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Abstract We consider Nash–Cournot oligopolistic market equilibrium models with
concave cost functions. Concavity implies, in general, that a local equilibrium point is not
necessarily a global one. We give conditions for existence of global equilibrium points. We
then propose an algorithm for finding a global equilibrium point or for detecting that the prob-
lem is unsolvable. Numerical experiments on some randomly generated data show efficiency
of the proposed algorithm.

Keywords Nonconvex Nash–Cournot model · Equilibrium · Concave cost · Variational
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1 Introduction

Oligopolistic market equilibrium models have been introduced by Cournot and studied by
some authors (see e.g. [7,9,15,20]). These models can be formulated as Nash equilibrium
problems in the n-person noncooperative game theory. An oligopolistic market model con-
cerns with n firms (producers) that produce a common homogeneous commodity. Each firm
has a profit function which is the difference between the price and the cost. Each firm attempts
to maximize its profit by choosing the corresponding production level on its strategy set. It
has been shown [9,15] that an oligopolistic market model with concave profit functions
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can be formulated equivalently as a monotone variational inequality. For finite dimensional
variational inequalities the readers are refered to the interesting monographs [9,15].

Classical models have assumed linear or convex cost functions facilitating computation
and proofs of existence. However, concave cost functions are an important feature of some
practical problems, since the cost for a unit of the commodity decreases as its amount
increases. In this paper we consider oligopolistic market equilibrium models with box con-
straints, where the price functions are linear, but not necessarily the same for every firm.
Moreover the cost functions are assumed to be piecewise linear concave. Thus the profit
functions are convex rather than concave as in classical models. Concavity of the cost func-
tion, in general, implies that a local equilibrium point is not necessarily a global one. We
show that in this case the problem of finding a global equilibrium strategy can be formulated
as a mixed variational inequality problem over a bounded rectangle, which, in contrast to the
convex cost function case, may fail to exist an equilibrium point. We give conditions under
which such a model has an equilibrium point. We then propose a decomposition algorithm for
finding a global equilibrium point. The algorithm can also be used for detecting the existence
of equilibria. We tested the algorithm by some randomly generated data. As it is expected,
the numerical results show that the proposed algorithm is efficient when the number of the
firms having concave cost functions is somewhat small. The number of the total variables
may be much larger.

The paper is organized as follows. In the next section we describe the model and formu-
late it as a generalized variational inequality. Then we investigate the existence of global
equilibria. The third section is devoted to description of the algorithm. We close the paper
with some computational experiences and results.

2 The model with concave cost

In the oligopolistic market equilibrium model we are going to consider, it is assumed that
there are n-firms producing a common homogenous commodity and that the price pi of firm
i depends on the total quantity σ := ∑n

i=1 xi of the commodity. Let hi (xi ) denote the cost
of the firm i when its production level is xi . Suppose that the profit of firm i is given by

fi (x1, . . . , xn) = xi pi

(
n∑

i=1

xi

)

− hi (xi )(i = 1, . . . , n), (2.1)

where hi is the cost function of firm i that is assumed to be dependent only on its production
level.

Let Ui ⊂ IR (i = 1, . . . , n) denotes the strategy set of the firm i . Each firm seeks to max-
imize its own profit by choosing the corresponding production level under the presumption
that the production of the other firms are parametric input. In this context, a Nash equilib-
rium is a production pattern in which no firm can increase its profit by changing its controlled
variables. Thus under this equilibrium concept, each firm determines its best response given
other firms’ actions. Mathematically, a point x∗ = (x∗

1 , . . . , x∗
n ) ∈ U := U1 × · · · × Un is

said to be a Nash-equilibrium if

fi (x∗
1 , . . . , x∗

i−1, yi , x∗
i+1, . . . , x∗

n ) ≤ fi (x∗
1 , . . . , x∗

n ), ∀ yi ∈ Ui , ∀ i = 1, . . . , n.

(2.2)

When hi is affine, this market problem can be formulated as a special Nash equilibrium
problem in the n-person noncooperative game theory, which in turn is a strongly monotone
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variational inequality (see e.g. [15]). Variational inequality formulation of exchange price
equilibrium and network transportation models related to the oligopolistic market equilib-
rium problem are presented in some books and research papers (see e.g. [2,6,9,21,23] and
the references thererein).

