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We make use of the auxiliary problem principle to develop iterative algorithms for solving equi-
librium problems. The first one is an extension of the extragradient algorithm to equilibrium
problems. In this algorithm the equilibrium bifunction is not required to satisfy any mono-
tonicity property, but it must satisfy a certain Lipschitz-type condition. To avoid this require-
ment we propose linesearch procedures commonly used in variational inequalities to obtain
projection-type algorithms for solving equilibrium problems. Applications to mixed variational
inequalities are discussed. A special class of equilibrium problems is investigated and some
preliminary computational results are reported.
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1. Introduction and the problem statement

Let K be a nonempty closed convex subset of the n-dimensional Euclidean space R
n and

let f : K� K! R [ þ1f g. Consider the following equilibrium problem in the sense of
Blum and Oettli [6]:

Find x� 2 K such that f ðx�, yÞ � 0 for all y 2 K ðPEPÞ

where f ðx, xÞ ¼ 0 for every x 2 K. As usual, we call a bifunction satisfying this property
an equilibrium bifunction on K.

Equilibrium problems have been considered by several authors (see e.g.
[6,12,13,21,22] and the references therein). It is well known (see e.g. [13,21,23]) that
various classes of mathematical programing problems, variational inequalities,
fixed point problems, Nash equilibrium in noncooperative games theory and minimax
problems can be formulated in the form of (PEP).
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The proximal point method was first introduced by Martinet in [16] for solving
variational inequalities and then extended by Rockafellar [28] to the problem of finding
a zero of a maximal monotone operator. Moudafi [20] further extended the proximal
point method to monotone equilibrium problems. Konnov [14] used the proximal
point method for solving Problem (PEP) with f being a weakly monotone equilibrium
function.

Another strategy is to use, as for variational inequality problems, a gap function
in order to convert an equilibrium problem into an optimization problem [14,18].
In general, the transformed mathematical programing problem is not convex.

The auxiliary problem principle, first introduced for solving optimization problems,
by Cohen in [7], and then extended to variational inequalities in [8], becomes a useful
tool for analyzing and developing efficient algorithms for the solution to various
classes of mathematical programming and variational inequality problems (see e.g.
[1,2,7–9,11,24,29] and the references cited therein). Recently, Mastroeni in [17] further
extended the auxiliary problem principle to equilibrium problems involving strongly
monotone equilibrium bifunctions satisfying some Lipschitz-type condition. Noor in
[25] used the auxiliary problem principle to develop iterative methods for solving
problems where the equlibrium bifunctions are supposed to be partially relaxed strongly
monotone. As in the proximal point method, the subproblems needed to solve in these
methods are strongly monotone equilibrium problems. In a recent article, Nguyen et al.
[31] developed a bundle method for solving problems where the equilibrium functions
satisfy a certain cocoercivity condition. A continuous extragradient method is proposed
in [3] for solving equilibrium problems with skew bifunctions.

It is well known that algorithms based upon the auxiliary problem principle, in
general, are not convergent for monotone variational inequalities that are special
cases of the monotone equilibrium problem (PEP). To overcome this drawback, the
extragradient method, first introduced by Korpelevich [15] for finding saddle points,
is used to solve monotone, even pseudomonotone, variational inequalities [9,23,24].

In this article, we use the auxiliary problem principle to extend the extragradient
method to equilibrium problems. By this way, we obtain extragradient algorithms for
solving Problem (PEP). Convergence of the proposed algorithms does not require f
to satisfy any type of monotonicity, but it must satisfy a certain Lipschitz-type
condition as introduced in [17]. In order to avoid this requirement, we use a linesearch
technique to obtain convergent algorithms for solving (PEP).

The rest of the article is organized as follows. In the next section, we give fixed-point
formulations to Problem (PEP). We then use these formulations in the third
section to describe an extragradient algorithm for (PEP). Section four is devoted to
presentation of linesearch algorithms and their convergence results avoiding the
aforementioned Lipschitz-type condition. In section five, we discuss applications of
the proposed algorithms to mixed multivalued variational inequalities. The last
section contains some preliminary computational results and experiments.

2. Fixed point formulations

First we recall some well-known definitions on monotonicity that we need in the
sequel.

2 D. Q. Tran et al.
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Definition 2.1 Let M and K be nonempty convex sets in R
n, M � K, and let

f : K� K! R [ fþ1g. The bifunction f is said to be

(a) strongly monotone on M with constant �>0 if for each pair x, y 2M, we have

f ðx, yÞ þ f ð y, xÞ � ��kx� yk2;

(b) strictly monotone on M if for all distinct x, y 2M, we have

f ðx, yÞ þ f ð y, xÞ < 0;

(c) monotone on M if for each pair x, y 2M, we have

f ðx, yÞ þ f ð y, xÞ � 0;

(d) pseudomonotone on M if for each pair x, y 2M it holds that

f ðx, yÞ � 0 implies f ð y, xÞ � 0;

From the definition above we obviously have the following implications:

ðaÞ ) ðbÞ ) ðcÞ ) ðd Þ:

Following [14], associated with (PEP) we consider the following dual problem of (PEP)

Find x� 2 K such that f ð y, x�Þ � 0 8y 2 K: ðDEPÞ

For each x 2 K, let

Lf ðxÞ :¼ y 2 K : f ðx, yÞ � 0
� �

:

Clearly, x� is a solution to (DEP) if and only if x� 2
T

x2K Lf ðxÞ.
We will denote by K� and Kd the solution sets of (PEP) and (DEP), respectively.

Conditions under which (PEP) and (DEP) have solutions can be found, for example,
in [6,12,13,30] and the references therein. Since Kd ¼

T
x2K Lf ðxÞ, the solution set Kd

is closed convex if f ðx, �Þ is closed convex on K. In general, K� may not be convex.
However, if f is closed convex on K with respect to the second variable and hemi-
continuous with respect to the first variable, then K� is convex and Kd � K�.
Moreover, if f is pseudomonotone on K, then K� ¼ Kd (see [14,21]). In what follows,
we suppose that Kd 6¼ 6 0.

The following lemma gives a fixed-point formulation for (PEP).

LEMMA 2.1 ([17,23]) Let f : K� K! R [ þ1f g be an equilibrium bifunction.
Then the following statements are equivalent:

(i) x� is a solution to (PEP);
(ii) x� is a solution to the problem

min
y2K

f ðx�, yÞ: ð2:1Þ

Extragradient algorithms extended to equilibrium problems 3
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The main drawback of the fixed-point formulation given by Lemma 2.1 is that
Problem (2.1), in general, may not have a solution, and if it does, the solution
may not be unique. To avoid this situation, it is very helpful to use another auxiliary
equilibrium problem that is equivalent to (PEP).

Let L : K� K! R be a nonnegative differentiable convex bifunction on K with
respect to the second argument y (for each fixed x 2 K) such that

(i) Lðx, xÞ ¼ 0 for all x 2 K,
(ii) r2Lðx, xÞ ¼ 0 for all x 2 K

where, as usual, r2Lðx, xÞ denotes the gradient of the function Lðx, �Þ at x. An impor-
tant example for such a function is Lðx, yÞ :¼ 1

2 ky� xk2.
We consider the auxiliary equilibrium problem defined as

Find x� 2 K such that �f ðx�, yÞ þ Lðx�, yÞ � 0 for all y 2 K ðAuPEPÞ

where �>0 is a regularization parameter.
Applying Lemma 2.1 to the equilibrium function �fþ L we see that x� is a minimizer

of the convex program

min
y2K

�f ðx�, yÞ þ Lðx�, yÞ
� �

: ð2:2Þ

Equivalence between (PEP) and (AuPEP) is stated in the following lemma.

LEMMA 2.2 ([17,23]) Let f : K� K! R [ f þ1gf g be an equilibrium bifunction, and
let x� 2 K. Suppose that f ðx�, �Þ : K! R is convex and subdifferentiable on K. Let
L : K� K! Rþ be a differentiable convex function on K with respect to the second
argument y such that

(i) Lðx�, x�Þ ¼ 0,
(ii) r2Lðx

�, x�Þ ¼ 0.

Then x� 2 K is a solution to (PEP) if and only if x� is a solution to (AuPEP).

We omit the proof for this nondifferentiable case because it is similar to the one given
in [17,23] for differentiable case.

