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1 Introduction

Intersection theorems, coincidence theorems and maximal-element theorems

are among the fundamental theorems of nonlinear analysis and play cru-

cial roles in the existence study of wide-ranging problems of optimization

and applied mathematics. They are closely related to other important theo-

rems like fixed-point theorems, minimax theorems, invariant-point theorems,

KKM-type theorems. Recently, these theorems have been generalized and

extended along with generalizations of KKM mappings to general spaces with

relaxed convexity structures. For G-convex spaces [16], intersection theorems

was studied in [6]; coincidence theorems were established in [15, 17]; maximal-

element theorems were investigated in [4, 5]. FC-spaces were introduced in

[7] with maximal-element theorems established. In [8-10] intersection and co-

incidence theorems in FC-spaces were considered. In this paper we propose

a definition of a generalized FC-space (GFC-space in short) and establish

these three kinds of theorems. Our results contain several recent existing re-

sults in the literature as special cases. We leave applications of our results to

optimization-related problems, especially to studies of the solution existence,

to a forthcoming paper.

Our paper is splitted into four sections. In the remaining part of this

section we propose a notion of GFC-spaces and generalize some definitions

of known classes of multivalued mappings from FC-spaces to GFC-spaces.

Section 2 is devoted to intersection theorems. In Section 3 some coincidence

theorems and fixed-point consequences are proved. Maximal-element theo-

rems are developed in the last Section 4.

For a set A, by 〈A〉 we denote the family of all finite subsets of A. If

A ⊆ X, X being a topological space, then A and Ac signify the closure

and the complement X\A, respectively, of A. A is called compactly open

(compactly closed, respectively) if for each nonempty compact subset K of

X, A ∩ K is open (closed, respectively) in K. The compact interior and

compact clusure of A are defined by, respectively,
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cintA =
⋃
{B ⊆ X : B ⊆ A and B is compactly open in X},

cclA =
⋂
{B ⊆ X : B ⊇ A and B is compactly closed in X}.

For topological spaces X, Y and a multivalued mapping F : X −→ 2Y ,

F is said to be upper semicontinuous (usc, in short) at x if, for each open

subset U of F (x), there is a neighborhood V of x such that U ⊇ F (V ). F is

called transfer-compactly-open-valued if, for each x ∈ X and each compact

subset K of Y , y ∈ F (x) ∩ K implies the existence of x′ ∈ X such that

y ∈ intK(F (x′) ∩ K), where intK stands for the interior in K, i.e. interior

with respect to the topology of K induced by the topology of Y . N stands

for the set of all natural numbers. ∆n, n ∈ N, denotes the n - simplex with

the vertices being the unit vectors e1, e2, ..., en+1, which form a basis of Rn+1.

Definition 1.1

(i) Let X be a topological space, Y be a nonempty set and Φ be a family

of continuous mappings ϕ : ∆n −→ X,n ∈ N. Then a triple (X, Y,Φ)

is said to be a generalized finitely continuous topological space (GFC -

space in short) if for each finite subset N = {y0, y1, ..., yn} ∈ 〈Y 〉, there

is ϕN : ∆n −→ X of the family Φ. Later we also use (X, Y, {ϕN}) to

denote (X,Y,Φ).

(ii) Let S : Y −→ 2X be a multivalued mapping. A subset D of Y is

called an S -subset of Y if, for each N = {y0, y1, ..., yn} ∈ 〈Y 〉 and

each {yi0 , yi1 , ..., yik} ⊆ N ∩ D, one has ϕN : ∆n −→ X of Φ such

that ϕN(∆k) ⊆ S(D), where ∆k is the face of ∆n corresponding to

{yi0 , yi1 , ..., yik}.