In classical Cournot models [9,15], the price and the cost functions for each firm are
assumed to be affine of the forms.

pi (σ ) ≡ p(σ ) = α0 − βσ, α0 ≥ 0, β > 0, with σ =∑n
i=1 xi ,

hi (xi ) = µi xi + ξi , µi ≥ 0, ξi ≥ 0 (i = 1, . . . , n).
(2.3)

In this case, it has been shown in [9,15] that the problem can be formulated equivalently as
the convex quadratic problem

min
x∈U

{
1

2
xT Qx + (µ − α)T x

}

(QP)

where

Q :=

⎛

⎜
⎜
⎝

2β β β ... β

β 2β β ... β

... ... ... ... ...

β β β ... 2β

⎞

⎟
⎟
⎠ .

Since β > 0, Q is a symmetric and positive definite matrix. Hence problem (QP) has a
unique optimal solution which is also the unique equilibrium point of the classical oligopo-
listic market equilibrium model.

The assumption that the cost depends linearly on the quantity of the commodity, in gen-
eral, is not practical, since usually the cost per a unit of the action does decrease when the
quantity of the commodity exceeds a certain amount. Taking into account this fact, in the
sequel we consider oligopolistic market equilibrium models with piecewise-linear concave
cost functions. Actually, we suppose that the cost functions hi (i = 1, . . . , n) are increasingly
piecewise-linear concave and that the price function p(

∑n
j=1 x j ) can change from firm by

firm. Namely, the price has the following form:

pi (σ ) := pi

⎛

⎝
n∑

j=1

x j

⎞

⎠ = αi − βi

n∑

j=1

x j , αi ≥ 0, βi ≥ 0 (i = 1, . . . , n). (2.4)

In this case, we take

B :=

⎛

⎜
⎜
⎝

β1 0 0 ... 0
= 0 β2 0 ... 0
... ... ... ... ...

0 0 0 0 βn

⎞

⎟
⎟
⎠ , B̃ :=

⎛

⎜
⎜
⎝

0 β1 β1 ... β1

β2 0 β2 ... β2

... ... ... ... ...

βn βn βn ... 0

⎞

⎟
⎟
⎠ (2.5)

and h(x) :=∑n
i=1 hi (xi ) with hi (i = 1, . . . , n) being concave functions.

Obviously, B is a symmetric positive semidefinite matrix. Let

αT = (α1, α2, . . . , αn), F(x) := B̃x − α, ϕ(x) := xT Bx + h(x). (2.6)

Then the problem of finding a Nash equilibrium point defined by (2.2) with f given by (2.1)
becomes the following variational inequality:

(P)

{
find a point x∗ ∈ U such that

�(x∗, y) := 〈F(x∗), y − x∗〉 + ϕ(y) − ϕ(x∗) ≥ 0 ∀y ∈ U
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where F is affine and ϕ is a d.c function (difference of two convex funxtions) defined by
(2.6) (see [13]). As usual, in the sequel, we shall refer to F and to ϕ as the cost mapping and
the cost function respectively. In literature problem (P) is often called a mixed variational
inequality (see e.g. [15]) because of the apperance of function ϕ.

Note that since ϕ is not convex, (P) is not necessarily equivalent to the following local
problem

(L P)

{
find a point x∗ ∈ U such that

�(x∗, y) := 〈F(x∗), y − x∗〉 + ϕ(y) − ϕ(x∗) ≥ 0 ∀y ∈ U∗ ∩ U

where U∗ is a neighbourhout of x∗. In what follows an equilibrium point of the model or a
solution of (P) is understood a global one. Moreover, the variational inequality (P), in general,
has no solution even if the feasible set U is compact and F, ϕ are continuous (see example
below).

3 Existence of solution

In this section, we investigate the question for existence of solution to the oligopolistic market
equilibrium models where the price is given by (2.4) and the cost of each firm is a concave
function of its production quantity. It has been shown in the preceeding section that such a
model can be formulated as the variational inequality (P) with F and ϕ defined by (2.6). As
we have mentioned, in this case, variational inequality (P) may have no solution. To see this
let us consider the following simple examples.

