilevel programming concerns a broad class of two-level hierarchical optimization problems,
where the set of feasible solutions to the upper-level problem consists of optimal solutions to
the lower-level problem of parametric optimization; see the book [3] and the extended intro-
duction to the recent paper [4] for comprehensive discussions, various examples, results, and
references. In this paper we study the so-called optimistic version of bilevel programming
dealing with optimization problems of the following type:{

minimize f(x, y) subject to
y ∈M(x) :=

{
y ∈ G(x)

∣∣ ϕ(x, y) = µ(x)
}
,

(6.1)

26



where M(x) is a parameter-dependent set of optimal solutions to the lower-level problem

minimize ϕ(x, y) subject to y ∈ G(x) :=
{
y ∈ Y

∣∣ ϕt(x, y) ≤ 0, t ∈ T
}
, (6.2)

and where µ(·) is the value function to the parametric lower-level problem:

µ(x) := inf
{
ϕ(x, y)

∣∣ y ∈ G(x)
}
. (6.3)

As above, the index set T in the inequality constraints of the lower-level problem (6.2) is
arbitrary, and thus we generally refer to (6.1) as to a bilevel infinite program. Of course,
this includes the standard case in bilevel programming when T is finite; in the latter case
we specify (6.1) as a bilevel program with finitely many constraints.

Our standing assumptions on the initial data ϕ : X × Y → IR and ϕt : X × Y → IR

of the lower-level problem (6.2) are the same as those imposed in Section 1 for the whole
paper: properness, lower semicontinuity, and convexity. We impose the same assumptions
on the cost/objective function f : X × Y → IR of the upper-level problem in (6.1). Bilevel
programs of this type are called fully convex. The spaces X and Y under consideration in
this paper are arbitrary Banach.

The reader immediately recognizes that the lower-level problem (6.2) is a parametric
convex infinite program, which is a particular case of the parametric DC infinite program
formulated in (1.1) and (1.3) with ψ = 0 and the absence of the geometric constraints (1.2).
Note that we can easily include the latter constraints into the lower-level problems as well
as include additional convex geometric and/or functional constraints into the upper-level
problem in (6.1); they are dropped for simplicity.

It turns out that, involving a certain “partial calmness” qualification assumption, the
fully convex bilevel problem under consideration can be equivalently reduced to a DC infi-
nite program, which contains (as the “minus” function in the DC objective) the convex value
function (6.3) to the lower-level problem (6.2). Applying further the necessary optimality
conditions for DC programs and the subdifferential formula for the value function obtained
above, we derive in this way verifiable necessary optimality conditions in bilevel program-
ming, which seem to be the first results in the literature for infinite bilevel programs while
also significantly improve previously known optimality conditions for bilevel programs with
finitely many constraints of this type; see the results and comments below.

To proceed, we rewrite the bilevel problem (6.1) in the (globally) equivalent form{
minimize f(x, y) subject to
ϕ(x, y)− µ(x) ≤ 0, y ∈ G(x)

and consider its perturbed version linearly parameterized by p ∈ IR:{
minimize f(x, y) subject to
ϕ(x, y)− µ(x) + p = 0, y ∈ G(x).

(6.4)

Following [22], we say that the unperturbed problem problem (6.1) is partially calm at its
feasible solution (x̄, ȳ) if there are a constant ν > 0 and a neighborhood U of the triple
(x̄, ȳ, 0) ∈ X × Y × IR such that

f(x, y)− f(x̄, ȳ) + ν|p| ≥ 0 for all (x, y, p) ∈ U feasible to (6.4). (6.5)
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In this case we also say that (x̄, ȳ) is a partially calm feasible solution to (6.1). In the
original paper [22] and in the recent one [4], the reader can find various discussions on partial
calmness, its relationships with other constraint qualifications, and efficient conditions for
its validity for important classes of optimization problems. In particular, this condition
always holds at optimal solutions to the lower-level problem when the latter is either linear
or admits a uniform weak sharp minimizer, for classes of nonlinear problems allowing the
so-called exact penalization, etc.

The following lemma justifies the possibility to reduce, under partial calmness, the ini-
tial bilevel program (6.1) to a one-level DC optimization problem with infinitely many
constraints. In fact, this result needs only the continuity assumption on the (nonconvex)
upper level objective in (6.1) with no other requirements on the initial data; cf. [22, Proposi-
tion 3.3], where a similar penalization statement is formulated without proof for a standard
bilevel program with Lipschitzian data.