3. An extragradient algorithm for EP

As we have mentioned, if f ðx, �Þ is closed convex on K and f ð�, yÞ is upper hemicontin-
uous on K, then the solution set of (DEP) is contained in that of (PEP). In the following
algorithm, as in [17], we use the auxiliary bifunction given by

Lðx, yÞ :¼ Gð yÞ � GðxÞ � rGðxÞ, y� x
� �

, ð3:1Þ

where G : R
n
! R is a strongly convex (with modulus �>0) and continuously

differentiable function; for example GðxÞ ¼ 1
2 xk k2.

4 D. Q. Tran et al.
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Since G is strongly convex on the closed convex set K, the problem

min
y2K

�f ðx, yÞ þ Gð yÞ � GðxÞ � rGðxÞ, y� x
� ���

ðCxÞ

always admits a unique solution.
Lemma 2.2 gives a fixed-point formulation for Problem (PEP) that suggests an itera-

tive method for solving (PEP) by setting xkþ1 ¼ s xk
� �

where s(xk) is the unique solution
of the strongly convex problem (Cxk). Unfortunately, it is well known (see also [9]) that,
for monotone variational inequality problems, which are special cases of monotone
equilibrium problem (PEP), the sequence fxkg may not be convergent. This fact sug-
gested the use of the extragadient method introduced by Korpelevich in [15], first for
finding saddle points, to monotone variational inequalities [9,23]. For the singlevalued
variational inequality problem given as

Find x� 2 K such that Fðx�Þ,x� x�
� �

� 0 for all x 2 K ðVIPÞ

the extragradient (or double projection) method constructs two sequences fxkg and f ykg
by setting

yk :¼ �K xk � �F xk
� �� �

and xkþ1 :¼ �K xk � �F yk
� �� �

where � > 0 and �K denotes the Euclidean projection onto K.
Now we further extend the extragradient method to equilibrium problem (PEP).

Throughout the rest of the article, we suppose that the function f ðx, �Þ is closed,
convex and subdifferentiable on K for each x 2 K. Under this assumption, subproblems
needed to solve in the algorithms below are convex programs with strongly convex
objective functions. In Algorithm 1 we are going to describe, in order to be able
to obtain its convergence, the regularization � must satisfy some condition (see
convergence Theorem 3.2).

Algorithm 1

Step 0 Take x0 2 K, � > 0 and set k :¼ 0.
Step 1 Solve the strongly convex program

min
y2K

�f xk, y
� �

þ Gð yÞ � rG xk
� �

, y� xk
� �� �

ð3:2Þ

to obtain its unique optimal solution yk.
If yk¼ xk, then stop: xk is a solution to (PEP). Otherwise, go to Step 2.
Step 2 Solve the strongly convex program

min
y2K

�f yk, y
� �

þ Gð yÞ � rG xk
� �

, y� xk
� �� �

ð3:3Þ

to obtain its unique solution xkþ1.
Step 3 Set k :¼ kþ 1, and go back to Step 1.

Extragradient algorithms extended to equilibrium problems 5
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The following lemma shows that, if Algorithm 1 terminates after a finite number of
iterations, then a solution to (PEP) has already been found.

LEMMA 3.1 If the algorithm terminates at some iterate point xk, then xk is a solution of
(PEP).

Proof If yk¼ xk, then, by the fact that f ðx, xÞ ¼ 0, we have

�f xk, yk
� �

þ G yk
� �
� G xk

� �
� rG xk

� �
, yk � xk

� �
¼ 0:

Since yk ¼ xk is the solution of (3.2), we have

0 ¼ �f xk, yk
� �

þ G yk
� �
� G xk

� �
� rG xk

� �
, yk � xk

� �
� �f xk, y

� �
þ Gð yÞ � G xk

� �
� rG xk

� �
, y� xk

� �
8y 2 K:

Thus, by Lemma 2.2, xk is a solution to (PEP). g

The following theorem establishes the convergence of the algorithm.

THEOREM 3.2 Suppose that

(i) G is strongly convex with modulus � > 0 and continuously differentiable on an open
set � containing K.

(ii) There exist two constants c1> 0 and c2> 0 such that

f ðx, yÞ þ f ð y, zÞ � f ðx, zÞ � c1ky� xk2 � c2kz� yk2 8x, y, z 2 K: ð3:4Þ

Then

(a) For every x� 2 Kd, it holds true

l xk
� �
� l xkþ1
� �

�
�

2
� �c1

� �
yk � xk
		 		2þ �

2
� �c2

� �
xkþ1 � yk
		 		2 ð3:5Þ

where lð yÞ :¼ Gðx�Þ � Gð yÞ � rGð yÞ, x� � y
� �

for each y 2 K.
(b) Suppose in addition that f is lower semicontinuous on K�K, f ð�, yÞ is upper semicon-

tinuous on K, and 0 < � < minffð�=2c1Þg, ð�=2c2Þ, then the sequence fxkg is bounded,
and every cluster point of fxkg is a solution to (DEP).
Moreover, if Kd ¼ K� (in particular, if f is pseudomonotone on K), then the whole
sequence fxkg converges to a solution of (PEP).

Proof (a) Take any x� 2 Kd. By the definition of l and since xk, xkþ1 2 K, we have

l xk
� �
� l xkþ1
� �

¼ G xkþ1
� �

� G xk
� �
þ rG xkþ1

� �
, x� � xkþ1

� �
� rG xk

� �
, x� � xk

� �
¼ G xkþ1

� �
� G xk

� �
þ rG xkþ1

� �
� rG xk

� �
, x� � xkþ1

� �
� rG xk

� �
, xkþ1 � xk

� �
:

ð3:6Þ

6 D. Q. Tran et al.
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Using the well-known necessary and sufficient condition for optimality of convex
programing [27] we see that xkþ1 solves the convex program

min
y2K

�f ð yk, yÞ þ Gð yÞ � G xk
� �
� rG xk

� �
, y� xk

� �� �
,

if and only if

0 2 @2

n
�f yk, xkþ1
� �

þ G xkþ1
� �

� G xk
� �
� rG xk

� �
, xkþ1 � xk

� �o
þNK xkþ1

� �
:

where NK(x) is the (outward) normal cone of K at x 2 K.
Thus, since f ð yk, �Þ is subdifferentiable and G is strongly convex, differentiable on K,

by the well-known Moreau-Rockafellar theorem [xxvii], there exists w 2 @2 f ð y
k,xkþ1Þ

such that

rG xkþ1
� �

� rG xk
� �

, y� xkþ1
� �

� � w, xkþ1 � y
� �

8y 2 K:

By the definition of subgradient we have, from the latter inequality, that

rG xkþ1
� �

� rG xk
� �

, y� xkþ1
� �

� �f yk, xkþ1
� �

� �f ð yk, yÞ 8y 2 K:

With y ¼ x�, this inequality becomes

rG xkþ1
� �

� rG xk
� �

,x� � xkþ1
� �

� �f yk, xkþ1
� �

� �f yk, x�
� �

:

Since x� is a solution to (DEP), f ð yk, x�Þ � 0. Thus

rG xkþ1
� �

� rG xk
� �

, x� � xkþ1
� �

� �f yk, xkþ1
� �

: ð3:7Þ

Now applying Assumption (3.4) with x¼x^k, y ¼ yk and z ¼ xkþ1, it follows from
(3.7) that

rG xkþ1
� �

� rG xk
� �

, x� � xkþ1
� �

� �f xk, xkþ1
� �

� �f xk, yk
� �

� �c1 yk � xk
		 		2��c2 xkþ1 � yk

		 		2: ð3:8Þ

On the other hand, by Step 1, as yk is the solution to the convex program

min
y2K

�f ðxk, yÞ þ Gð yÞ � G xk
� �
� rG xk

� �
, y� xk

� �� �
,

we have

0 2 @2 �f xk, yk
� �

þ G yk
� �
� G xk

� �
� rG xk

� �
, yk � xk

� �� �
þNK yk

� �
:

Extragradient algorithms extended to equilibrium problems 7



D
ow

nl
oa

de
d 

B
y:

 [B
ib

lio
th

eq
ue

 U
ni

v 
D

e 
N

am
ur

] A
t: 