Example 3.1 Let U = [−1, 1] ⊂ R. Find x ∈ U such that:

〈x, y − x〉 + x2 − y2 ≥ 0 ∀y ∈ U. (3.1)

In this example, F(x) = x is a strongly monotone mapping, and ϕ(x) = −x2 is a concave
function. It is easy to verify that (3.1) has no solution.

Now, we look for conditions under which the variational inequality (P) admits a solution.
We recall [3] that a multivalued mapping H is said to be upper semicontinuous at a point
x if for every open set G containing H(x), there exists a neighbouhout I of x such that
H(I ) ⊂ G. The mapping H is said to be upper semicontinuous on a set D if it is upper
semicontinuous at every point of D.

We shall use the well known Kakutani fixed point theorem.

Theorem 3.1 (Kakutani fixed point theorem) Let U be a convex, compact subset in IRn and
H : U → 2U be an upper semicontinuous mapping on U. Suppose that H(x) is nonempty
compact, convex for every x ∈ U. Then H has a fixed point, i.e., x ∈ H(x).

Let us define, for each x ∈ U ,

θ(x) := min
y∈U

{�(x, y) := 〈F(x), y − x〉 + ϕ(y) − ϕ(x)}. (3.2)

H(x) := arg min
y∈U

{〈F(x), y〉 + ϕ(y)}. (3.2a)

Since U is compact and ϕ is continuous. θ is finite, and H(x) �= ∅ for every x .

Lemma 3.1 Suppose that U is compact and F and ϕ are continuous. Then
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(i) θ is continuous and H is upper semicontinous on U.
(ii) x∗ ∈ U is a solution to (P) if and only if at least one of the following equivalent

conditions holds
(a) θ(x∗) = 0,
(b) x∗ ∈ H(x∗), i.e., x∗ is a fixed point of the multivalued mapping H.

Proof Statement (i) follows from the maximum theorem (Proposition 21 in [3], see also [4]).
(ii) It is easy to verify that if either θ(x∗) = 0 or x∗ ∈ H(x∗), then x∗ is a solution to (P).

Conversely, suppose that x∗ is a solution to (P). By definition we have

〈F(x∗), y − x∗〉 + ϕ(y) − ϕ(x∗) ≥ 0 ∀y ∈ U,

and θ(x∗) = �(x∗, x∗) = 0. On the other hand,

〈F(x∗), x∗〉 + ϕ(x∗) ≤ 〈F(x∗), y〉 + ϕ(y).

This means that x∗ is a solution to the problem:

min
y∈U

{〈F(x∗), y〉 + ϕ(y)}.

By the definition of H , it follows that x∗ ∈ H(x∗). ��
Since θ(x) ≤ 0 and, by Lemma 3.1, x∗ is a solution to (P) if and only if θ(x∗) = 0,

this function can be considered as a merit function for variational inequality (P). The merit
function is a useful tool for study and for developing methods for variational inequalities
[5,9,10,23,24,26]. In our case the function θ is very useful for checking whether a given
point is a solution to (P) or not depending on its value at this point is zero or negative. This
stopping criteria will be used in our algorithm to be described in the next section..

For simplicity of presentation we adopt the following notations.
Let x−i := (x j )

n
j �=i ∈ R

n−1, i.e., x−i is the (n − 1)-dimensional vector obtaining from

x ∈ IRn by deleting i th component. Let U−i := {x−i |x ∈ U }. For each yi ∈ Ui and
x−i ∈ U−i , we define

fi (x−i , yi ) := αi yi −
⎛

⎝βi

n∑

j �=i

x j

⎞

⎠ yi − βi y2
i − hi (yi ). (3.3)

This is the profit of firm i when its production level is yi and the production level of (n − 1)-
remaining firms is x−i . Then we compute the optimal production level of firm i by solving
the following n-optimization problems, each of them has one-variable:

max
yi ∈Ui

{ fi (x−i , yi ) :=
⎛

⎝αi − βi

n∑

j �=i

x j

⎞

⎠ yi − βi y2
i − hi (yi )}(i = 1, . . . , n) (3.4)

Lemma 3.2 Suppose Ui (i = 1, . . . , n) are compact and U = U1 × U2 × · · · × Un. If, for
each fixed x−i ∈ U−i , the solution-set of every problem given in (3.4) is convex, then (P)
has at least one solution.
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Proof Note that Problems (3.4) can be rewritten equivalently as

− min
yi ∈Ui

{
− fi (x−i , yi ) :=

⎛

⎝βi

n∑

j �=i

x j − αi

⎞

⎠ yi + βi y2
i + hi (yi )

}
(i = 1, . . . , n).