Lemma 6.1 (penalization of bilevel infinite programs). Let (x̄, ȳ) be a partially
calm feasible solution to the bilevel program (6.1) with G : X →→ Y given in (6.2), and let the
upper-level objective f(·) be continuous at this point. Then (x̄, ȳ) is a local optimal solution
to the penalized problem{

minimize ν−1f(x, y) + ϕ(x, y)− µ(x)
subject to ϕt(x, y) ≤ 0, t ∈ T,

(6.6)

where ν > 0 is the constant from the partial calmness condition (6.5).

Proof. By the partial calmness of (6.1) we have ν > 0 and a neighborhood U of (x̄, ȳ, 0)
for which (6.5) is satisfied. It follows from the continuity of f at (x̄, ȳ) that there are γ > 0
and η > 0 such that V := [(x̄, ȳ) + ηIB]× (−γ, γ) ⊂ U and that

|f(x, y)− f(x̄, ȳ)| ≤ νγ whenever (x, y)− (x̄, ȳ) ∈ ηIB.

This allows us to establish the relationship

f(x, y)− f(x̄, ȳ) + ν
(
ϕ(x, y)− µ(x)

)
≥ 0 for all (x, y) ∈ [(x̄, ȳ) + ηIB] ∩ gphG (6.7)

with G : X →→ Y defined in (6.2). If
(
x, y, µ(x) − ϕ(x, y)

)
∈ V , then (6.7) follows directly

from the partial calmness condition in (6.5). If otherwise
(
x, y, µ(x) − ϕ(x, y)

)
/∈ V , we

get ϕ(x, y) − µ(x) ≥ γ and hence ν
(
ϕ(x, y) − µ(x)

)
≥ νγ. This also implies (6.7) due to

f(x, y) − f(x̄, ȳ) ≥ −νγ. To complete the proof of the lemma, it remains to observe that
ϕ(x̄, ȳ)− µ(x̄) = 0, since (x̄, ȳ) is a feasible solution to (6.1). 4

The next theorem provides an efficient upper estimate for the convex subdifferential
of the value function (6.3) at partially calm feasible solutions to the bilevel program. It
is certainly of its own interest while playing a crucial rule, together with Theorem 5.11
of Section 5, in establishing the main result of this section (Theorem 6.3) on necessary
optimality conditions for the bilevel problems under consideration.
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Theorem 6.2 (subgradients of value functions at partially calm feasible solutions
to bilevel programs). Let (x̄, ȳ) be a partially calm feasible solution to the bilevel program
(6.1). In addition to the standing assumption of this section, suppose that the qualification
condition (4.1) is satisfied for the lower-level problem (6.2) and that the cost function f(·)
of the upper-level problem is continuous at (x̄, ȳ). Then there is a number ν > 0 such that

∂µ(x̄)× {0} ⊂ ν−1∂f(x̄, ȳ) + ∂ϕ(x̄, ȳ) +
⋃

λ∈A(x̄,ȳ)

[ ∑
t∈suppλ

λt∂ϕt(x̄, ȳ)
]

(6.8)

for the convex value function (6.3), where the set A(x̄, ȳ) of active constraint multipliers is
defined in (5.21). In particular, we have the upper estimate

∂µ(x̄) ⊂ ν−1∂xf(x̄, ȳ) + ∂xϕ(x̄, ȳ) +
⋃

λ∈A(x̄,ȳ)

[ ∑
t∈suppλ

λt∂xϕt(x̄, ȳ)
]
. (6.9)

Proof. Fix (x̄, ȳ) satisfying the assumptions of the theorem. Lemma 6.1 ensures that (x̄, ȳ)
is a local minimizer to the penalized problem (6.6), which is a DC infinite program of type
(3.1) described in the space X × Y by the l.s.c. convex functions

ϑ(x, y) := ν−1f(x, y) + ϕ(x, y), θ(x, y) := µ(x), and ϑt(x, y) := ϕt(x, y) (6.10)

with Θ = X×Y in (3.1). Let us show that the assumed qualification condition (4.1) implies
the fulfillment of the CQC condition from Definition 3.1 in the space X∗ × Y ∗ × IR for the
functions ϑ and ϑt defined in (6.10). Using the structure of the feasible set

Ξ :=
{
(x, y) ∈ X × Y

∣∣ ϕt(x, y) ≤ 0 for all t ∈ T
}

to the DC infinite program (6.6), the conjugate epigraphical rule (2.4), and the qualification
condition (4.1), we get the chain of equalities:

epi
(
ϕ+ δ(·; Ξ)

)∗ = cl∗
(
epiϕ∗ + epi δ∗(·; Ξ)

)
= cl∗

{
epiϕ∗ + cl∗

(
cone

[ ⋃
t∈T

epiϕ∗t
])}

= cl∗
{

epiϕ∗ + cone
[ ⋃
t∈T

epiϕ∗t
]}

= epiϕ∗ + cone
[ ⋃
t∈T

epiϕ∗t
]
.