11
:4

9 
18

 M
ar

ch
 2

00
8 

Similarly, we can show that

�f xk, y
� �

� �f xk, yk
� �

� rG yk
� �
� rG xk

� �
, yk � y

� �
8y 2 K

With y ¼ xkþ1 we obtain

�f xk, xkþ1
� �

� �f xk, yk
� �

� rG yk
� �
� rG xk

� �
, yk � xkþ1

� �
: ð3:9Þ

It follows from (3.6), (3.8), and (3.9) that

l xk
� �
� l xkþ1
� �

� G xkþ1
� �

� G xk
� �
� rG xk

� �
, xkþ1 � xk

� �
þ rG yk

� �
� rG xk

� �
, yk � xkþ1

� �
� �c1 yk � xk

		 		2��c2 xkþ1 � yk
		 		2

¼ G xkþ1
� �

� G xk
� �
� rG xk

� �
, yk � xk

� �
þ rG yk

� �
, yk � xkþ1

� �
� �c1 yk � xk

		 		2��c2 xkþ1 � yk
		 		2

¼

h
G xkþ1
� �

� G yk
� �
� rG yk

� �
, xkþ1 � yk

� �i
þ

h
G yk
� �
� G xk

� �
� rG xk

� �
, yk � xk

� �i
� �c1 yk � xk

		 		2��c2 xkþ1 � yk
		 		2: ð3:10Þ

Since G is strongly convex with modulus �>0, for every x and y, one has

Gð yÞ � GðxÞ � rGðxÞ, y� x
� �

�
�

2
y� x
		 		2 8x, y 2 K: ð3:11Þ

Applying (3.11) first with xkþ1, yk and then with yk, xk we obtain from (3.10) that

l xk
� �
� l xkþ1
� �

�
�

2
� �c1

� �
yk � xk
		 		2þ �

2
� �c2

� �
xkþ1 � yk
		 		2 8k � 0 ð3:12Þ

which proves (a).
Now we prove (b). By Assumption 0 < � < min ð�=2c1Þ, ð�=2c2Þ

� �
, we have

�

2
� �c1 > 0 and

�

2
� �c2 > 0:

Thus, from the inequality (3.12), we deduce that

l xk
� �
� l xkþ1
� �

�
�

2
� �c1

� �
yk � xk
		 		2� 0 8k: ð3:13Þ

8 D. Q. Tran et al.
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Thus flðxkÞk�0g is a nonincreasing sequence. Since it is bounded below by 0, it converges
to l�. Passing to the limit as k!1 it is easy to see from (3.13) that

lim
k!1

yk � xk
		 		 ¼ 0: ð3:14Þ

Note that, since G is �-strongly convex, by the definition of l(xk), we can write

0 �
�

2
x� � xk
		 		2� l xk

� �
8k:

Thus, since flðxkÞg is convergent, we can deduce that the sequence fxkgk�0 is bounded, so
it has at least one cluster point. Let x 2 K be any cluster point and fxki i�0g be the sub-
sequence such that

lim
i!1

xki ¼ x:

Then, it follows from (3.14) that

lim
i!1

yki ¼ x:

Again by Step 1 of the algorithm, we have

�f xki , y
� �

þ Gð yÞ � GðxkiÞ � rGðxkiÞ, y� xki
� �

� �f ðxki , ykiÞ þ Gð ykiÞ � GðxkiÞ � rGðxki Þ, yki � xki
� �

8y 2 K:

Since f is lower semicontinuous on K�K, f ð�, yÞ is upper semicontinuous on K and
f ðx, xÞ ¼ 0, letting i!1 we obtain from the last inequality that

�f ðx, yÞ þ Gð yÞ � GðxÞ � rGðxÞ, y� x
� �

� 0 8y 2 K,

which shows that x is a solution of the (AuPEP ) corresponding to Lðx, yÞ ¼ Gð yÞ �
GðxÞ � rGðxÞ, y� x

� �
. Then, by Lemma 2.2, x is a solution to (PEP).

Suppose now Kd ¼ K�. We claim that the whole sequence fxkgk�0 converges to x.
Indeed, using the definition of l(x^k) with x� ¼ x 2 Kd, we have lðxÞ ¼ 0. Thus, as G
is �-strongly convex, we can write

l xk
� �
� lðxÞ ¼ GðxÞ � G xk

� �
� rG xk

� �
,xk � x

� �
�
�

2
xk � x
		 		2 8k � 0: ð3:15Þ

On the other hand, since the l xk
� �� �

k�0
is nonincreasing and as lðxkiÞ ! lðxÞ, we

must have lðxkÞ ! lðxÞ when k!1. Thus, by (3.15), limk!1 xk ¼ x 2 K�. g

Remark 3.1 The condition (3.4) does not necessarily imply that f is continuous. In fact,
if f ðx, yÞ :¼ ’ð yÞ � ’ðxÞ, then clearly that (3.4) holds true for any c1 � 0, c2 � 0 and for
any function ’.

Extragradient algorithms extended to equilibrium problems 9
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4. Linesearch algorithms

Algorithm 1 requires that f satisfies the Lipschitz-type condition (3.4) which in some
cases is not known. In order to avoid this requirement, in this section we modify
Algorithm 1 by using a linesearch. The linesearch technique has been used widely in
descent methods for mathematical programing problems as well as for variational
inequalities [9,13].

First, we begin with the following definition.

Definition 4.1 ð[13]Þ Let K be a nonempty closed set in R
n. A mapping P : R

n
! R

n is
said to be

(i) feasible with respect to K if

PðxÞ 2 K 8x 2 R
n,

(ii) quasi-nonexpansive with respect to K if for every x 2 R
n,

PðxÞ � y
		 		 � kx� yk 8y 2 K: ð4:1Þ

Note that, if �K is the Euclidean projection on K, then �K is a feasible quasi-
nonexpansive mappings. We denote by FðKÞ the class of feasible quasi-nonexpansive
mappings with respect to K.

Next, we choose a sequence �k
� �

k�0
such that

�k 2 ð0, 2Þ 8k ¼ 0, 1, 2, . . . and lim inf
k!1

�kð2� �kÞ > 0: ð4:2Þ

The algorithm then can be described as follows.

Algorithm 2

Data x0 2 K,� 2 ð0, 1Þ, � 2 ð0, 1Þ and � > 0.
Step 0 Set k :¼ 0.
Step 1 Solve the following strongly convex optimization problem

min
y2K

f ðxk, yÞ þ
1

�

h
Gð yÞ � rG xk

� �
, y� xk

� �i
 �
ð4:3Þ

to obtain its unique solution yk.
If yk¼ xk, stop: xk is a solution to (PEP). Otherwise, go to Step 2.
Step 2

Step 2.1 Find the smallest positive integer m such that

zk,m ¼ ð1� �mÞxk þ �myk,

f ðzk,m, ykÞ þ �
�

h
G yk
� �
� G xk

� �
� rG xk

� �
, yk � xk

� �i
� 0:

(
ð4:4Þ

Step 2.2 Set �k ¼ �
m, zk ¼ zk,m. If 0 2 @2f ðz

k, zkÞ, stop: zk is a solution to (PEP).
Otherwise, go to Step 3.

10 D. Q. Tran et al.
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Step 3 Select gk 2 @2f ðz
k, zkÞ, and compute

�k ¼
��kf ðz

k, ykÞ

ð1� �kÞkgkk
2

and xkþ1 ¼ Pkðx
k � �k�kg

kÞ, ð4:5Þ

where Pk 2 FðKÞ.
Step 4 Set k :¼ kþ 1, and go back to Step 1.

The following lemma indicates that if Algorithm 2 terminates at Step 1 or Step 2.2,
then indeed a solution of (PEP) has been found.

LEMMA 4.1 If Algorithm 2 terminates at Step 1 (resp. Step 2.2), then xk (resp. zk) is a
solution to (PEP).

Proof If the algorithm terminates at Step 1, then xk¼ yk. Since yk is the solution to the
convex optimization problem (4.3), we have

f xk, y
� �

þ
1

�

h
Gð yÞ � G xk

� �
� rG xk

� �
, y� xk

� �i
� f xk, yk

� �
þ

1

�

h
G yk
� �
� G xk

� �
� rG xk

� �
, yk � xk

� �
8y 2 K:

By the same argument as in the proof of Lemma 2.2, we can show that xk is a solution
to (PEP).