(3.4a)

Since

F(x) = B̃x − α, ϕ(y) = yT By +
n∑

i=1

hi (yi ),

using the definition of matrices B̃ and B we have

〈F(x), y − x〉 + ϕ(y) = −
n∑

i=1

fi (x−i , yi ).

Thus problem (3.2a), since U = U1 × · · · × Un , is equivalent to n problems of one-variable

max{ fi (x−i , yi ) |yi ∈ Ui } (i = 1, . . . , n)

in the sense that a point y∗ := y∗(x) = (y∗
1 (x), . . . , y∗

n (x)) is an optimal solution to (3.2a) if
and only if y∗

i (x) is an optimal solution to the problem max{ fi (x−i , yi ) |yi ∈ Ui } for every
i = 1, . . . , n.

Since all diagonal entries of the matrix B̃ are zero, for each fixed point x ∈ U , we have

〈F(x), y〉 + ϕ(y) = 〈B̃x − α, y〉 + yT By + h(y) = −
n∑

i=1

fi (x−i , yi )

where fi (x−i , yi ) is given by (3.3). Thus, H(x) is convex if and only if the solution-set of
(3.4) is convex for every i . From Lemma 3.1, H is upper semicontinuous, and since U is
compact, by the Kakutani fixed point theorem, H has a fixed point which is a solution of
(P). ��

Now, we study conditions under which the solution-set of each problem given by (3.4)
is singleton, hence convex. To this end, we suppose that the strategy set Ui := [ηi

0, η
i
ni

]
of firm i is divided into ni intervals 0 ≤ ηi

0 < ηi
1 · · · < ηi

ni
< +∞ (ni ≥ 1) and that

on each subinterval the cost function hi is increasingly affine. Thus the cost function hi is
piecewise-linear increasingly concave on Ui . More precisely, let

hi (xi ) :=

⎧
⎪⎪⎨

⎪⎪⎩

ai
0xi + bi

0 if ηi
0 ≤ xi ≤ ηi

1,

ai
1xi + bi

1 if ηi
1 ≤ xi ≤ ηi

2,

... ... ...

ai
ni −1xi + bi

ni −1 if ηi
ni −1 ≤ xi ≤ ηi

ni

(3.5)

where we suppose that

+∞ > ai
0 > ai

1 > · · · > ai
ni

> 0, αi > ai
0 ∀i, (3.5a)

0 ≤ bi
0 < bi

1 < · · · < bi
ni

(i = 1, . . . , n). (3.5b)

Hence

hi (xi ) = min
0≤ j≤ni −1

{ai
j xi + bi

j }.
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The assumptions (3.5a) and (3.5b) are quite natural, since they mean that the variable coef-
ficient cost decreases as the production quantity gets larger. Clearly, ni = 1 means that hi is
affine on the whole interval Ui .

Proposition 3.1 Suppose that, for each i = 1, . . . , n, the utility function fi is given by (3.3)
with the cost function hi given by (3.5) satisfying (3.5a) and (3.5b). Assume that the condition

αi − ai
0 ≥ βi

( n∑

j �=i

η
j
n j + 2ηi

ni −1

)
∀ i ∈ Ī (3.6)

holds true, where Ī = {i : 1 ≤ i ≤ n, ni > 1, βi > 0 }. Then problem (P) has at least one
solution.

Proof We will prove that, for every i = 1, . . . , n, the solution-set of the problem

max
yi ∈Ui

⎧
⎨

⎩
f (x−i , yi ) := αi yi −

⎛

⎝βi

n∑

j �=i

x j

⎞

⎠ yi − βi y2
i − hi (yi )

⎫
⎬

⎭
(3.7)

is convex.
Clearly, if ni = 1, then hi is affine on Ui . Hence the objective function of (3.7) is concave,

and therefore its solution-set is convex.
Now let I0 := {i‖βi = 0} and suppose i ∈ Ī ∪ I0. Since αi > ai

0, condition (3.6) is
satisfied for every i ∈ Ī ∪ I0. We will show that, for i ∈ Ī ∪ I0, the objective function of
(3.7) is monotone on Ui . Fix yi ∈ (ηi

k−1, η
i
k) for some k ∈ {1, 2, . . . , ni −1}. Then, by (3.5),

hi (yi ) = ai
k−1 yi + bi

k−1. The function fi (x−i , .) is differentiable at yi and

f ′(x−i , yi ) = αi − βi

n∑

j �=i

x j − 2βi yi − ai
k−1.