Further, the refined conjugate epigraphical rule from Lemma 2.1(ii) applied to the sum of
functions in (6.10) by the assumed continuity of f(·) at (x̄, ȳ) gives the equalities

epiϑ∗ + cone
[ ⋃
t∈T

epiϑ∗t
]

= epi
(
ν−1f

)∗ + epiϕ∗ + cone
[ ⋃
t∈T

epiϕ∗t
]

= epi
(
ν−1f

)∗ + epi
(
ϕ+ δ(·; Ξ)

)∗ = epi
(
ϑ+ δ(·; Ξ)

)∗
.

This allows us to conclude that the set

epiϑ∗ + cone
[ ⋃
t∈T

epiϑ∗t
]

is weak∗ closed in X∗ × Y ∗ × IR,

which is exactly the CQC requirement for the application of Theorem 3.2 to the DC problem
(6.6). Employing the latter result and the subdifferential sum rule

∂ϑ(x̄, ȳ) = ∂
(
ν−1f + ϕ

)
(x̄, ȳ) = ν−1∂f(x̄, ȳ) + ∂ϕ(x̄, ȳ)
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held by the continuity of f(·), we arrive at the general inclusion (6.8) for subgradients of
the value function claimed the theorem. The upper estimate in (6.9) immediately follows
from (6.8) due to the relationships (4.11) between the full and partial subdifferentials of
convex functions. This completes the proof of the theorem. 4

Now we are ready to establish the main result of this section providing subdifferential
necessary optimality conditions for the fully convex bilevel programs with infinitely many
(in particular, finitely many) inequality constraints.

Theorem 6.3 (necessary optimality condition for bilevel infinite programs). Let
(x̄, ȳ) be a partially calm optimal solution to the bilevel program (6.1) satisfying the standing
assumptions of this section. Suppose in addition that the qualification condition (4.1) is
fulfilled for the lower-level problem (6.2), that the upper objective f(·) is continuous at
(x̄, ȳ), and that ∂µ(x̄) 6= ∅ for the convex value function (6.3). Then for each ỹ ∈ M(x̄)
from the argminimum set in (6.1) there exist a number ν > 0 and multipliers λ = (λt) ∈ ĨRT+
and β = (βt) ∈ ĨRT+ from the positive cone in (3.3) such that we have the relationships

0 ∈ ∂xf(x̄, ȳ) + ν
[
∂xϕ(x̄, ȳ)− ∂xϕ(x̄, ỹ)

]
+

∑
t∈suppλ

λt∂xϕt(x̄, ȳ)

−ν
∑

t∈suppβ

βt∂xϕt(x̄, ỹ),
(6.11)

0 ∈ ∂yf(x̄, ȳ) + ν∂yϕ(x̄, ȳ) +
∑

t∈suppλ

λt∂yϕt(x̄, ȳ), (6.12)

0 ∈ ∂yϕ(x̄, ỹ) +
∑

t∈suppβ

βt∂yϕt(x̄, ỹ), (6.13)

λtϕt(x̄, ȳ) = βtϕt(x̄, ỹ) = 0 for all t ∈ T. (6.14)

Proof. Since ∂µ(x̄) 6= ∅, we take x∗ ∈ ∂µ(x̄) and by Theorem 6.2 find ν > 0 and λ ∈ ĨRT+
satisfying the inclusion

ν(x∗, 0) ∈ ∂f(x̄, ȳ) + ν∂ϕ(x̄, ȳ) +
∑

t∈suppλ

λt∂ϕt(x̄, ȳ) (6.15)

with λtϕt(x̄, ȳ) = 0 for all t ∈ suppλ. On the other hand, picking any ỹ ∈ M(x̄) and
applying to x∗ ∈ ∂µ(x̄) the result of Theorem 5.11 and taking into account the partial
subdifferential relationships (4.11), we find β ∈ ĨRT+ such that

x∗ ∈ ∂xϕ(x̄, ỹ) +
∑

t∈supp β

∂xϕt(x̄, ỹ), 0 ∈ ∂yϕ(x̄, ỹ) +
∑

t∈supp β

∂yϕt(x̄, ỹ), (6.16)

and βtϕt(x̄, ỹ) = 0 for all t ∈ suppβ. Combining (6.15) and (6.16) and remembering the
definition of “supp” in Section 3, we arrive at the optimality conditions (6.11)–(6.14) and
thus complete the proof of the theorem. 4