If the algorithm terminates at Step 2.2, then 0 2 @2 f ðz
k, zkÞ. Since f ðzk, �Þ is convex,

it implies that f ðzk, zkÞ � f ðzk, yÞ for all y 2 K. Alternatively, since f ðzk, zkÞ ¼ 0,
it shows that zk is a solution to (PEP). g

The next lemma shows that there always exists a positive integer m such that
Condition (4.4) in Step 2.1 is satisfied.

LEMMA 4.2 Suppose that f is upper semicontinuous on K with respect to the first variable,
and yk 6¼ xk. Then

(i) There exists an integer m > 0 such that the inequality in (4.4) holds.
(ii) f ðzk, ykÞ < 0.

Proof To prove (i) we suppose by contradiction that for every positive integer m
such that

zk,m ¼ ð1� �mÞxk þ �myk

we have

f zk,m, yk
� �

þ
�

�

h
G yk
� �
� G xk

� �
� rG xk

� �
, yk � xk

� �i
> 0:

Since f ð�, ykÞ is upper semicontinuous, passing to the limit m!1 we have

f xk, yk
� �

þ
�

�

h
G yk
� �
� G xk

� �
� rG xk

� �
, yk � xk

� �i
� 0: ð4:6Þ

Extragradient algorithms extended to equilibrium problems 11
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On the other hand, since yk is a solution to the convex optimization problem (4.3),
we can write

f ðxk, ykÞ þ
1

�

h
G yk
� �
� G xk

� �
� rG xk

� �
, yk � xk

� �i
� f ðxk, yÞ þ

1

�

h
Gð yÞ � G xk

� �
� rG xk

� �
, y� xk

� �i
8y 2 K:

With y¼ xk the latter inequality becomes

f xk, yk
� �

þ
1

�

h
G yk
� �
� G xk

� �
� rG xk

� �
, yk � xk

� �i
� 0: ð4:7Þ

It follows from (4.6) and (4.7) that

1

�

h
G yk
� �
� G xk

� �
� rG xk

� �
, yk � xk

� �i
�
�

�

h
G yk
� �
� G xk

� �
� rG xk

� �
, yk � xk

� �i
:

Since

h
G yk
� �
� G xk

� �
� rG xk

� �
, yk � xk

� �i
� 0,

we deduce that either ½Gð ykÞ � GðxkÞ � hrG xk
� �

, yk � xki� ¼ 0 or �� 1. The first case
implies that xk ¼ yk, since G is strongly convex. Hence, both cases contradict the
assumption. So (i) holds true.

The statement (ii) is immediate from the rule for determination of zk as

f zk, yk
� �

þ
�

�

h
G yk
� �
� G xk

� �
� rG xk

� �
, yk � xk

� �i
� 0

and

G yk
� �
� G xk

� �
� rG xk

� �
, yk � xk

� �
�
�

2
xk � yk
		 		2> 0,

G being strongly convex and xk 6¼ yk. g

In order to prove the convergence of Algorithm 2, we give the following key property
of the sequence fxkgk�0 generated by the algorithm.

LEMMA 4.3 If f ðx, �Þ is convex and subdifferentiable on K, then the following
statements hold true:

(i) For every solution x� of (DEP) one has

xkþ1 � x�
		 		2� xk � x�

		 		2��kð2� �kÞ �k gk
		 		� �2

: ð4:8Þ

12 D. Q. Tran et al.
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(ii)
P1

k¼0 �kð2� �kÞð�kkg
kkÞ

2 <1.
(iii) Suppose that the algorithm does not terminate. Then if in addition f is continuous

with respect to the second argument and finite on an open set containing K, then
the sequence fgkg is bounded.

Proof First, we prove (i). Take any x� 2 Kd. By property (4.1) of Pk and (4.5), setting
wk ¼ zk � �k�kg

k, as xkþ1 ¼ Pkðw
kÞ we have

xkþ1 � x�
		 		2 ¼ Pkðw

kÞ � x�
		 		2
� wk � x�
		 		2
¼ xk � �k�kg

k � x�
		 		2
¼ xk � x�
		 		2�2�k�k gk,xk � x�

� �
þ �k�k gk

		 		� �2
: ð4:9Þ

Since gk 2 @2f ðz
k, zkÞ and f ðzk, �Þ is convex on K, we have

gk, xk � x�
� �

¼ gk, xk � zk þ zk � x�
� �

� gk, xk � zk
� �

þ f zk, zk
� �

� f zk, x�
� �

,

where f ðzk, x�Þ � 0 because x� 2 Kd. Thus, it follows from the latter inequality that

gk, xk � x�
� �

� gk, xk � zk
� �

: ð4:10Þ

Using (4.4) we can write

xk � zk ¼
�k

1� �k
zk � yk
� �

:

Thus

gk,xk � zk
� �

¼
�k

1� �k
gk, zk � yk
� �

�
�k

1� �k
f zk, zk
� �

� f zk, yk
� �� 


¼
��k
1� �kð Þ

f zk, yk
� �

:

From (ii) of Lemma 4.2 and (4.5) it follows that

��k
ð1� �kÞ

f zk, yk
� �

¼ �k gk
		 		2> 0 ð4:11Þ

which, together with (4.9) and (4.10), implies

xkþ1 � x�
		 		2� xk � x�

		 		2��kð2� �kÞ �k gk
		 		� �2

8x� 2 Kd:

Extragradient algorithms extended to equilibrium problems 13
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To prove (ii) we apply the latter inequality for every k from 0 to m to obtain

Xm
k¼0

�kð2� �kÞ �k gk
		 		� �2

� x0 � x�
		 		2� xmþ1 � x�

		 		2:

Since xm � x�k kf gm�0 is convergent, taking the limit m!1 we obtain

X1
k¼0

�kð2� �kÞð�kkg
kkÞ

2 <1:

We finally prove (iii). To prove that fgkg is bounded we first observe that f ykg is
bounded. Indeed, since yk is the unique solution of Problem (4.3) whose objective
function is continuous and the feasible set is constant, by the Maximum Theorem
(Proposition 23 in [4], see also [5]), the mapping xk ! s xk

� �
¼ yk is continuous. Since

fxkg is bounded, f ykg is bounded, and therefore, fzkg is bounded too because zk is a
convex combination of xk and yk. Thus, without loss of generality we may assume
that zk ! z� as k!þ1. By continuity of the convex function f ðzk, �Þ, the sequence
ff ðzk, �Þg converges pointwise to f ðz�, �Þ. Since gk 2 @2f ðz

k, zkÞ, we can deduce, from
Theorem 24.5 in [27], that fgkg is bounded. g

We are now in a position to prove the following convergence theorem for
Algorithm 2. As we have seen in Lemma 4.1 that if Algorithm 2 terminates then a
solution to (PEP) has already been found. Otherwise, if the algorithm does not
terminate, we have the following convergence results.

THEOREM 4.4 In addition to the assumptions of Lemmas 4.2 and 4.3 we assume that f is
continuous on K�K. Then

(i) The sequence fxkg is bounded, and every cluster point of fxkg is a solution to (PEP).
(ii) If K� ¼ Kd (in particular, if f is pseudomonotone on K), then the whole sequence fxkg

converges to a solution of (PEP). In addition, if �k ¼ � 2 ð0, 2Þ for all k� 0, then

lim inf
k!1

ð�k gk
		 		 ffiffiffiffiffiffiffiffiffiffiffi

kþ 1
p

Þ ¼ 0 ð4:12Þ

holds true.