Thus,

f ′(x−i , yi ) > 0 ⇐⇒ αi − ai
k−1 > βi

⎡

⎣
n∑

j �=i

x j + 2yi

⎤

⎦ . (3.8)

Since x j ∈ U j = [η j
0 , η

j
n j ] and yi ∈ [ηi

0, η
i
ni −1] with ηi

0 ≥ 0, we have

βi

[ n∑

j �=i

x j + 2yi

]
≤ βi

⎡

⎣
n∑

j �=i

η
j
n j + 2ηi

ni −1

⎤

⎦ . (3.9)

Note that, by the assumption (3.5a), ai
0 > ai

k for every k > 0. Thus we have

αi − ai
k−1 > αi − ai

0 ∀k. (3.10)

From (3.9) to (3.10) we can deduce that if

αi − ai
0 ≥ βi

⎛

⎝
n∑

j �=i

η
j
n j + 2ηi

ni −1

⎞

⎠ ,

then, by (3.8), f ′(x−i , yi ) > 0 which implies strict monotonicity of f (x−i , .) on the interval
(ηi

k−1, η
i
k). This is true for every k = 1, . . . , ni − 1. Since f (x−i , .) is continuous on Ui , it
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must be increasing on the interval [ηi
0, η

i
ni −1]. Observe that on the interval [ηi

ni −1, η
i
ni

] the

objective function f (x−i , .) is strictly concave. Thus f (x−i , .) must attain its maximum on
Ui at a unique point in [ηi

ni −1, η
i
ni

]. Consequently, every problem given by (3.4) has a unique
solution. Then by virtue of Theorem 3.1, problem (P) admits an solution. ��
Remark 3.1 The condition

αi − ai
0 ≥ βi

( n∑

j �=i

η
j
n j + 2ηi

ni −1

)
∀ i ∈ Ī

means that the difference between the price and the variable cost coefficient αi − a0
i must

be greater or equal to βi

(∑n
j �=i η

j
n j + 2ηi

ni −1

)
. The latter is just the lost of the profit caused

by the decrease of the price. In some practical models the coefficient βi is small while αi is
high, since αi is the price of the goods when there is no product at firm i . In these models,
condition (3.6) is satisfied. In other cases, for example, when the upper bound ηi

ni
is large

(unbounded models), condition (3.6), in general, is not satisfied.

Remark 3.2 From the proof of Proposition 3.1 one can see that when the condition (3.6) is
satisfied, the strategy set Ui of firm i can be replaced by the interval [ηi

ni −1, η
i
ni

].

4 A solution method for piecewise-linear concave cost-models

In this section we propose a solution method for finding a global equilibrium point of a
Cournot–Nash oligopolistic market equilibrium model with a piecewise-linear concave cost
function which, as we have seen, can be formulated as the variational inequality problem (P).
Some solution approaches have been developed for solving variational inequalities (see; e.g.,
[1,2,8,9,11,12,14–18,21,22,25] and the references thererein). To our knowledges, most of
the available methods can be used only for the case when the cost function is convex. Since in
our case, the cost function ϕ is not convex, the available methods for variational inequalities
having convex cost functions can not be applied.

The method we are going to describe proceeds by dividing the strategy feasible rectangu-
lar set into subrectangles on each of them the cost function h is affine. Then we solve (P) on
each subrectangle. Due to its special structure, each subvariational inequality can be solved
by minimizing a certain strongly convex quadratic function on a subrectangle. By evaluating
the merit function θ at each iterate point, we can detect the optimality of the current iterate.
By this way we may avoid searching all of generated subrectangles.