As an immediate consequence of Theorem 6.3, we get the following necessary optimality
conditions for the bilevel program (6.1) involving only the reference optimal solution (x̄, ȳ).
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Corollary 6.4 (specification of necessary optimality conditions for bilevel pro-
grams). Let (x̄, ȳ) be an optimal solution to the bilevel program (6.1) under all the assump-
tions of Theorem 6.3. Then there are ν > 0 and λ, β ∈ ĨRT+ such that

0 ∈ ∂xf(x̄, ȳ) + ν
[
∂xϕ(x̄, ȳ)− ∂xϕ(x̄, ȳ)

]
+

∑
t∈T

[(
λt − νβt

)
∂xϕt(x̄, ȳ)

]
,

0 ∈ ∂yf(x̄, ȳ) + ν∂yϕ(x̄, ȳ) +
∑
t∈T

λt∂yϕt(x̄, ȳ),

0 ∈ ∂yϕ(x̄, ȳ) +
∑
t∈T

βt∂yϕt(x̄, ȳ),

λtϕt(x̄, ȳ) = βtϕt(x̄, ȳ) = 0 for all t ∈ T.

Proof. Follows from Theorem 6.3 by taking ỹ = ȳ ∈M(x̄) in (6.11)–(6.14). 4

Let us finally discuss the assumption ∂µ(x̄) 6= ∅ in Theorem 6.3 and compare the results
obtained above with those known in the literature.

Remark 6.5 (subdifferentiability of value functions in the lower-level problems).
We have a number of verifiable conditions, which ensure that ∂µ(x̄) 6= ∅ in the assumptions
of Theorem 6.3 and Corollary 6.4, i.e., that the convex value function of the lower-level
problem is subdifferentiable at x̄. It has been recently shown in [5] that ∂µ(x̄) 6= ∅ for a
large class of convex infinite programs in arbitrary Banach spaces under some closedness
qualification condition of the CQC type. If on the other hand the space X is Asplund,
then the required subdifferentiability of the value function µ(·) at x̄ is implied by its local
Lipschitz continuity, which in turn is ensured by the dual qualification condition (5.18) of the
Mangasarian-Fromovitz type introduced and justified for infinite programs in Theorem 5.10.

Remark 6.6 (comparison with known results on optimality conditions for fully
convex bilevel programs). To the best of our knowledge, Theorem 6.3 is the first result
in the literature on necessary optimality conditions for bilevel infinite as well as semi-infinite
programs. It turns out furthermore that the specifications of Theorem 6.3 and its Corol-
lary 6.4 for finite index sets T provide significant improvements over previously known nec-
essary optimality conditions for fully convex bilevel programs with finitely many constraints.
The most advanced results for problems of the latter type have been recently obtained in
[4, Section 4.1] in the finite-dimensional setting; see also the references and commentaries
in [4]. In comparison with our Theorem 6.3, Theorem 4.1 from [4] establishes necessary op-
timality conditions of type (6.10)–(6.14) for such bilevel problems (6.1) with some (vs. any)
element ỹ ∈ M(x̄) therein assuming in addition that M(·) is uniformly bounded around x̄

and imposing a more restrictive constraint qualification/regularity condition in the lower-
level problem, which automatically implies the local Lipschitzian continuity of the value
function µ(·) around x̄ and hence its subdifferentiability at this point. The possibility of
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choosing ỹ = ȳ in (6.10)–(6.14) is justified in [4, Theorem 4.1] under the additional inner
semicontinuity of M(·) at (x̄, ȳ), which is not required in our Theorem 6.3 and Corollary 6.4.
The latter condition is also not required in [4, Theorem 4.4] for bilevel problems of this type
under the additional smoothness assumption imposed on all the data in (6.1) that is essen-
tially employed in the proof. Nothing like that is needed in Theorem 6.3 and Corollary 6.4,
which are proved by using variational techniques significantly different from those in [4].
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[6] Dinh, N., Goberna, M.A., López, M.A., Son, T.Q.: New Farkas-type results with
applications to convex infinite programming. ESAIM: Control Optim. Cal. Var. 13,
580–597 (2007)

[7] Dinh, N., Nghia, T.T.A., Vallet, G.: A closedness condition and its applications to DC
programs with convex constraints. Optimization, to appear (2008)

[8] Dinh, N., Vallet, G., Nghia, T.T.A.: Farkas-type results and duality for DC programs
with convex constraints. J. Convex Anal., 15 (2008)

[9] Fabian, M. et al.: Functional Analysis and Infinite-Dimensional Geometry. Springer,
New York (2001)
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