Note that if Y = X, then (X, Y,Φ) is rewritten as (X,Φ) and becomes

an FC -space [6]. If in addition, S is the identity map then an S -subset of Y

coincides with a FC -subspace of Y [7]. Note also that FC -spaces and GFC -

spaces have no convexity structure but they are generalizations of spaces

with convexity structures, see e.g. [7]; in particular, of a nonempty convex
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subset of a vector space. If Y ⊆ X and (X, Y,Γ) is a G-convex space (Γ

is a generalized convex hull operator, see [16]), and Φ is the family of con-

tinuous mappings ϕN : ∆n −→ Γ(N) as defined in [16], then (X, Y,Φ) is

a GFC -space. Both G-convex space and FC-space are general and include

many spaces mentioned in the literature, but they are incomparable. We

have seen that both of them are special cases of GFC-spaces. The notion of

GFC-space helps us also to encompass many generalized KKM-mappings as

shown after Definition 1.3 below.

Definition 1.2 Let (X, Y,Φ) be a GFC -space and Z be a topological space.

A multivalued mapping T : X −→ 2Z is called better admissible if T is usc

and compact-valued such that for each N ∈ 〈Y 〉 and each continuous map-

ping ψ : T (ϕN(∆n)) −→ ∆n, the composition ψ ◦T |ϕN (∆n) ◦ϕN : ∆n −→ 2∆n

has a fixed point, where ϕN ∈ Φ is corresponding to N.

The class of all such better admissible mapping from X to Z is denoted

by B(X,Y, Z). If Y = X, we simply write B(X,Z). This class was proposed

for the particular case where X is a nonempty convex subset of a vector space

in [13], extended later for G-convex spaces in [14] and for FC -spaces in [7].

Definition 1.3 Let (X, Y,Φ) be a GFC -space and Z be a topological space.

Let F : Y −→ 2Z and T : X −→ 2Z be multivalued mappings. F is said to

be a generalized KKM mapping with respect to (wrt) T (T -KKM mapping

in short) if for each N = {y0, y1, ..., yn} ∈ 〈Y 〉 and each {yi0 , yi1 , ..., yik} ⊆ N

one has T (ϕN(∆k)) ⊆
⋃k

j=0 F (yij), where ϕN ∈ Φ is corresponding to N and

∆k is the k-simplex corresponding to {yi0 , yi1 , ..., yik} in Definition 1.1.

T -KKM mappings were introduced for X being a convex subset of a

topological vector space in [1] and extended for FC -spaces in [7]. Defini-

tion 1.3 includes these definitions as particular cases. It encompasses also

many other kinds of generalized KKM mappings. We mention here some of
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them, while devoting a fothcoming paper to generlized KKM types theorems

in GFC-spaces. Let (X, {ϕN}) be an FC-space, Y be a nonempty set and

S : Y −→ X be a mapping. We define a GFC-space (X, Y, {ϕN}) by setting

ϕN = ϕs(N) for each N ∈ 〈Y 〉. Then a generalized s-KKM mapping wrt T

introduced in [8] becomes a T -KKM mapping by Definition 1.3. A multival-

ued mapping F : Y −→ 2X , being an R-KKM mapping as defined in [2], is a

special case of T -KKM mappings on GFC-space when X = Z and T is the

identity map. The definition of generalized KKM mappings wrt to T in [12]

is as well a particular case of Definition 1.3.

Remark 1.1. Since a multivalued mapping S : Y −→ 2X is equivalent to

a relation β(y, x) linking y ∈ Y and x ∈ X by setting: x ∈ S(y) if and

only if β(y, x) holds, the above-mentioned notions related to multivalued

mappings can be expressed in terms of relations. For instance the defini-

tion of an S -subset of Y can be restated as follows: for a relation β linking

y ∈ Y and x ∈ X, a subset D of Y is called a β-subset of Y if for each

N = {y0, y1, ..., yn} ∈ 〈Y 〉 and each {yi0 , yi1 , ..., yik} ⊆ N ∩ D, one has

ϕN(∆k) ⊆
⋃

y∈D{x ∈ X : β(y, x) holds}. The class of better admissible

relations R(X, Y, Z) and, for a relation α(x, z) linking x ∈ X and z ∈ Z, an

α-KKM relation F(y, z) linking y ∈ Y and z ∈ Z are defined similarly, cor-

responding to Definitions 1.2 and 1.3, respectively. Formulations of results

involving multivalued mappings in terms of relations may be very convenient

when many variables and compositions of mappings are involved, see e.g.

