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Abstract. In this paper we study a higher dimensional model of
the Kingman convolution algebras.We also introduce a new class of k-
dimensional Rayleigh distributions on Rk+ which stands for an analogue of
the class of k-dimensional Gaussian measures on Rk. Moreover, we prove
the Levy-Khinczyne theorem for infinitely divisible distributions in the k-
dimensional Kingman convolution algebra.
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1. INTRODUCTION, NOTATION AND PRELIMILARIES

Let P denote the class of all probability measures (p.m.’s) on the positive
half-line R+ endowed with the weak convergence and ∗1,δ, δ  1, denote the
Kingman convolution which was introduced by Kingman [2] in connection with
the addition of independent spherically symmetric random vectors (r.vec.) in an
Euclidean space. Namely, for each continuous bounded function f on R+ we write
:

(1.1)
∞∫
0

f(x)µ ∗1,δ ν(dx) =
Γ(s+ 1)
√
πΓ(s+ 1

2)
∞∫
0

∞∫
0

1∫
−1

f((x2 + 2uxy + y2)1/2)(1− u2)s−1/2µ(dx)ν(dy)du,
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where µ and ν ∈ P and δ = 2(s+1)  1 (cf. Kingman [2] and Urbanik [10]). The
algebra (P, ∗1,δ) is the most important example of Urbanik convolution algebras
(cf Urbanik [10]). In language of the Urbanik convolution algebras, the character-
istic measure, say σs, of the Kingman convolution has the Rayleigh density

(1.2) dσs(y) =
2(s+ 1)s+1

Γ(s+ 1)
y2s+1 exp (−(s+ 1)y2)dy

with the characteristic exponent κ = 2 and the kernel Λs

(1.3) Λs(x) = Γ(s+ 1)Js(x)/(1/2x)s,

where Js(x) denotes the Bessel function,

(1.4) Js(x) := Σ∞k=0

(−1)k(x/2)ν+2k

k!Γ(ν + k + 1)
.

It is known (cf. Kingman [2], Theorem 1), that the kernel Λs itself is an ordinary
characteristic function (ch.f.) of a symmetric p.m., say Fs, defined on the interval
[-1,1]. Thus, if θs denotes a random variable (r.v.) with distribution Fs then for
each t ∈ R+,

(1.5) Λs(t) = E exp (itθs) =
1∫
−1

exp (itx)dFs(x).

Suppose that X is a nonnegative r.v. with distribution µ ∈ P and X is independent
of θs. The radial characteristic function (rad.ch.f.) of µ, denoted by µ̂(t), is defined
by

(1.6) µ̂(t) = E exp (itXθs) =
∞∫
0

Λs(tx)µ(dx),

for every t ∈ R+. In particular, the rad.ch.f. of σs is

(1.7) σ̂s(t) = exp(− t
2

2
), t ∈ R+.

It should be noted, since the rad.ch.f. is defined uniquely up to the mapping x →
ax, a > 0, x ∈ R+, that the representation (1.7) may be other than that in in
Urbanik [10] and Kingman [2].

2. CARTESIAN PRODUCT OF KINGMAN CONVOLUTIONS

Denote by R+k, k = 1, 2, ... the k-dimensional nonnegative cone of Rk and
P(R+k) the class of all p.m.’s on R+k equipped with the weak convergence. In the
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sequel, we will denote the multidimensional vectors and distributions and r.v.’s by
bold letters. For each point z of any set Z let δz denote the Dirac measure (the unit
mass) at the point z. In particular, if x = (x1, x2, · · · , xk) ∈ Rk+, then

(2.1) δx = δx1 × δx2 × · · · × δxk
,

where the sign ” × ” denotes the Cartesian product of measures. We put, for x =
(x1, x2, · · · , xk) and y = (y1, y2, · · · , yk) ∈ R+k,

(2.2) δx©k δy = {δx1 ◦ δy1} × {δx2 ◦ δy2} × · · · × {δxk
◦ δyk

},

here and somewhere bellow for the sake of simplicity we denote the Kingman
convolution operation ∗1,δ simply by ◦. Since convex combinations of p.m.’s of
the form (2.1) are dense in P(R+k) the relation (2.2) can be extended to arbitrary
p.m.’s F and G ∈ P(R+k). Namely, we put

(2.3) F©k G =
∫∫
R+k

δx©k δyF(dx)G(dy).

In the sequel, the binary operation©k. will be called the k-times Cartesian prod-
uct of Kingman convolutions. It is easy to show that the binary operation ©k is
continuous in the weak topology which together with (1.1) and (2.3) implies the
following theorem.