Proof The boundedness of fxkg follows immediately from (i) and (ii) of Lemma 4.3.
Again by (ii) of Lemma 4.3 we have

�kð2� �kÞ �k gk
		 		� �2

! 0 as k!1:

By (4.2), lim infk!1 �kð2� �kÞ > 0. Thus �kkg
kk ! 0 as k!1. Then

�k gk
		 		 ¼ ��k

ð1� �kÞkgkk
f zk, yk
� �

! 0:

14 D. Q. Tran et al.
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Since fgkg is bounded by (iii) of Lemma 4.3, we deduce that

��k
1� �k

f zk, yk
� �

! 0 as k!1: ð4:13Þ

On the other hand, since G is �-strongly convex, according to the rule (4.4) we have

��

�
xk � yk
		 		2 � �

�

h
G yk
� �
� G xk

� �
� rG xk

� �
, yk � xk

� �i
� �f ðzk, ykÞ: ð4:14Þ

We will consider two cases:

Case 1 lim supk!1 �k > 0. Then there exists � > 0 and a subsequence N� � N such
that �k � � for every k 2 N�. From (4.13) and (4.14), we deduce that

lim
k!1, k2N�

yk � xk
		 		 ¼ 0: ð4:15Þ

Let x� be any cluster point of fxkg. Suppose that the sequence xk : k 2 N�
� �

converges
to x�. Using (4.15) we see that the corresponding subsequence yk : k 2 N�

� �
also

converges to y� ¼ x�. Hence, from Step 1 of Algorithm 2, since yk is the solution of
problem (4.2), we have

�f xk, yk
� �

þ

h
G yk
� �
� G xk

� �
� rG xk

� �
, yk � xk

� �i
� �f xk, y

� �
þ

h
Gð yÞ � G xk

� �
� rG xk

� �
, y� xk

� �i
8y 2 K:

Letting k!þ1, k 2 N�, by continuity of f and x� ¼ y�, we obtain

0 ¼ �f ðx�, y�Þ þ
h
Gð y�Þ � Gðx�Þ � rGðx�Þ, y� � x�

� �i
� �f ðx�, yÞ þ

h
Gð yÞ � Gðx�Þ � rGðx�Þ, y� x�

� �i
8y 2 K:

Thus, in virtue of Lemma 2.2, x� is a solution to (PEP).

Case 2 limk!1 �k ¼ 0. According to the algorithm we have

zk ¼ ð1� �kÞx
k þ �ky

k:

As before, we may suppose that the subsequence fxk : k 2 N� � Ng converges
to some point x�. Since yk is the solution of Problem (4.3), it follows from
the lower semicontinuity of the objective function �f ðxk, �Þ þ Gð�Þ � G xk

� �
�

hrG xk
� �

, � �xki and the Maximum Theorem ([4] Proposition 19) that the sequence
f ykg is bounded.

Extragradient algorithms extended to equilibrium problems 15
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Thus, by taking a subsequence, if necessary, we may assume that the subsequence
f yk : k 2 N�g converges to some point y�. By the definition of yk we have

�f xk, yk
� �

þ

h
G yk
� �
� G xk

� �
� rG xk

� �
, yk � xk

� �i
� �f xk, y

� �
þ

h
Gð yÞ � G xk

� �
� rG xk

� �
, y� xk

� �i
8y 2 K:

Taking the limit as k!1, k 2 N�, since f is lower semicontinuous on K�K and f ð�, yÞ
is upper semicontinuous on K, we have

�f ðx�, y�Þ þ
h
Gð y�Þ � Gðx�Þ � rGðx�Þ, y� � x�

� �i
� �f ðx�, yÞ þ

h
Gð yÞ � Gðx�Þ � rGðx�Þ, y� x�

� �i
8y 2 K: ð4:16Þ

On the other hand, by Step 2.2 of Algorithm 2, m is the smallest nonnegative integer
satisfying (4.4), so we have

�f zk,m�1, yk
� �

þ �
h
G yk
� �
� G xk

� �
� rG xk

� �
, yk � xk

� �i
> 0:

By taking subsequences, if necessary, we may assume that �k ! 0. Then zk,m�1! x�.
By continuity of f at ðx�, y�Þ, we obtain in the limit k!1 that

�f ðx�, y�Þ þ �
h
Gð y�Þ � Gðx�Þ � rGðx�Þ, y� � x�

� �i
� 0: ð4:17Þ

Substituting y ¼ x� into (4.16) we get

�f ðx�, y�Þ þ
h
Gð y�Þ � Gðx�Þ � rGðx�Þ, y� � x�

� �i
� 0: ð4:18Þ

Since

Gð y�Þ � Gðx�Þ � rGðx�Þ, y� � x�
� �

�
�

2
x� � y�
		 		2,

taking into account (4.17) and (4.18) we deduce that

ð1� �Þ y� � x�
		 		2� 0

which together with � 2 ð0, 1Þ implies x� ¼ y�. Then it follows from (4.16) that x� is an
optimal solution to the optimization problem

min
y2K

n
�f ðx�, yÞ þ

h
Gð yÞ � Gðx�Þ � rGðx�Þ, y� x�

� �io
:

Thus, again by Lemma 2.2, x� is a solution to (PEP).

16 D. Q. Tran et al.



D
ow

nl
oa

de
d 

B
y:

 [B
ib

lio
th

eq
ue

 U
ni

v 
D

e 
N

am
ur

] A
t: 

11
:4

9 
18

 M
ar

ch
 2

00
8 

Now we suppose that Kd ¼ K�. From the discussion above, we know that the
sequence fxkg has a cluster point x� 2 K�. Since Kd 	 K�, x� 2 Kd. Applying (i) of
Lemma 4.3 we see that the whole sequence fxk � x�g is convergent. Hence, the whole
sequence fxkg must converge to x� because it has a subsequence converging to x�.

Finally, we suppose that (4.12) does not hold. Then there exists a number �>0 such
that �kkg

kk � ð�=
ffiffiffiffiffiffiffiffiffiffiffi
kþ 1
p

Þ for all k. From (ii) of Lemma 4.3 we have

�2
X1
k¼0

1

kþ 1
<1

which is a contradiction. Thus, the theorem is completed. g

Remark 4.1 In practice, to implement the algorithm we take a tolerance 	 > 0 and we
terminate the algorithm when either xk � yk

		 		 � 	 or kgkk � 	.
Remark 4.2 If f is convex with respect to the first variable x on K, then the rule (4.4)
to determine zk holds true automatically for any �k satisfying 0 < �k � 1� � for all k.

Indeed, since f ð yk, ykÞ ¼ 0, by convexity of f with respect to the first variable, we can
write

f zk, yk
� �

þ
�

�

h
G yk
� �
� G xk

� �
� rG xk

� �
, yk � xk

� �i
¼ f ð1� �kÞx

k þ �ky
k, yk

� �
þ
�

�

h
G yk
� �
� G xk

� �
� rG xk

� �
, yk � xk

� �i
� ð1� �kÞf ðx

k, ykÞ þ
�

�

h
G yk
� �
� G xk

� �
� rG xk

� �
, yk � xk

� �i
:

On the other hand, since yk is a solution to (4.3), we have

f xk, yk
� �

þ
1

�

h
G yk
� �
� G xk

� �
� rG xk

� �
, yk � xk

� �i
� 0:

Thus

ð1� �kÞf zk, yk
� �

þ
�

�

h
G yk
� �
� G xk

� �
� rG xk

� �
, yk � xk

� �i

�
ð�� 1þ �kÞ

�

h
G yk
� �
� G xk

� �
� rG xk

� �
, yk � xk

� �i
� 0

which shows that the linesearch condition (4.4) is satisfied provided 0 < �k �
1� �. g

By Remark 4.2, when f ð�, yÞ is convex on K (for example, when f is a saddle function
on K�K), in order to perform Step 2 in Algorithm 2, we can simply take
zk ¼ ð1� �kÞx

k þ �ky
k where �k can be any number between 0 and 1� �. For gereral

case, the linesearch at Step 2.1 of Algorithm 2 sometimes leads �k to 0 that may

Extragradient algorithms extended to equilibrium problems 17
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cause zigzag. To avoid this case, we propose another linesearch to obtain the following
algorithm.

Algorithm 2a
Data x0 2 K,� 2 ð0, 1Þ, � 2 ð0, 1Þ and � > 0.
Step 0 Set k¼ 0.
Step 1 Find yk 2 K as the unique solution to the strongly convex program

min
y2K

f ðxk, yÞ þ
1

�

h
Gð yÞ � rG xk

� �
, y� xk

� �i
 �
: ð4:19Þ

If yk¼ xk, stop: xk is a solution to (PEP). Otherwise, go to Step 2.
Step 2

Step 2.1 Find m as the smallest nonnegative integer such that

zk,m ¼ ð1� �mÞxk þ �myk,

f ðzk,m, xkÞ � f ðzk,m, ykÞ �
�

�

h
G yk
� �
� G xk

� �
� rG xk

� �
, yk � xk

� �i
:

8<
: ð4:20Þ

Step 2.2 Set �k ¼ �
m, zk ¼ zk,m and go to Step 3.