[11], where variational inclusion problems are stated in terms of variational

relations.

2 Intersection theorems

Lemma 2.1 Let (X,Y, {ϕN}) be a GFC-space and Z be a topological space.

Let F : Y −→ 2Z and T : X −→ 2Z be multivalued mappings. Assume that

(i) for each y ∈ Y , F (y) is compactly closed ;

5



(ii) T ∈ B(X, Y, Z) and F is T-KKM.

Then, for each N = {y0, y1, ..., yn} ∈ 〈Y 〉,

T (ϕN(∆n)) ∩
⋂

yi∈N

F (yi) 6= ∅.

Proof. Suppose to the contrary that N = {y0, y1, ..., yn} ∈ 〈Y 〉 exists such

that

T (ϕN(∆n)) =
n⋃

i=0

[(Z\F (yi)) ∩ T (ϕN(∆n))],

i.e. {(Z\F (yi)) ∩ T (ϕN(∆n))}n
i=0 is an open covering of the compact set

T (ϕN(∆n)). Let {ψi}n
i=0 be a continuous partition of unity associated with

this covering and ψ : T (ϕN(∆n)) −→ ∆n be defined by ψ(z) =
∑n

i=0 ψi(z)ei.

Then ψ is continuous. Since T is better admissible, there is a fixed point of

ψ ◦T |ϕN (∆n) ◦ϕN , i.e. there is z0 ∈ T (ϕN(∆n)) such that z0 ∈ T (ϕN(ψ(z0))).

We have

ψ(z0) =
∑

j∈J(z0)

ψj(z0)ej ∈ ∆J(z0),

where J(z0) = {j ∈ {0, 1, ..., n} : ψj(z0) 6= 0}. As F is T -KKM, we also have

z0 ∈ T (ϕN(ψ(z0)))

⊆ T (ϕN(∆J(z0)))

⊆
⋃

j∈J(z0) F (yj).

Hence, there exists j ∈ J(z0), z0 ∈ F (yj).

On the other hand, by the definitions of J(z0) and of the partition {ψi}n
i=0,

z0 ∈ {z ∈ T (ϕN(∆n)) : ψj(z) 6= 0}
⊆ (Z\F (yj)) ∩ T (ϕN(∆N))

⊆ (Z\F (yj)),

a contradiction.

Theorem 2.2 Let (X, Y, {ϕN}) be a GFC-space, Z be a topological space.

Let T ∈ B(X, Y, Z) and F : Y −→ 2Z satisfy the following conditions

(i) for each y ∈ Y , F (y) is compactly closed ;
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(ii) F is T -KKM;

(iii) one of the following three conditions holds

(iii1) there are N0 ∈ 〈Y 〉 and a nonempty compact subset K of Z such

that
⋂

yi∈N0
F (yi) ⊆ K;

(iii2) there is S : Y −→ 2X such that for each N ∈ 〈Y 〉, there exists

an S -subset LN of Y, containing N, so that S(LN) is a compact

subset and, for some nonempty and compact subset K of Z,

(T ◦ S)(LN) ∩ (
⋂

y∈LN

F (y)) ⊆ K;

(iii3) there are S : Y −→ 2X and a nonempty subset Y0 ⊆ Y such that

K :=
⋂

y∈Y0
F (y) is nonempty and compact and that, for each N ∈

〈Y 〉, there exists an S -subset LN of Y containing Y0 ∪ N so that

S(LN) is compact.

Then

K ∩ T (X) ∩ (
⋂
y∈Y

F (y)) 6= ∅.

Furthermore, for the case of (iii3), if K = ∅ then

T (X) ∩ (
⋂
y∈Y

F (y)) 6= ∅.

Proof. Case of (iii1). For y ∈ Y , set

U(y) = T (X) ∩ (
⋂

yi∈N0

F (yi)) ∩ F (y).