Let U−i :=∏ j �=i U j and define a (n − 1)-dimensional problem from the n-dimensional
problem (P) by deleting item i th. Namely, we define the problem

(P−i0)

{
find x−i0 ∈ U−i0 such that

〈F−i0(x−i0), y−i0 − x−i0〉 + ϕ−i0(y−i0) − ϕ−i0(x−i0) ≥ 0, ∀ y−i0 ∈ U−i0

where
{

F−i0(x−i0) := B̃−i0 x−i0 − α−i0 ,

ϕ−i0(x−i0) :=∑n
i �=i0

ϕi (xi )
(4.1)

with B̃−i0 being the (n − 1)× (n − 1) matrix obtained from matrix B̃ by deleting row i0 and
column i0.

123



J Glob Optim

We note that when βi = 0 for some i , the price of firm i is just equal to the constant
αi . In this case an equilibrium strategy for firm i can be computed by maximizing its profit
function as stated by the following lemma.

Lemma 4.1 Suppose that βi0 = 0. Let x̂i0 be an optimal solution of the one-dimensional
problem

min{hi0(yi0) − αi0 yi0 | yi0 ∈ Ui0} (4.2)

and let x̂−i0 be a solution to the variational inequality problem (P−i0). Then x̂ := (x̂−i0 , x̂i0)

is a solution to the variational problem (P). Conversely, every solution x̂ of (P) has the form
x̂ = (x̂−i0 , x̂i0) with x̂i0 and x̂−i0 being solutions of (4.2) and (P−i0) respectively.

Proof The variational inequality problem (P) can be equivalently rewritten as the problem
⎧
⎪⎨

⎪⎩

find x ∈ U such that
∑n

i=1(βi
∑n

j �=i x j − αi )(yi − xi )

+∑n
i=1 βi (y2

i − x2
i ) +∑n

i=1(hi (yi ) − hi (xi )) ≥ 0, ∀ y ∈ U.

(4.3)

Suppose that x = (x1, . . . , xn)T ∈ U is a solution of this problem. Fix i and take y j = x j

for every j �= i . Then, since U = U1 × · · · × Un , we have from (4.3) that
⎛

⎝βi

n∑

j �=i

x j − αi

⎞

⎠ (yi − xi ) + βi (y2
i − x2

i ) + hi (yi ) − hi (xi ) ≥ 0, ∀yi ∈ Ui (4.4)

This is true for every i = 1, . . . , n. Conversely, if (4.4) holds for every i = 1, . . . , n, then,
clearly, (4.3) holds.

Since βi0 = 0, it follows from (4.4) that

−αi0(yi0 − xi0) + hi0(yi0) − hi0(xi0) ≥ 0, ∀yi0 ∈ Ui0 .

This implies that xi0 is an optimal solution to problem (4.2). With i = i0 and xi0 = x̂i0 , the
inequality (4.4) is reduced to

⎛

⎝βi

n∑

j �=i,i0

x j − αi + βi x̂i0

⎞

⎠ (yi − xi ) + βi (y2
i − x2

i ) + hi (yi ) − hi (xi ) ≥ 0. (4.5)

This is true for all yi ∈ Ui ; i = 1, . . . , n; i �= i0. By a similar way, we can see that, x̂−i0

satisfies (4.5) if and only if x̂−i0 is a solution to problem (P−i0). Hence, x̂ = (x̂−i0 , x̂i0) is a
solution to problem (P). ��

In virtue of Lemma 4.1, in what follows, without lost of generality, we may assume that
βi > 0 for all i .

Since Ui = [ηi
0, η

i
ni

] for i = 1, . . . , n, we have

U = [η1
0, η

1
n1

] × [η2
0, η

2
n2

] × · · · × [ηn
0 , ηn

nn
]. (4.6)

Let 	i be the family of all consecutive subintervals of Ui (i = 1, . . . , n), i.e.,

	i = {[ηi
j−1, η

i
j ] | j = 1, . . . , ni }.

Let


 := {I | I = I1 × · · · × In : Ii ∈ 	i , i = 1, . . . , n}.
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Clearly, for all i = 1, . . . , n,

Ui =
⋃

Ii ∈	i

Ii and U =
⋃

I∈


I.

For each subbox I ∈ 
, we solve the following subvariational inequality

(P I )

{
find a point x I ∈ I such that

�(x I , y) := 〈F(x I ), y − x I 〉 + ϕ(y) − ϕ(x I ) ≥ 0 ∀y ∈ I.