Step 3 Select any gk 2 @2 f ðz
k, xkÞ, and compute

�k ¼
f zk, xk
� �
kgkk2

and xkþ1 ¼ Pk xk � �k�kg
k

� �
ð4:21Þ

where Pk 2 FðKÞ.
Step 4 Set k :¼ kþ 1, and go back to Step 1.

As for Algorithm 2, we have the following lemma for Algorithm 2a.

LEMMA 4.5 Suppose that f is continuous on K with respect to the first variable, and
yk 6¼ xk. Then

(i) There exists an integer m� 0 such that the inequality in (4.20) holds.
(ii) f ðzk, xkÞ > 0.
(iii) 0 =2 @2 f ðz

k, xkÞ.

Proof To prove (i) we suppose by contradiction that for every nonnegative integer m,
we have

zk,m ¼ ð1� �mÞxk þ �myk,

f zk,m, xk
� �

� f zk,m, yk
� �

<
�

�

h
G yk
� �
� G xk

� �
� rG xk

� �
, yk � xk

� �i
:

8<
:

Passing to the limit m!1, since f ð�, ykÞ is continuous, �m! 0 and f ðxk, xkÞ ¼ 0,
we have

0 � f xk, yk
� �

þ
�

�

h
G yk
� �
� G xk

� �
� rG xk

� �
, yk � xk

� �i
:

18 D. Q. Tran et al.
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The remainder of part (i) can be proved similarly as in the proof of Lemma 4.2.
We now prove (ii). By part (i), there is a nonnegative integer m such that (4.20) holds.

Since f is convex with respect to the second argument, we have

�k f zk, yk
� �

þ ð1� �kÞ f ðz
k, xkÞ � f ðzk, zkÞ ¼ 0,

or

f zk, xk
� �

� �k

h
f ðzk, xkÞ � f ðzk, ykÞ

i
:

Using the inequality in (4.20), and the strong convexity of G, we obtain from the latter
inequality that

f zk, xk
� �

�
��k
�

h
G yk
� �
� G xk

� �
� rG xk

� �
, yk � xk

� �i
> 0,

which proves (ii).
To prove (iii) we suppose by contradiction that 0 2 @f2ðz

k,xkÞ. Since f ðzk, �Þ is convex
on K, the inclusion 0 2 @f2ðz

k, xkÞ implies that

f zk, xk
� �

� f zk, y
� �

8y 2 K:

Substituting y ¼ zk 2 K into the above inequality we obtain f ðzk, xkÞ � 0 which
contradicts (ii). So the proof of the lemma is complete. g

LEMMA 4.6 Lemma 4.3 remains true to Algorithm 2a.

Proof Take any x� 2 Kd. By using the same argument as in the proof of Lemma 4.3,
we have

xkþ1 � x�
		 		2� xk � x�

		 		2�2�k�k gk, xk � x�
� �

þ �k�kkg
kk

� �2
: ð4:22Þ

Since gk 2 @2f ðz
k, xkÞ, and f ðzk, �Þ is convex on K, we have

gk,xk � x�
� �

� f zk, xk
� �

� f zk, x�
� �

:

On the other hand, since x� 2 Kd, we have f ðzk, x�Þ � 0. Thus

gk, xk � x�
� �

� f zk, xk
� �

¼ �k gk
		 		2> 0: ð4:23Þ

Using (4.22) and (4.23) we obtain

xkþ1 � x�
		 		2� xk � x�

		 		2��kð2� �kÞ �k gk
		 		� �2

8x� 2 Kd:

The remainder of the proof can be done by the same way as in the proof of
Lemma 4.3. g

Extragradient algorithms extended to equilibrium problems 19
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Using the same argument as in the proof of Theorem 4.4 we obtain the following
convergence result for Algorithm 2a.

THEOREM 4.7 The conclusions of Theorem 4.4 remain true for Algorithm 2a.

5. Application to mixed (multivalued) variational inequalities

In this section, we discuss about applications of the proposed algorithms to the follow-
ing variational inequality

Find x� 2 K, v� 2 Fðx�Þ such that

v�, x� x�h i þ ’ðxÞ � ’ðx�Þ � 0 ðMVIPÞ

where F : R
n
� R

n, and ’ : R
n
!R [ fþ1g is a closed proper convex function. We

suppose that F(x) is a nonempty compact set for each x 2 K, and K � dom’ where
dom’ denotes the effective domains of ’.

For each pair x, y 2 K we put

f ðx, yÞ :¼ max
u2FðxÞ

u, y� x
� �

þ ’ð yÞ � ’ðxÞ
� �

: ð5:1Þ

We can easily check that x� is a solution to (MVIP) if and only if it is a solution
to (PEP).

We will need the following definitions:

(1) The mapping F is said to be ’-pseudomonotone on K if for all x, y 2 K and all
u 2 FðxÞ, v 2 Fð yÞ the inequality

u, y� x
� �

þ ’ð yÞ � ’ðxÞ � 0

implies

v, y� x
� �

þ ’ð yÞ � ’ðxÞ � 0:

(2) F is said to be Lipschitz continuous on K with constant L if for all x, y 2 K one has

sup
u2FðxÞ

inf
v2Fð yÞ

u� vk k � Lkx� yk:

If h(A,B) denotes the Hausdorff distance between two sets A and B, then this
definition means that

h
�
FðxÞ,Fð yÞ

�
� Lkx� yk 8x, y 2 K:

From the previous section, we know that Condition (3.4) does not imply the continu-
ity of f. Conversely, however, if f is given by (5.1), F is L-Lipschitz continuous, and ’ is
continuous on K, then f satisfies Condition (3.4) as stated in the next lemma. This
explains why we call (3.4) a Lipschitz-type condition.

20 D. Q. Tran et al.
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LEMMA 5.1 Let f be defined by (5.1). The following statements hold:

(i) If F, ’ are continuous on K and FðxÞ is compact for every x 2 K, then f is continuous
on K�K.

(ii) If F is ’-pseudomonotone on K, then f is pseudomonotone on K.
(iii) If F is L-Lipschitz continuous on K then, for any � > 0,

f ðx, yÞ þ f ð y, zÞ � f ðx, zÞ �
L�

2
kx� yk2 �

L

2�
ky� zk2 8x, y, z 2 K: ð5:2Þ

Proof The first statement follows from the Maximum Theorem (Proposition 23 in [4]).
The second statement is immediate from the definition.
To prove (iii) we suppose that F is L-Lipschitz continuous on K. Let x, y, z 2 K. For

any u 2 FðxÞ and 	 > 0, since F is L-Lipschitz continuous, by definition, there exists
v 2 Fð yÞ such that u� vk k � Lkx� yk þ 	. Thus

u, z� xh i � sup
v2Fð yÞ

v, z� y
� �

� sup
w2FðxÞ

w, y� x
� �

� u, z� xh i � v, z� y
� �

� u, y� x
� �

¼ u, z� y
� �

� v, z� y
� �

¼ u� v, z� y
� �

� u� vk kkz� yk �
�
Lkx� yk þ 	

�
kz� yk:

Since 	 > 0 and u 2 FðxÞ are arbitrary, we deduce that

f ðx, zÞ � f ð y, zÞ � f ðx, yÞ � Lkx� ykkz� yk:

Using the well-known inequality 2ab � ða2=�Þ þ �b2 that holds true for all a, b 2 R and
� > 0, we obtain (5.2). g

Note that when F is Lipschitz continuous and singlevalued on K, Algorithm 1 with
f ðx, yÞ :¼ hFðxÞ, y� xi, ’ 	 0 becomes the well-known extragradient algorithm for
variational inequalities (see e.g. [9] Chapter 12). When F is continuous, but not
necessarily Lipschitz, Algorithm 2 and 2a coincide with the extragradient linesearch
(hyperplane projection) algorithms (see e.g. [9] Chapter 12), but with a minor difference
in the way of determining the linesearch and the stepsize. When F is multivalued,
by Lemma 5.1, theoretically, Algorithm 1 as well as Algorithms 2 and 2a can be applied.
Practically, to implement the algorithms, it is difficult to choose an approximation of
f(x, y). This issue remains, as far as the authors know, open.