By (i) and (iii1), {U(y)}y∈Y is a family of sets which are closed in K. For

each N ∈ 〈Y 〉, setting M = N ∪N0 and m = |N | + |N0|, by Lemma 2.1 we

have

∅ 6= T (ϕM(∆m)) ∩ (
⋂

y∈M

F (y))
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⊆ T (X) ∩ (
⋂

y∈M F (y))

=
⋂
y∈N

U(y).

Since K is compact, this implies that

∅ 6=
⋂
y∈Y

U(y) ⊆ K ∩ T (X) ∩ (
⋂
y∈Y

F (y)).

Case of (iii2). By (i), {K ∩ T (X) ∩ F (y)}y∈Y is a family of sets which are

closed in K. Suppose that

∅ = K ∩ T (X) ∩ (
⋂
y∈Y

F (y))

=
⋂
y∈Y

(K ∩ T (X) ∩ F (y)).

Then there exists N ∈ 〈Y 〉 such that

∅ =
⋂
y∈N

(K ∩ T (X) ∩ F (y))

= K ∩ T (X) ∩ (
⋂
y∈N

F (y)),

i.e.

T (X) ∩ (
⋂
y∈N

F (y)) ⊆ Z\K.

In view of the assumption (iii2), there is an S -subset LN of Y containing N

such that

(T ◦ S)(LN) ∩ (
⋂

y∈LN

F (y)) ⊆ K.

On the other hand,

(T ◦ S)(LN) ∩ (
⋂

y∈LN

F (y)) ⊆ T (X) ∩ (
⋂
y∈N

F (y)) ⊆ Z\K.

Thus,

(T ◦ S)(LN) ∩ (
⋂

y∈LN

F (y)) = ∅.
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As LN is an S -subset of Y , by virtue of Lemma 2.1 we have, for each M ∈
〈LN〉,

∅ 6= T (ϕM(∆m)) ∩ (
⋂

y∈M

F (y))

⊆ (T ◦ S)(LN) ∩ (
⋂

y∈M

F (y)).

By the compactness of (T ◦ S)(LN), this implies that

(T ◦ S)(LN) ∩ (
⋂

y∈LN

F (y)) 6= ∅,

a contradiction.

Case of (iii3). If K is nonempty and compact, then {K ∩ T (X) ∩ F (y)}y∈Y

is a family of closed subsets of K. Suppose that

K ∩ T (X) ∩ (
⋂
y∈Y

F (y)) = ∅.

Then there is N ∈ 〈Y 〉 such that

∅ =
⋂
y∈N

(K ∩ T (X) ∩ F (y))

= T (X) ∩ (
⋂

y∈Y0∪N

F (y)).

Therefore,

(T ◦ S)(LN) ∩ (
⋂

y∈LN

F (y)) ⊆ T (X) ∩ (
⋂

y∈Y0∪N

F (y)) = ∅.

If K is empty, then, for each N ∈ 〈Y 〉,

(T ◦ S)(LN) ∩ (
⋂

y∈LN

F (y)) ⊆ K = ∅.

Since in both subcases the set on the left hand side is empty, we can argue

similarly as for the case (iii2) to get a contradiction.
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Note that Theorem 2.2 contains Theorem 3 of [17] and Theorems 1-3 of

[3] as special cases for the case of G-convex spaces.

3 Coincidence theorems

Theorem 3.1 Let (X, Y, {ϕN}) be a GFC-space and Z be a topological space.

Let S : Y −→ 2X , T : X −→ 2Z and F : Z −→ 2Y be multivalued mappings

with T ∈ B(X,Y, Z). Assume that

(i) for each x ∈ X and each z ∈ T (x), F (z) is an S -subset of Y ;

(ii) for each y ∈ Y, F−1(y) contains a compactly open Oy (Oy may be

empty) of Z such that K :=
⋃

y∈Y Oy is nonempty and compact ;

(iii) one of the following three conditions holds :

(iii1) there is N0 ∈ 〈Y 〉 such that
⋂

y∈N0
Oc

y ⊆ K;

(iii2) for each N ∈ 〈Y 〉, there is an S -subset LN of Y, containing N

such that S(LN) is compact and

(T ◦ S)(LN) ∩ (
⋂

y∈LN

Oc
y) ⊆ K;

(iii3) K = Z; there is a nonempty subset Y0 of Y such that
⋂

y∈Y0
Oc

y

is compact or empty; and for each N ∈ 〈Y 〉 there is an S -subset

LN of Y containing Y0 ∪N so that S(LN) is compact.