Note that the subproblem (P I ) can be rewritten in the form

(V I P I )

{
findx I ∈ I such that

〈Q̃x I + q, y − x I 〉 ≥ 0 ∀y ∈ I

where

Q̃ =

⎛

⎜
⎜
⎝

2β1 β1 β1 ... β1

β2 2β2 β2 ... β2

... ... ... ... ...

βn βn βn ... 2βn

⎞

⎟
⎟
⎠ (4.7)

and qT = (q1, . . . , qn) with

qi = ai
ji −1 − αi (i = 1, . . . , n). (4.8)

Thanks to the special structure of Q̃ the affine variational inequality (V I P I ) is equivalent
to a strongly convex quadratic program as stated by the following lemma.

Lemma 4.2 (V I P I ) is equivalent to the strongly convex quadratic problem

min
x∈I

{
1

2
xT Cx + cT x

}

(Q P I )

where

C =

⎛

⎜
⎜
⎝

2 1 1 ... 1
1 2 1 ... 1
... ... ... ... ...

1 1 1 ... 2

⎞

⎟
⎟
⎠ (4.9)

is symmetric positive definite and cT = (c1, . . . , cn) with ci = qi/βi (i = 1, . . . , n) and qi

defined by (4.8).

Proof For simplicity of notation, we suppose that

I := {x ∈ R
n | ai ≤ xi ≤ bi ∀ i = 1, . . . , n

}
. (4.10)

Note that x is a solution of (V I P I ) if and only if x is a solution of the linear programming
problem

min
y

{
yT Q̃x + qT y : ai ≤ yi ≤ bi ∀ i = 1, . . . , n

}
. (4.11)
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By the Kuhn–Tucker theorem, x is a solution to (4.11) if and only if there existλ1, λ2, . . . λ2n ≥
0 such that

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

βi (xi +∑n
j=1 x j ) + qi + λ2i−1 − λ2i = 0,

λ2i−1 (xi − ai ) = 0,

λ2i (−xi + bi ) = 0,

ai ≤ xi ≤ bi ,

λ2i−1 ≥ 0, λ2i ≥ 0 (i = 1, . . . , n).

Since βi > 0 ∀ i = 1, . . . , n, this system can be rewritten equivalently as the following
one

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(
xi +∑n

j=1 x j

)
+ 1

βi
qi + 1

βi
λ2i−1 − 1

βi
λ2i = 0,

1
βi

λ2i−1(xi − ai ) = 0,
1
βi

λ2i (−xi + bi ) = 0,

ai ≤ xi ≤ bi ,
1
βi

λ2i−1 ≥ 0, 1
βi

λ2i ≥ 0 (i = 1, . . . , n).

(4.12)

By setting

ci = 1

βi
qi , ν2i−1 = 1

βi
λ2i−1, ν2i = 1

βi
λ2i ∀ i = 1, . . . , n.

we can write (4.12) as
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(
xi +∑n

j=1 x j

)
+ ci + ν2i−1 − ν2i = 0,

ν2i−1(xi − ai ) = 0,

ν2i (−xi + bi ) = 0,

ai ≤ xi ≤ bi ,

ν2i−1 ≥ 0, ν2i ≥ 0 (i = 1, . . . , n).

(4.13)

Using again the Kuhn–Tucker theorem, we see that system (4.13) is a necessary condition
for x to be an optimal solution to the quadratic optimization problem (Q P I ). This condition
is also sufficient for optimality of x to (Q P I ), because C is symmetric positive definite. ��

Proposition 4.1 (i) For each I ∈ 
, the subproblem (P I ) has a unique solution, (ii) The var-
iational inequality (P) has a solution if and only if there exists I∗ ∈ 
 such that θ(x I∗) = 0,

where θ is defined by (3.2).

Proof (i) is immediate from Lemma 4.2, since (P I ) is equivalent to the strongly convex
quadratic program (Q P I ).

(ii) Suppose that, there exists x I∗ ∈ U such that θ(x I∗) = 0. By Lemma 2.1, x I∗ is a
solution to (P).