THEOREM 2.1. The pair (P(R+k),©k) is a commutative topological semi-
group with δ0 as the unit element. Moreover, the operation©k is distributive w. r.
t. convex combinations of p.m.’s in P(R+k).

In the sequel, the pair (P(R+k),©k) will be called a k-dimensional King-
man convolution algebra2. For every F ∈ P(R+k) the k-dimensional rad.ch.f.
F̂(t), t = (t1, t2, · · · tk) ∈ Rk+, is defined by

(2.4) F̂(t) =
∫

R+k

k∏
j=1

Λs(tjxj)F(dx),

where x = (x1, x2, · · ·xk) ∈ R+k.
As noted by Kingman ([2], P.30) that the characteristic measure σs, being the

Rayleigh distribution, plays the role of the normal distribution, one may expect that
the multidimensional standard normal distribution has its counter part in the multi-
dimensional Kingman convolution being the k-dimensional Rayleigh distribution,
say Σs, which is defined by

(2.5) Σs = σs × σs × · · · × σs (k times).

2Higher dimensional Urbanik convolution algebras can be introduced in the same way as here
for the Kingman convolution case but this subject will be treated systematically else where.
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Furthermore, for any nonnegative numbers λr, r = 1, 2, · · · the distribution

(2.6) F = {Tλ1σs} × {Tλ2σs} × · · · {Tλk
σs},

stands for a k-dimensional Rayleighian distribution.
By virtue of formulas (1.7, 2.4, 2.5 and 2.6) we have the following

THEOREM 2.2. Suppose distributions Σ and F are of the form (2.5) and (2.6)
then, for any t ∈ R+k,

(2.7) Σ̂s(t) = exp(−

k∑
j=1

t2j

2
)

and

(2.8) F̂(t) = exp(−

k∑
j=1

λ2
j t

2
j

2
)

Let θ, θ1, θ2, . . . , θk be independent identically distributed (i.i.d.) r.v’s with the
common distribution Fs. We set

(2.9) Θs = (θ1, θ2, . . . , θk)

Assume that X = (X1, X2, ..., Xk) is a k-dimensional r.vec. with distribution F
and X is independent of Θ. We put

(2.10) [Θ,X] = (θ1X1, θ2X2, ..., θkXk).

Then, the following formula is the multidimensional generalization of (1.6) and is
equivalent to (2.4)

(2.11) F̂(t) = Eei<t,[Θ,X]>,

where X and Θ are assumed to be independent and t = (t1, t2, ..., tk) ∈ R+k

and the symbol < , > denotes the inner product in Rk. In fact, we have

Eei<(θ1t1,θ2t2,...,θktk),X> =
∫

R+k

Ee
i

k∑
j=1

tjxjθj

F(dx)

=
∫

R+k

Πk
j=1Λs(tjxj)F(dx)(2.12)

= F̂(t).

As a consequence of the representation (2.11) we have
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COROLLARY 2.1. For each F ∈ P(Rk+) the rad.ch.f. F̂(t) is also an ordi-
nary k-dimensional ch.f. and hence, it is uniformly continuous.

The following lemma will be used in the representation of k-dimensional ID
p.m.’s

LEMMA 2.1. (i) For every t  0

(2.13) lim
x→0

1− Λs(tx)
x2

= lim
x→0

1− Eeitθ

x2
=
t2

2
.

(ii) For any x = (x0, x1, · · · , xk) and t = (t0, t1, · · · , tk) ∈ Rk+1, k = 1, 2, ...

(2.14) limρ→0
1−

∏k
r=0 Λs(trxr)
ρ2

= Σk
r=0λr(x)t2r ,

where ρ = ‖x‖ and λr(x), r = 0, 1, ..., k are given by

(2.15) λr(x) =


1
2 cos2 φ r = 0,
1
2

(
sinφ sinφ1 · · · sinφr−1 cosφr)2 1 ¬ r ¬ k − 2),

1
2

(
sinφ sinφ1... sinφk−2 cosψ

)2
r = k − 1,

1
2

(
sinφ sinφ1... sinφk−2 sinψ

)2
r = k,

where 0 ¬ ψ, φ, φr ¬ π
2 , r = 1, 2, ..., k − 2 are angles of x appearing in its

polar form.