Then a point (x̄, ȳ, z̄) ∈ X × Y × Z exists such that x̄ ∈ S(ȳ), ȳ ∈ F (z̄) and

z̄ ∈ T (x̄).

Proof. Define a new multivalued mapping G : Y −→ 2Z by setting, ∀y ∈ Y,

G(y) = Oc
y, which is compactly closed by (ii), i.e. assumption (i) of Theo-

rem 2.2 for G in the place of F is fulfilled. It is clear that (iii1), (iii2), and
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(iii3) imply the corresponding assumptions of Theorem 2.2 for G. By (ii) of

Theorem 3.1,

K ∩ T (X) ∩ (
⋂
y∈Y

G(y)) ⊆ K ∩ (
⋂
y∈Y

Oc
y) = ∅,

which means that the conclusion of Theorem 2.2 for G in the place of F does

not hold. Therefore assumption (ii) of this theorem must be violated, i.e.

G is not T -KKM. This means that there are N = {y0, y1, ..., yn} ∈ 〈Y 〉 and

{yi0 , yi1 , ..., yik} ⊆ N such that

T (ϕN(∆k)) 6⊆
k⋃

j=0

G(yij) =
k⋃

j=0

Oc
yij
.

This in turn is equivalent to the existence of x̄ ∈ ϕN(∆k) and z̄ ∈ T (x̄) such

that z̄ ∈ Oyij
, for all j = 0, 1, ..., k. Since Oyij

⊆ F−1(yij) by (ii), yij ∈ F (z̄),

which is an S -subset of Y . Hence

x̄ ∈ ϕN(∆k) ⊆ S(F (z̄)),

which means that there is ȳ ∈ F (z̄) such that x̄ ∈ S(ȳ).

Remark 3.1.

(i) By setting H(y) = F−1(y) for y ∈ Y , Theorem 3.1 can be restated with

the conclusion that there is (x̄, ȳ, z̄) ∈ X × Y × Z such that x̄ ∈ S(ȳ)

and z̄ ∈ H(ȳ) ∩ T (x̄). So Theorem 3.1 includes properly Theorem 1 of

[15].

(ii) For the special case, where X = Y = Z and T = S is the identity

mapping, Theorem 3.1 becomes a fixed-point theorem for FC -spaces.

4 Maximal-element theorems

Theorem 4.1 Let (X, Y, {ϕN}) be a GFC-space, Z be a topological space
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and K ⊆ Z be nonempty and compact. Let F : Z −→ 2Y and T : X −→ 2Z

be multivalued mapping such that T ∈ B(X,Y, Z) and the following assump-

tions are satisfied

(i) for each y ∈ Y , F−1(y) includes a compactly open subset Oy (Oy may

be empty)of Z such that⋃
y∈Y

(Oy ∩K) =
⋃
y∈Y

(F−1(y) ∩K);

(ii) for each N = {y0, y1, ..., yn} ∈ 〈Y 〉 and each {yi0 , yi1 , ..., yik} ⊆ N ,

T (ϕN(∆k)) ∩ (
k⋂

j=0

Oyij
) = ∅;

(iii) one of the following conditions hold :

(iii1) there is N0 ∈ 〈Y 〉 such that Z\K ⊆
⋃

yi∈N0
Oyi

;

(iii2) there is a multivalued map S : Y −→ 2X such that, for each

N ∈ 〈Y 〉, there is an S -subset LN of Y containing N so that

S(LN) is compact and

(T ◦ S)(LN)\K ⊆
⋃

y∈LN

Oy.

Then a point z̄ ∈ K exists such that F (z̄) = ∅.