6. Examples and numerical results

In this section, we illustrate the proposed algorithms by a class of equilibrium problems
as defined by (PEP), where K is a polyhedral convex set given by

K :¼
�
x 2 R

n
j Ax � b

�
, ð6:1Þ

and the equilibrium bifunction f : K� K! R [ þ1f g is of the form

f ðx, yÞ ¼ FðxÞ þQyþ q, y� x
� �

, ð6:2Þ

Extragradient algorithms extended to equilibrium problems 21
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with F : K! R
n, Q 2 R

n�n being a symmetric positive semidefinite matrix and q 2 R
n.

Since Q is symmetric positive semidefinite, f ðx, �Þ is convex for each fixed x 2 K.
The bifunction defined by (6.2) is a generalized form of the bifunction defined by the
Cournot–Nash equilibrium model considered in [26].

For this class of equilibrium problems we have the following results.

LEMMA 6.1 If F : K! R
n is �-strongly monotone on K. Then

(i) f is monotone on K whenever � ¼ kQk.
(ii) f is � � kQk-strongly monotone on K whenever � > kQk.

Proof From the definition of f we have

f ðx, yÞ þ f ð y, xÞ ¼ Qð y� xÞ, y� x
� �

� Fð yÞ � FðxÞ, y� x
� �

: ð6:3Þ

Note that

Qð y� xÞ, y� x
� �

� kQkky� xk2: ð6:4Þ

Since F is �-strongly monotone on K, that is

Fð yÞ � FðxÞ, y� x
� �

� �ky� xk2,

we have, from (6.3) and (6.4) that f ðx, yÞ þ f ð y, xÞ � 0 whenever � ¼ kQk and

f ðx, yÞ þ f ð y, xÞ � �ð� � kQkÞky� xk2,

whenever � > kQk. g

LEMMA 6.2 If F is L-Lipschitz continuous on K, i.e.,

Fð yÞ � FðxÞ
		 		 � Lky� xk 8x, y 2 K,

then f satisfies the Lipschitz-type condition (3.4). Namely,

f ðx, yÞ þ f ð y, zÞ � f ðx, zÞ � c1ky� xk2 � c2kz� yk 8x, y, z 2 K,

for any c1 > 0, c2 > 0 satisfying

2
ffiffiffiffiffiffiffiffiffi
c1c2
p

� Lþ kQk:

Proof For every x, y, z 2 K we have

f ðx, yÞ þ f ð y, zÞ � f ðx, zÞ ¼ Fð yÞ � FðxÞ, z� y
� �

þ Qð y� zÞ, y� x
� �

,

Applying the Cauchy–Schwartz inequality, we have

Qð y� zÞ, y� x
� �

� �kQkkz� ykky� xk

22 D. Q. Tran et al.
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and

Fð yÞ � FðxÞ, z� y
� �

� � Fð yÞ � FðxÞ
		 		kz� yk:

Since F is L-Lipschitz, we can write

� Fð yÞ � FðxÞ
		 		kz� yk � �Lky� xkkz� yk:

Thus, it follows from the last three inequalities that

f ðx, yÞ þ f ð y, zÞ � f ðx, zÞ � �ðLþ kQkÞky� xkkz� yk:

Then, by hypothesis we have

�ðLþ kQkÞky� xkkz� yk � �c1ky� xk2 � c2kz� yk2:

Hence

f ðx, yÞ þ f ð y, zÞ � f ðx, zÞ � c1ky� xk2 � c2kz� yk2: g

For the special case when F is a linear mapping of the form FðxÞ ¼ Px with P 2 R
n�n,

the function f defined by (6.2) takes the form

f ðx, yÞ ¼ PxþQyþ q, y� x
� �

: ð6:5Þ

We suppose that the matrices P,Q are chosen such that Q is symmetric
positive semidefinite and Q� P is negative semidefinite. Then f has the following
properties:

(i) f is monotone, f ð�, yÞ is continuous and f ðx, �Þ is differentiable convex on K.
(ii) For every x, y, z 2 K one has

f ðx, yÞ þ f ð y, zÞ � f ðx, zÞ � c1kz� yk2 � c2ky� xk2, ð6:6Þ

where c1 ¼ c2 ¼
1
2 kP�Qk.

Indeed, for every x, y 2 K, since Q� P is negative semidefinite, we have

f ðx, yÞ þ f ð y, xÞ ¼ ðQ� PÞð y� xÞ, y� x
� �

� 0:

Hence, f is monotone on K. Clearly, f ðx, �Þ is differentiable, and since Q is symmetric
positive semidefinite, f ðx, �Þ is convex for each fixed x.

Extragradient algorithms extended to equilibrium problems 23



D
ow

nl
oa

de
d 

B
y:

 [B
ib

lio
th

eq
ue

 U
ni

v 
D

e 
N

am
ur

] A
t: 

11
:4

9 
18

 M
ar

ch
 2

00
8 

To see (ii) we observe that, for every x, y, z 2 K,

fðx, yÞ þ f ð y, zÞ � f ðx, zÞ

¼ PxþQyþ q, y� x
� �

þ PyþQzþ q, z� y
� �

� PxþQzþ q, z� x
� �

¼ PxþQy, y� x
� �

þ PyþQz, z� y
� �

� PxþQz, z� x
� �

þ q, y� xþ z� y� ðz� xÞ
� �

¼ PxþQy, y� x
� �

þ PyþQz, z� y
� �

� PxþQz, z� x
� �

¼ Px, y� x� ðz� xÞ
� �

þ Qz, z� y� ðz� xÞ
� �

þ Qy, y� x
� �

þ Py, z� y
� �

¼ Px, y� z
� �

þ Qz, x� y
� �

þ Qy, y� x
� �

þ Py, z� y
� �

¼ Pð y� xÞ, z� y
� �

þ Qðz� yÞ, x� y
� �

¼ Pð y� xÞ, z� y
� �

þ QTðx� yÞ, z� y
� �

¼ Pð y� xÞ, z� y
� �

þ Qðx� yÞ, z� y
� �

since Q ¼ QT

¼ ðP�QÞð y� xÞ, z� y
� �

,

from which it follows that

f ðx, yÞ þ f ð y, zÞ � f ðx, zÞ ¼ ðP�QÞð y� xÞ, z� y
� �
� �2

kP�Qk

2
ky� xkkz� yk

� �
kP�Qk

2
ky� xk2 �

kP�Qk

2
kz� yk2:

By setting, for example, c1 ¼ c2 ¼
1
2 kQ� Pk, we obtain (6.6).

Now we use Algorithm 1 with the quadratic regularization function GðxÞ :¼ 1
2 xk k2 to

solve Problem (PEP) where f(x, y) is given by (6.5), and K is defined as in (6.1). In this
case, the subproblem needed to solve at Step 1 is of the from

min
y2K

�f ðx, yÞ þ
1

2
ky� xk2


 �
:

Since, by (6.5), f ðx, �Þ is convex quadratic, this subproblem can then be solved effi-
ciently, for example, by the MATLAB Optimization Toolbox.

To illustrate our algorithms, we will consider two academic numerical tests of small
size subsequently.

Test 1 n¼ 5 and the matrices P and Q (randomly generated) are

Q ¼

1:6 1 0 0 0

1 1:6 0 0 0

0 0 1:5 1 0

0 0 1 1:5 0

0 0 0 0 2

2
6666664

3
7777775
; P ¼

3:1 2 0 0 0

2 3:6 0 0 0

0 0 3:5 2 0

0 0 2 3:3 0

0 0 0 0 3

2
6666664

3
7777775
:

24 D. Q. Tran et al.
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With q ¼ ð1, � 2, � 1, 2, � 1ÞT,

K ¼ x 2 R5 j
X5
i¼1

xi � �1,�5 � xi � 5, i ¼ 1, . . . , 5

( )
,

c1 ¼ c2 ¼
1
2 kQ� Pk ¼ 1:4525, � ¼ 1

2 c1 ¼ 0:7262, x0 ¼ ð1, 3, 1, 1, 2Þ
T and 	 ¼ 10�3 we

obtained the following iterates

The approximate solution obtained after 10 iterations is

x10 ¼ ð�0:72576, 0:80354, 0:71931,�0:86598, 0:20000ÞT:

If we choose

P ¼

3:1 2:0 0:0 0:0 0:0

2:0 3:6 0:0 0:0 0:0

0:0 0:0 3:5 2:0 0:0

0:0 0:0 2:0 3:3 0:0

0:0 0:0 0:0 0:0 2:0

2
6666664

3
7777775
,

then the eigenvalues of the matrix Q� P are: �0:7192,�2:7808, 2:9050,
�0:8950, 0:0000. Thus, by (i) of Lemma 60, f is monotone. In this case, the computed
iterates are