P r o o f. (i) The equation (1.5) in conjunction with the l’Hôpital rule implies
that

lim
x→0

1− Λs(tx)
x2

= lim
x→0

1− Eeitθ

x2
=
t2

2
,

which proves (2.13).
(ii) In order to prove (2.14) let the points x = (x0, x1, ..., xk) ∈ Rk+1 be of the
polar form

(2.16) xr =


ρ cosφ, r = 0,
ρ sinφ sinφ1 · · · sinφr−1 cosφr, 1 ¬ r ¬ k − 2
ρ sinφ sinφ1... sinφk−2 cosψ, r = k − 1,
ρ sinφ sinφ1... sinφk−2 sinψ, r = k.
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where 0 ¬ ψ, φ, φr ¬ π/2, r = 1, 2, ..., k − 2. Putting

(2.17) A(Θ, t,Φ) =



t0θ0 cosφ

+
k−2∑
r=1

trθr sinφ sinφ1 · · · sinφr−1 cosφr

+tk−1θk−1 sinφ sinφ1 · · · sinφk−2 cosψ

+tkθk sinφ sinφ1 · · · sinφk−2 sinψ

and

(2.18) V (Θ, t,Φ) =
k∑
r=0

trxrθr,

where the θr, r = 0, 1, 2, ... are symmetric i.i.d. r.v.’s with distribution σs, Φ =
(ψ, φ, φ1, · · · , φk) and Θ := (θ0, θ1, ..., θk). By virtue of (2.12) and (2.16) and
applying l’Hôpital rule, we have

limρ→0
1−

∏k
r=0 Λs(trxr)
ρ2

= limρ→0
1− E(e

i
k∑

r=0
trxrθr

)
ρ2

=
d2

dρ2

(
1− EeiρA(Θ,t,Φ)

)
d2

dρ2
ρ2

|ρ=0 =
1
2
EV 2(Θ, t,Φ)eiρV (Θ,t,Φ)|ρ=0.

(2.19)

Since σs has expectation zero and variance 1 it follows that

(2.20) EV 2(θ, t, φ) =
k∑
j=1

t2jx
2
j

which together with (2.19) implies (2.14). �

Proceeding successively, we have the following theorem:

THEOREM 2.3. Every p.m. F ∈ P(R+k) is uniquely determined by its k-
dimensional rad.ch.f. F̂ and the following formula holds:

(2.21) ̂F1©k F2(t) = F̂1(t)F̂2(t),

where F1,F2 ∈ P(R+k) and t ∈ R+k.
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P r o o f. The formula (2.21) follows from (1.1) and (2.3). Next, using the for-
mulas (2.3) and (2.4) and integrating the function F̂(t1u1, ..., tkuk), k-times w. r.
t. σs , we get ∫

R+k

F̂(t1u1, ..., tkuk)σs(du1)...σs(duk)

=
∫∫
R+

...
∫
R+

k∏
j=1

Λs(tjxjuj)F(dx)σs(du1)...σs(duk)(2.22)

=
∫

R+k

k∏
j=1

exp{−t2jx2
j}F(dx),

which, by change of variables yj = x2
j , j = 1, ..., k and by the uniqueness of the

k-dimensional Laplace transform, implies that F is uniquely determined by the
left-hand side of (2.22 ). �

As a consequence of the formula (2.22) we have the following corollary which
is an analogue of the continuity theorem for multidimensional Laplace transforms.

THEOREM 2.4. Suppose that {Fn} is a sequence of distributions on Rk+ and
{φn} is a sequence of the corresponding rad.ch.f.’s. Then, Fn converges weakly to
a distribution F if, and only if, {φn} converges uniformly on every compact subsets
of Rk+ to a rad.ch.f. φ.

For any x ∈ R+k the generalized translation operators (g.t.o.’s) Tx acting
on the Banach space Cb(R+k) of real bounded continuous functions f on R+k are
defined, for each y ∈ R+k, by

(2.23) Txf(y) =
∫

R+k

f(u){δx©k δy}(du).

In terms of these g.t.o.’s the k-dimensional rad.ch.f. of p.m.’s on R+k can be char-
acterized as the following:

THEOREM 2.5. A real bounded continuous function f on R+k is a (k-dimensional)
rad.ch.f. of a p.m., if and only if f(0) = 1 and f is {Tx}-nonnegative definite in
the sense that for any x1,x2, ...,xk ∈ Rk and λ1, λ2, ..., λk ∈ C

(2.24)
k∑

i,j=1

λiλ̄jTxif(xj)  0.

(See Vólkovich [12] for the proof).

The k-dimensional ID elements w.r.t. ©k can be defined as the following:
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DEFINITION 2.1. A p.m. µ ∈ P(R+k) is called ID, if for every natural m
there exists a p.m. µm such that µ = µm©k . . .©k µm (mtimes).

The simplest but most important example of k-dimensional ID distributions are
the k-dimensional Rayleigh distributions. More generally, if F is a k-dimensional
Rayleighian distribution, then it is also ID. Let us denote by ID(©k) the class of
all i.d.p.m.’s in (P(R+k),©k). The following theorem, being a generalization of
Theorem 7 in Kingman [2], stands for an analogue of the Lévy-Khintchine repre-
sentation for rad. ch. f.’s of i.d.p.m.’s in the k-dimensional Kingman convolution.