Proof. We check the assumptions of Theorem 2.2 in order to apply it

for, instead of F , a new multivalued mapping G : Y −→ 2Z defined by

G(y) = Oc
y. Assumption (i) is clearly fulfilled. For (ii), with arbitrary

N = {y0, y1, ..., yn} ∈ 〈Y 〉 and {yi0 , yi1 , ..., yik} ⊆ N , we have, by (ii) of

Theorem 4.1,

T (ϕN(∆k)) ⊆
k⋃

j=0

Oc
yij

=
k⋃

j=0

G(yij),
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i.e. G is T -KKM as required. By (iii1) of this theorem, we obtain (iii1) since⋂
yi∈N0

G(yi) =
⋂

yi∈N0

Oc
yi

⊆ Z\(Z\K) = K.

From (iii2) of this theorem it follows that

(T ◦ S)(LN) ∩ (
⋂

y∈LN

G(y)) = (T ◦ S)(LN) ∩ (Z\
⋃

y∈LN

Oy)

⊆ (T ◦ S)(LN) ∩ {Z\((T ◦ S)(LN)\K)}

⊆ K,

i.e. (iii2) is satisfied. Now that all the assumptions of Theorem 2.2 have been

checked, we obtain from this theorem

∅ 6= K ∩ T (X) ∩ (
⋂
y∈Y

G(y)) = K ∩ T (X) ∩ (Z\
⋃
y∈Y

Oy)

⊆ K ∩ T (X) ∩ (Z\
⋃
y∈Y

(Oy ∩K))

= K ∩ T (X) ∩ (Z\
⋃
y∈Y

(F−1(y) ∩K)).

Therefore an element z̄ ∈ K exists such that z̄ /∈ F−1(y)∩K for every y ∈ Y ,

i.e. F (z̄) = ∅.

Remark 4.1 Assumption (i) of Theorem 4.1 is satisfied with Oy = cintF−1(y)

if F−1 is transfer-compactly-open-valued (by Lemma 1.2 of [7]). This case of

Theorem 4.1 extends Theorem 2.2 of [7] to the case of GFC -spaces.

Theorem 4.2 Let (X, Y, {ϕN}), Z, F and T be defined as in Theorem 4.1

such that (ii) is satisfied and (i) and (iii) are replaced respectively by

(i’) for each y ∈ Y, F−1(y) contains a compactly open subset Oy, which

may be empty, of Z such that, for each nonempty compact subset Z0 of

Z, ⋃
y∈Y

(Oy ∩ Z0) =
⋃
y∈Y

(F−1(y) ∩ Z0);
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(iii’) there are a multivalued map S : Y −→ 2X and a nonempty subset Y0 of

Y such that K :=
⋂

y∈Y0
Oc

y is an S-subset LN of Y containing Y0 ∪N
so that S(LN) is compact.

Then an element z̄ ∈ Z exists with F (z̄) = ∅.

Proof. It is not hard to see that all the assumptions (i), (ii) and (iii3) of

Theorem 2.2 are fulfilled with G : Y −→ 2Z defined by G(y) = Oc
y in the

place of F . By this theorem we have, if K is nonempty,

∅ 6= K ∩ T (X) ∩ (
⋂
y∈Y

G(y)) ⊆ K ∩ T (X) ∩ (Z\
⋃
y∈Y

(Oy ∩K))

= K ∩ T (X) ∩ (Z\
⋃
y∈Y

(F−1(y) ∩K)).

Consequently, there is z̄ ∈ K such that z̄ /∈ F−1(y) for each y ∈ Y , which

means that F (z̄) = ∅.
If K is empty, Theorem 2.2 gives that

∅ 6= T (X) ∩ (
⋂
y∈Y

G(y)) ⊆ T (X) ∩ (Z\
⋃
y∈Y

(F−1(y) ∩K)).

Hence, z̄ ∈ Z also exists such that z̄ /∈ F−1(y) for each y ∈ Y , i.e. F (z̄) = ∅.

Similarly as mentioned in Remark 4.1, if F−1 is transfer-compactly-open-

valued, by taking Oy = cintF−1(y), all the assumptions of Theorem 4.2 are

satisfied. This case of Theorem 4.2 includes Theorem 2.1 of [7] as a special

case for the FC -space setting.
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