Iter(k) xk1 xk2 xk3 xk4 xk5

0 1.00000 3.00000 1.00000 1.00000 2.00000
1 �0.34415 1.59236 0.68742 �0.15427 0.63458
2 �0.67195 1.10393 0.65016 �0.57872 0.30562
3 �0.73775 0.92351 0.66742 �0.74459 0.22567
4 �0.74236 0.85341 0.68785 �0.81261 0.20624
5 �0.73668 0.82486 0.70195 �0.84184 0.20152
6 �0.73168 0.81276 0.71030 �0.85493 0.20037
7 �0.72864 0.80747 0.71491 �0.86100 0.20009
8 �0.72700 0.80511 0.71737 �0.86389 0.20002
9 �0.72617 0.80403 0.71865 �0.86529 0.20001

10 �0.72576 0.80354 0.71931 �0.86598 0.20000

Iter(k) xk1 xk2 xk3 xk4 xk5

0 1.00000 3.00000 1.00000 1.00000 2.00000
1 �0.34006 1.59892 0.69395 �0.14884 0.69814
2 �0.67118 1.10637 0.65254 �0.57720 0.36476
3 �0.73773 0.92446 0.66833 �0.74422 0.27939
4 �0.74245 0.85380 0.68821 �0.81255 0.25753
5 �0.73676 0.82503 0.70210 �0.84185 0.25193
6 �0.73172 0.81283 0.71037 �0.85495 0.25049
7 �0.72866 0.80751 0.71494 �0.86102 0.25013
8 �0.72701 0.80512 0.71738 �0.86390 0.25003
9 �0.72618 0.80404 0.71866 �0.86530 0.25001

10 �0.72577 0.80354 0.71932 �0.86599 0.25000

Extragradient algorithms extended to equilibrium problems 25
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and an approximate solution is

x10 ¼ ð�0:72577, 0:80354, 0:71932, �0:86599, 0:25000ÞT

with the tolerance 	 ¼ 10�3.

Test 2 We use Algorithm 2a with the same equilibrium bifunction and the quadratic
regularization function as before. In this algorithm at Step 3 of iteration k, we choose
xkþ1 to be the Euclidean projection of xk � �k�kg

k onto K. It is well known that
computing this projection leads to a convex quadratic program.

In this particular case, Algorithm 2a collapses to the following one (see Lemma 6.3).

Algorithm 2b
Data 	 > 0, � 2 ð0, 1Þ, � 2 ð0, 1Þ, and select x0 2 K.
Step 0 Set k¼ 0.
Step 1 Find yk 2 K as the unique solution to the quadratic programing

min
y2K

1

2
Hy, y
� �

þ h xk
� �

, y
� �
 �

, ð6:7Þ

where H ¼ 2�Qþ I and h xk
� �
¼ ½�ðP�QÞ � I �xk þ �q.

If kyk � xkk � 	, then stop.
Step 2 Choose �k 2 ð0, 1Þ such that

0 < �k � min
uðxk, ykÞ

v xk, ykð Þ
, �


 �
: ð6:8Þ

where

u xk, yk
� �

¼
1

2�
ð2�P� �IÞxk þ ð2�Qþ �IÞyk þ 2�q, xk � yk
� �

and v xk, yk
� �

¼ ðP�QÞðxk � ykÞ, xk � yk
� �

:

Set zk ¼ ð1� �kÞx
k þ �ky

k and go to Step 3.
Step 3 Compute gk :¼ ðP�QÞzk þ 2Qxk þ q and

�k :¼
Pzk þQxk þ q, xk � zk
� �

kgkk2
: ð6:9Þ

Solve the convex quadratic program

min
y2K

1

2
kyk2 þ cðxk, zkÞ, y

� �
 �
, ð6:10Þ

where cðxk, zkÞ ¼ �k�kg
k � xk, to obtain its unique solution xkþ1.

Step 4 Set k :¼ kþ 1, and go to Step 1.

26 D. Q. Tran et al.



D
ow

nl
oa

de
d 

B
y:

 [B
ib

lio
th

eq
ue

 U
ni

v 
D

e 
N

am
ur

] A
t: 

11
:4

9 
18

 M
ar

ch
 2

00
8 

LEMMA 6.3 Let f ðx, yÞ ¼ PxþQyþ q, y� x
� �

. Suppose that the matrix Q is symmetric
positive semidefinite and P�Q is symmetric positive definite. Then Algorithm 2a
collapses to Algorithm 2b.

Proof First, we show that the problem (4.19) collapses to the quadratic programing
problem (6.7). Indeed, from (4.19), we have:

f xk, y
� �

þ
1

2�
y� xk
		 		2 ¼ Pxk þQyþ q, y� xk

� �
þ

1

2�
y� xk
		 		2

¼
1

2�
ð2�Qþ IÞy, y
� �

þ
1

�
½�ðP�QÞ � I�xk þ �q, y
� �

þ
1

2�
xk
		 		2� ðPxk þ qÞ, xk

� �
:

Thus, if we take H ¼ 2�Qþ I, hðxkÞ ¼ ½�ðP�QÞ � I �xk þ �q, then it is easy to see that
the quadratic programing problem (6.7) is equivalent to (4.19).

Next, we see that the linesearch at Step 2 of Algorithm 2a and 2b are equivalent.
Indeed, from (4.20) we have

f zk,m, xk
� �

� f zk,m, yk
� �

�
�

�

�
G yk
� �
� G xk

� �
� rG xk

� �
, yk � xk

� �

¼ Pxk þQyk þ q, xk � yk
� �

� �k ðP�QÞ xk � yk
� �

,xk � yk
� �

�
�

2�
xk � yk
		 		2

¼
1

2�
2�ðPxk þQyk þ qÞ � �ðxk � ykÞ,xk � yk
� �

� �k ðP�QÞðxk � ykÞ, xk � yk
� �

� 0 ð6:11Þ

Set

u xk, yk
� �

¼
1

2�
ð2�P� �IÞxk þ ð2�Qþ �IÞyk þ 2�q, xk � yk
� �

,

and

v xk, yk
� �

¼ ðP�QÞðxk � ykÞ,xk � yk
� �

:

Then it follows from (6.11) that

u xk, yk
� �

� �kv xk, yk
� �

:

Since xk 6¼ yk and P�Q is a symmetric positive definite matrix, vðxk, ykÞ > 0: Thus, we
can choose

0 < �k � min
u xk, yk
� �
v xk, ykð Þ

, �


 �
< 1,

which proves that (6.8) is equivalent to (4.20).

Extragradient algorithms extended to equilibrium problems 27
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Finally, by (6.5), we have gk ¼ r2f ðz
k, xkÞ ¼ ðP�QÞzk þ 2Qxk þ q and

f ðzk, xkÞ ¼ Pzk þQxk þ q, xk � zk
� �

, which imply

�k :¼
Pzk þQxk þ q, xk � zk
� �

kgkk2
:

Using (4.19) in Step 3 of Algorithm 2a we obtain

xkþ1 ¼ PKðx
k � �k�kg

kÞ,

which shows that xkþ1 is the unique solution of the problem

min
y2K

y� ðxk � �k�kg
k

		 		2n o

that can be rewritten as

min
y2K

1

2
kyk2 þ c xk, yk

� �
, y

� �
 �

where cðxk, ykÞ :¼ �k�kg
k � xk. The proof is thus complete. g

Since Algorithm 2b requires the matrix P�Q to be symmetric positive definite,
we choose matrix P, Q as in Test 1 that satisfy the condition of Lemma 6.3. With
� ¼ 0:5, � ¼ 0:5, � ¼ 0:5, �k ¼ 1 ð8k � 1Þ we obtained the following iterates

and an approximate solution

x21 ¼ ð�0:72579, 0:80349, 0:71764, �0:86425, 0:20000ÞT

with the tolerance 	 ¼ 10�3.
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3 �0.55734 1.25434 0.35314 �0.12691 0.74954
4 �0.69594 1.07287 0.33294 �0.28875 0.54864
5 �0.76570 0.96281 0.35151 �0.41320 0.40142
� � � � � � � � � � � � � � � � � �
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