THEOREM 2.6. A p.m. µ ∈ ID(©k) if and only if there exist a σ-finite mea-
sure M (a Lévy’s measure) on R+k with the property that M({0}) = 0, M is finite
outside every neighborhood of 0 and

(2.25)
∫

R+k

‖x‖2

1 + ‖x‖2
M(dx) <∞

and for each t = (t1, ..., tk) ∈ Rk+

(2.26) − log µ̂(t) =
∫

R+k

{1−
k∏
j=1

Λs(tjxj)}
1 + ‖x‖2

‖x‖2
M(dx),

where, at the origin 0, the integrand on the right-hand side of (2.26) is assumed to
be

(2.27) Σk
j=1λj(x)t2j = lim‖x‖→0{1−

k∏
j=1

Λs(tjxj)}
1 + ‖x‖2

‖x‖2

for nonnegative λj(x), j = 1, 2, ..., k and x ∈ Rk+, given by equations (2.15) in
Lemma 2.1. In particular, if M = 0, then µ becomes a Rayleighian distribution
with the rad. ch. f.

(2.28) − log µ̂(t) =
1
2

k∑
j=1

λjt
2
j , t ∈ Rk+,

for some nonnegative λj , j = 1, ..., k such that Σk
j=1λj = 1.

Moreover, the representation (2.26) is unique.

P r o o f. The proof is carried out in several steps:

(i) If φ is a k-dimensional ID rad.ch.f., then it does not vanish on Rk+.
Indeed, denote by Φk the totality of k-dimensional ID rad.ch.f.’s (of the fixed
index s). Then, we have

(2.29) Φk = ∩∞n=1{φ : φ1/n ∈ Φn}
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which in conjunction with (2.12) and (2.21) implies that every k-dimensional
ID rad.ch.f. is a symmetric ordinary ID ch.f. and, consequently, it does not
vanish on Rk+.

(ii) Any ν ∈ ID(©k) with rad.ch.f. ν̂ = ψ ∈ Φk can be expressed in the form
(2.26).
Accordingly, we have, for every n, ψ = ψnn . By virtue of (i), ψ(t) > 0 for
each t. Therefore,

(2.30) logψ(t) = limn→∞n{ψn(t)− 1}.

Let Hn be a p.m. such that

(2.31) ψn(t) =
∫

Rk+

Πk
j=1Λs(tjxj)Hn(dx), t ∈ Rk+.

Putting

(2.32) Gn(A) = n
∫
A

‖x‖2

1 + ‖x‖2
Hn(dx)

and taking into account the equations (2.30) and (2.31) we get

(2.33) −logψ(t) = limn→∞
∫

Rk+

{1−
k∏
j=1

Λs(tjxj)}
1 + ‖x‖2

‖x‖2
Gn(dx).

which can be rewritten as

(2.34) −logψ(t) = limn→∞
∫

Rk+

{1−
k∏
j=1

Λs(tjxj)}Kn(dx),

where Kn are finite measures vanishing at 0 defined by

Kn(dx) :=
1 + ‖x‖2

‖x‖2
Gn(dx), (n = 1, 2, ...).

Replacing t in (2.35) by [t,u], t,u ∈ Rk+ and integrating w. r. t. σs× · · · ×
σs(du) it follows that

−
∫

Rk+

logψ([t,u])σs × · · · × σs(du)

=
∫

Rk+

limn→∞
∫

Rk+

{1−
k∏
j=1

Λs(tjujxj)}Kn(dx)σs × · · · × σs(du)

= limn→∞
∫

Rk+

{1−
k∏
j=1

e−t
2
jx

2
j}Kn(dx),
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which, by changing variables x2
j → uj , j = 1, 2, ..., k and applying the

Continuity Theorem for the classical infinitely divisible Laplace transforms
on Rk+, implies that there exists a finite measure K vanishing at 0 and a
subsequence {Kmr} which converges to K in the sense that for any bounded
continuous function f from Rk+ to R vanishing on a neighborhood of 0 and

limr→∞
∫

Rk+

f(x)Kmr(dx) =
∫

Rk+

f(x)K(dx).

which together with (2.33) and (2.14) implies that every ψ is of the form
(2.26) for a Lévy’s measure M.

(iii) Now, if M tends to the zero measure it follows that, at the origin 0, the
integrand on the right-hand side of (2.26) is determined by (2.1) which is a
consequence of Lemma 2.1.

(iv) Conversely, the uniqueness of the formula (2.26) can be proved in the same
way as in the classical case (cf. Sato [4], Theorems 8.1 and 8.7).

�
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