Conversely, suppose that x∗ ∈ U is a solution to (P). Since

U =
⋃

I∈


I,

there exists a subbox I∗ ∈ 
 such that x∗ ∈ I∗. By part (i), x∗ must be equal to x I∗ . Again
by Lemma 2.1, we have θ(x∗) = 0. ��
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In the algorithm we are going to describe, for ech I ∈ 
 we have to solve the strongly
convex quadratic problem (Q P I ). Suppose I = I1 × · · · × In with

Ii := [ηi
ji −1, η

i
ji ] (i = 1, . . . , n).

To construct vector cT = (c1, . . . , cn) in the object function of problem (Q P I ), first we
need to compute

aI = (a1
j1−1, . . . , an

jn−1).

Then we take

ci = 1

βi
(ai

ji −1 − αi ) (i = 1, . . . , n).

Let x I be the unique optimal solution to problem (Q P I ). Using the obtained x I , we compute
θ(x I ) as the optimal value of the problem

min
y∈U

{
〈B̃x I − α, y − x I 〉 + ϕ(y) − ϕ(x I

}
(O P I )

where, since h is separable, by (2.6), ϕ(y) := ∑n
i=1 ϕi (yi ). Since the objective function

of (O P I ) is separable, this problem is reduced to n-optimization problems of one-variable,
each of them has the following form

f ∗
i := min

yi ∈Ui
{ fi (yi )} (i = 1, . . . , n). (4.14)

By definition, we have θ(x I ) =∑n
i=1 f ∗

i .

Below are the steps of proposed algorithm.

Algorithm
Choose a tolerance ε ≥ 0.
Step 1: Select a subbox I ∈ 
.
Step 2: Solve the strongly convex quadratic problem (Q P I ) to obtain its unique solution x I .
Step 3: Solve n one-dimensional optimization problems (4.14) to obtain f ∗

i (i = 1, . . . , n).
Take

θ(x I ) =
n∑

i=1

f ∗
i .

(a) If θ(x I ) ≥ −ε, then terminate: we call x I an ε-equilibrium point.
(b) If θ(x I ) < −ε and 
 = ∅, then terminate: the model has no equilibrium point.

Otherwise, replace 
 by (
 \ {I }) and return to Step 1.
The validity of the algorithm is ensured by Proposition 4.1. Since 
 is a finite set, the

algorithm must terminate at Case (a) or Case (b). In the worst case the algorithm searches
for all subboxes in 
.

5 Computational results and experiences

We have tested the proposed algorithm for more than 20 problems with random generated
data on a PC computer by using Matlab for solving strongly convex quadratic subprograms.

In Table 1 the number of firms having concave cost function is nc = 15. The number of
all subboxes is Kmax = 5184. In Table 2 nc = 4 and Kmax = 72. All problems in Table 1
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Table 1 with n = 100, nc = 15
and ε = 10−5 Problem Ite. CPU-times/s β

1 3893 2953.7 10−4

2 1128 660.2 10−4

3 1728 1427.8 10−5

4 5184 3424.2 10−5

5 1728 2287.4 10−5

6 1117 846.5 10−5

7 1123 769.8 10−5

8 605 390.7 10−5

9 1124 737.3 10−6

10 1 1.4 10−6

11 1 0.61 10−3

12 37 21.56 10−3

13 1 0.5 10−7

14 1 0.6 10−8

15 1 1.392 10−9

Table 2 with n = 10, nc = 4
and ε = 10−5 Problem Ite. CPU-times/s β Solution

1 72 28.18 10−2 No
2 72 27.96 10−3 No
3 14 6.42 10−4 Yes
4 15 6.97 10−5 Yes
5 15 6.98 10−6 Yes
6 72 22.74 10−9 Yes
7 72 20.98 10−10 Yes

have a solution whereas in Table 2 the “yes” means that the problem has equilibrium point
and the “no” means that the problem has no equilibrium point.

From the obtained results one can see that the proposed algorithm can be used for solv-
ing the model with moderate number of producers having concave cost function. For high
dimensional problems we suggest portioning the family of subboxes 
 into two or more
disjunctive subsets and run simultaneously the algorithm on two or more computers. Each
of them solves the problem on a subset of boxes. The computation will terminate when one
computer finds a solution x I of problem (O P I ) with a box I such that θ(x I ) ≥ −ε. It is
expected that, by using this independent and parallel computation, the proposed algorithm
can solve large-scale problems.
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